system has occurred, must report that occurrence to the State as soon as possible, but no later than by the end of the next business day.

(ii) If at any time the turbidity exceeds 5 NTU, the system must inform the State as soon as possible, but no later than the end of the next business day.

(iii) If at any time the residual falls below 0.2 mg/l in the water entering the distribution system, the system must notify the State as soon as possible, but no later than by the end of the next business day. The system also must notify the State by the end of the next business day whether or not the residual was restored to at least 0.2 mg/l within 4 hours.

Subpart I—Control of Lead and Copper

SOURCE: 56 FR 26548, June 7, 1991, unless otherwise noted.

§141.80 General requirements.

(a) Applicability and effective dates. (1) The requirements of this subpart I constitute the national primary drinking water regulations for lead and copper. Unless otherwise indicated, each of the provisions of this subpart applies to community water systems and nontransient, non-community water systems (hereinafter referred to as "water systems").

(2) The requirements set forth in §§141.86 to 141.91 shall take effect on July 7, 1991. The requirements set forth in §§141.80 to 141.85 shall take effect on December 7, 1992.

(b) *Scope.* These regulations establish a treatment technique that includes requirements for corrosion control treatment, source water treatment, lead service line replacement, and public education. These requirements are triggered, in some cases, by lead and copper action levels measured in samples collected at consumers' taps.

(c) Lead and copper action levels. (1) The lead action level is exceeded if the concentration of lead in more than 10 percent of tap water samples collected during any monitoring period conducted in accordance with §141.86 is greater than 0.015 mg/L (i.e., if the 40 CFR Ch. I (7–1–96 Edition)

"90th percentile" lead level is greater than 0.015 mg/L).

(2) The copper action level is exceeded if the concentration of copper in more than 10 percent of tap water samples collected during any monitoring period conducted in accordance with §141.86 is greater than 1.3 mg/L (i.e., if the "90th percentile" copper level is greater than 1.3 mg/L).

(3) The 90th percentile lead and copper levels shall be computed as follows:

(i) The results of all lead or copper samples taken during a monitoring period shall be placed in ascending order from the sample with the lowest concentration to the sample with the highest concentration. Each sampling result shall be assigned a number, ascending by single integers beginning with the number 1 for the sample with the lowest contaminant level. The number assigned to the sample with the highest contaminant level shall be equal to the total number of samples taken.

(ii) The number of samples taken during the monitoring period shall be multiplied by 0.9.

(iii) The contaminant concentration in the numbered sample yielded by the calculation in paragraph (c)(3)(ii) is the 90th percentile contaminant level.

(iv) For water systems serving fewer than 100 people that collect 5 samples per monitoring period, the 90th percentile is computed by taking the average of the highest and second highest concentrations.

(d) Corrosion control treatment requirements. (1) All water systems shall install and operate optimal corrosion control treatment as defined in §141.2.

(2) Any water system that complies with the applicable corrosion control treatment requirements specified by the State under §§ 141.81 and 141.82 shall be deemed in compliance with the treatment requirement contained in paragraph (d) (1) of this section.

(e) Source water treatment requirements. Any system exceeding the lead or copper action level shall implement all applicable source water treatment requirements specified by the State under §141.83.

(f) *Lead service line replacement requirements.* Any system exceeding the lead action level after implementation

of applicable corrosion control and source water treatment requirements shall complete the lead service line replacement requirements contained in §141.84.

(g) *Public education requirements.* Any system exceeding the lead action level shall implement the public education requirements contained in §141.85.

(h) Monitoring and analytical requirements. Tap water monitoring for lead and copper, monitoring for water quality parameters, source water monitoring for lead and copper, and analyses of the monitoring results under this subpart shall be completed in compliance with §\$141.86, 141.87, 141.88, and 141.89.

(i) *Reporting requirements.* Systems shall report to the State any information required by the treatment provisions of this subpart and §141.90.

(j) *Recordkeeping requirements.* Systems shall maintain records in accordance with §141.91.

(k) Violation of national primary drinking water regulations. Failure to comply with the applicable requirements of §§141.80-141.91, including requirements established by the State pursuant to these provisions, shall constitute a violation of the national primary drinking water regulations for lead and/or copper.

[56 FR 26548, June 7, 1991; 57 FR 28788, June 29, 1992]

§141.81 Applicability of corrosion control treatment steps to small, medium-size and large water systems.

(a) Systems shall complete the applicable corrosion control treatment requirements described in §141.82 by the deadlines established in this section.

(1) A large system (serving >50,000 persons) shall complete the corrosion control treatment steps specified in paragraph (d) of this section, unless it is deemed to have optimized corrosion control under paragraph (b)(2) or (b)(3) of this section.

(2) A small system (serving \leq 3300 persons) and a medium-size system (serving >3,300 and \leq 50,000 persons) shall complete the corrosion control treatment steps specified in paragraph (e) of this section, unless it is deemed to have optimized corrosion control under paragraph (b)(1), (b)(2), or (b)(3) of this section.

(b) A system is deemed to have optimized corrosion control and is not required to complete the applicable corrosion control treatment steps identified in this section if the system satisfies one of the following criteria:

(1) A small or medium-size water system is deemed to have optimized corrosion control if the system meets the lead and copper action levels during each of two consecutive six-month monitoring periods conducted in accordance with § 141.86.

(2) Any water system may be deemed by the State to have optimized corrosion control treatment if the system demonstrates to the satisfaction of the State that it has conducted activities equivalent to the corrosion control steps applicable to such system under this section. If the State makes this determination, it shall provide the system with written notice explaining the basis for its decision and shall specify the water quality control parameters representing optimal corrosion control in accordance with §141.82(f). A system shall provide the State with the following information in order to support a determination under this paragraph:

(i) The results of all test samples collected for each of the water quality parameters in \$141.82(c)(3).

(ii) A report explaining the test methods used by the water system to evaluate the corrosion control treatments listed in \$141.82(c)(1), the results of all tests conducted, and the basis for the system's selection of optimal corrosion control treatment;

(iii) A report explaining how corrosion control has been installed and how it is being maintained to insure minimal lead and copper concentrations at consumers' taps; and

(iv) The results of tap water samples collected in accordance with §141.86 at least once every six months for one year after corrosion control has been installed.

(3) Any water system is deemed to have optimized corrosion control if it submits results of tap water monitoring conducted in accordance with §141.86 and source water monitoring conducted in accordance with §141.88 that demonstrates for two consecutive six-month monitoring periods that the difference between the 90th percentile tap water lead level computed under \$141.80(c)(3), and the highest source water lead concentration, is less than the Practical Quantitation Level for lead specified in \$141.89(a)(1)(ii).

(c) Any small or medium-size water system that is required to complete the corrosion control steps due to its exceedance of the lead or copper action level may cease completing the treatment steps whenever the system meets both action levels during each of two consecutive monitoring periods conducted pursuant to §141.86 and submits the results to the State. If any such water system thereafter exceeds the lead or copper action level during any monitoring period, the system (or the State, as the case may be) shall recommence completion of the applicable treatment steps, beginning with the first treatment step which was not previously completed in its entirety. The State may require a system to repeat treatment steps previously completed by the system where the State determines that this is necessary to implement properly the treatment requirements of this section. The State shall notify the system in writing of such a determination and explain the basis for its decision. The requirement for any small- or medium-size system to implement corrosion control treatment steps in accordance with paragraph (e) of this section (including systems deemed to have optimized corrosion control under paragraph (b)(1) of this section) is triggered whenever any small- or medium-size system exceeds the lead or copper action level.

(d) Treatment steps and deadlines for large systems. Except as provided in paragraph (b) (2) and (3) of this section, large systems shall complete the following corrosion control treatment steps (described in the referenced portions of \$\$14.82, 141.86, and 141.87) by the indicated dates.

(1) *Step 1:* The system shall conduct initial monitoring (§141.86(d)(1) and §141.87(b)) during two consecutive sixmonth monitoring periods by January 1, 1993.

(2) *Step 2:* The system shall complete corrosion control studies (§141.82(c)) by July 1, 1994.

40 CFR Ch. I (7–1–96 Edition)

(3) *Step 3:* The State shall designate optimal corrosion control treatment (§141.82(d)) by January 1, 1995.

(4) *Step 4:* The system shall install optimal corrosion control treatment (§141.82(e)) by January 1, 1997.

(5) *Step 5:* The system shall complete follow-up sampling (§141.86(d)(2) and §141.87(c)) by January 1, 1998.

(6) *Step 6:* The State shall review installation of treatment and designate optimal water quality control parameters (§141.82(f)) by July 1, 1998.

(7) *Step 7:* The system shall operate in compliance with the State-specified optimal water quality control parameters (§141.82(g)) and continue to conduct tap sampling (§141.86(d)(3) and §141.87(d)).

(e) Treatment Steps and deadlines for small and medium-size systems. Except as provided in paragraph (b) of this section, small and medium-size systems shall complete the following corrosion control treatment steps (described in the referenced portions of §§141.82, 141.86 and 141.87) by the indicated time periods.

(1) *Step 1:* The system shall conduct initial tap sampling (§141.86(d)(1) and §141.87(b)) until the system either exceeds the lead or copper action level or becomes eligible for reduced monitoring under §141.86(d)(4). A system exceeding the lead or copper action level shall recommend optimal corrosion control treatment (§141.82(a)) within six months after it exceeds one of the action levels.

(2) *Step 2:* Within 12 months after a system exceeds the lead or copper action level, the State may require the system to perform corrosion control studies (§141.82(b)). If the State does not require the system to perform such studies, the State shall specify optimal corrosion control treatment (§141.82(d)) within the following timeframes:

(i) For medium-size systems, within 18 months after such system exceeds the lead or copper action level,

(ii) For small systems, within 24 months after such system exceeds the lead or copper action level.

(3) Step 3: If the State requires a system to perform corrosion control studies under step 2, the system shall complete the studies (§141.82(c)) within 18 months after the State requires that such studies be conducted.

(4) Step 4: If the system has performed corrosion control studies under step 2, the State shall designate optimal corrosion control treatment (§141.82(d)) within 6 months after completion of step 3.

(5) *Step 5:* The system shall install optimal corrosion control treatment (§141.82(e)) within 24 months after the State designates such treatment.

(6) Step $\overleftarrow{6}$: The system shall complete follow-up sampling (\$141.86(d)(2) and \$141.87(c)) within 36 months after the State designates optimal corrosion control treatment.

(7) *Step 7:* The State shall review the system's installation of treatment and designate optimal water quality control parameters (§141.82(f)) within 6 months after completion of step 6.

(8) *Step 8:* The system shall operate in compliance with the State-designated optimal water quality control parameters (§141.82(g)) and continue to conduct tap sampling (§141.86(d)(3) and §141.87(d)).

[56 FR 26548, June 7, 1991, as amended at 59 FR 33862, June 30, 1994]

§141.82 Description of corrosion control treatment requirements.

Each system shall complete the corrosion control treatment requirements described below which are applicable to such system under §141.81.

(a) System recommendation regarding corrosion control treatment. Based upon the results of lead and copper tap monitoring and water quality parameter monitoring, small and medium-size water systems exceeding the lead or copper action level shall recommend installation of one or more of the corrosion control treatments listed in paragraph (c)(1) of this section which the system believes constitutes optimal corrosion control for that system. The State may require the system to conduct additional water quality parameter monitoring in accordance with §141.87(b) to assist the State in reviewing the system's recommendation.

(b) State decision to require studies of corrosion control treatment (applicable to small and medium-size systems). The State may require any small or medium-size system that exceeds the lead or copper action level to perform corrosion control studies under paragraph (c) of this section to identify optimal corrosion control treatment for the system.

(c) *Performance of corrosion control studies.* (1) Any public water system performing corrosion control studies shall evaluate the effectiveness of each of the following treatments, and, if appropriate, combinations of the following treatments to identify the optimal corrosion control treatment for that system:

(i) Alkalinity and pH adjustment;

(ii) Calcium hardness adjustment; and

(iii) The addition of a phosphate or silicate based corrosion inhibitor at a concentration sufficient to maintain an effective residual concentration in all test tap samples.

(2) The water system shall evaluate each of the corrosion control treatments using either pipe rig/loop tests, metal coupon tests, partial-system tests, or analyses based on documented analogous treatments with other systems of similar size, water chemistry and distribution system configuration.

(3) The water system shall measure the following water quality parameters in any tests conducted under this paragraph before and after evaluating the corrosion control treatments listed above:

(i) Lead;

(ii) Copper;

(iii) pH;

(iv) Alkalinity;

(v) Calcium;

(vi) Conductivity;

(vii) Orthophosphate (when an inhibitor containing a phosphate compound is used);

(viii) Silicate (when an inhibitor containing a silicate compound is used);

(ix) Water temperature.

(4) The water system shall identify all chemical or physical constraints that limit or prohibit the use of a particular corrosion control treatment and document such constraints with at least one of the following:

(i) Data and documentation showing that a particular corrosion control treatment has adversely affected other water treatment processes when used by another water system with comparable water quality characteristics; and/or (ii) Data and documentation demonstrating that the water system has previously attempted to evaluate a particular corrosion control treatment and has found that the treatment is ineffective or adversely affects other water quality treatment processes.

(5) The water system shall evaluate the effect of the chemicals used for corrosion control treatment on other water quality treatment processes.

(6) On the basis of an analysis of the data generated during each evaluation, the water system shall recommend to the State in writing the treatment option that the corrosion control studies indicate constitutes optimal corrosion control treatment for that system. The water system shall provide a rationale for its recommendation along with all supporting documentation specified in paragraphs (c)(1) through (5) of this section.

(d) State designation of optimal corrosion control treatment. (1) Based upon consideration of available information including, where applicable, studies performed under paragraph (c) of this section and a system's recommended treatment alternative, the State shall either approve the corrosion control treatment option recommended by the system, or designate alternative corrosion control treatment(s) from among those listed in paragraph (c)(1) of this section. When designating optimal treatment the State shall consider the effects that additional corrosion control treatment will have on water guality parameters and on other water quality treatment processes.

(2) The State shall notify the system of its decision on optimal corrosion control treatment in writing and explain the basis for this determination. If the State requests additional information to aid its review, the water system shall provide the information.

(e) Installation of optimal corrosion control. Each system shall properly install and operate throughout its distribution system the optimal corrosion control treatment designated by the State under paragraph (d) of this section.

(f) State review of treatment and specification of optimal water quality control parameters. The State shall evaluate the results of all lead and copper tap 40 CFR Ch. I (7–1–96 Edition)

samples and water quality parameter samples submitted by the water system and determine whether the system has properly installed and operated the optimal corrosion control treatment designated by the State in paragraph (d) of this section. Upon reviewing the results of tap water and water quality parameter monitoring by the system, both before and after the system installs optimal corrosion control treatment, the State shall designate:

(1) A minimum value or a range of values for pH measured at each entry point to the distribution system;

(2) A minimum pH value, measured in all tap samples. Such value shall be equal to or greater than 7.0, unless the State determines that meeting a pH level of 7.0 is not technologically feasible or is not necessary for the system to optimize corrosion control;

(3) If a corrosion inhibitor is used, a minimum concentration or a range of concentrations for the inhibitor, measured at each entry point to the distribution system and in all tap samples, that the State determines is necessary to form a passivating film on the interior walls of the pipes of the distribution system;

(4) If alkalinity is adjusted as part of optimal corrosion control treatment, a minimum concentration or a range of concentrations for alkalinity, measured at each entry point to the distribution system and in all tap samples;

(5) If calcium carbonate stabilization is used as part of corrosion control, a minimum concentration or a range of concentrations for calcium, measured in all tap samples.

The values for the applicable water quality control parameters listed above shall be those that the State determines to reflect optimal corrosion control treatment for the system. The State may designate values for additional water quality control parameters determined by the State to reflect optimal corrosion control for the system. The State shall notify the system in writing of these determinations and explain the basis for its decisions.

(g) *Continued operation and monitoring.* All systems shall maintain water quality parameter values at or above

minimum values or within ranges designated by the State under paragraph (f) of this section in each sample collected under §141.87(d). If the water quality parameter value of any sample is below the minimum value or outside the range designated by the State, then the system is out of compliance with this paragraph. As specified in §141.87(d), the system may take a confirmation sample for any water quality parameter value no later than 3 days after the first sample. If a confirmation sample is taken, the result must be averaged with the first sampling result and the average must be used for any compliance determinations under this paragraph. States have discretion to delete results of obvious sampling errors from this calculation.

(h) Modification of State treatment decisions. Upon its own initiative or in response to a request by a water system or other interested party, a State may modify its determination of the optimal corrosion control treatment under paragraph (d) of this section or optimal quality control parameters water under paragraph (f) of this section. A request for modification by a system or other interested party shall be in writing, explain why the modification is appropriate, and provide supporting documentation. The State may modify its determination where it concludes that such change is necessary to ensure that the system continues to optimize corrosion control treatment. A revised determination shall be made in writing, set forth the new treatment requirements, explain the basis for the State's decision, and provide an implementation schedule for completing the treatment modifications.

(i) Treatment decisions by EPA in lieu of the State. Pursuant to the procedures in \$142.19, the EPA Regional Administrator may review treatment determinations made by a State under paragraphs (d), (f), or (h) of this section and issue federal treatment determinations consistent with the requirements of those paragraphs where the Regional Administrator finds that:

(1) A State has failed to issue a treatment determination by the applicable deadlines contained in §141.81,

(2) A State has abused its discretion in a substantial number of cases or in cases affecting a substantial population, or $% \left({{{\left[{{{\left[{{{\left[{{{c}} \right]}} \right]_{{{\rm{c}}}}}} \right]}_{{{\rm{c}}}}}} \right)$

(3) The technical aspects of a State's determination would be indefensible in an expected Federal enforcement action taken against a system.

§141.83 Source water treatment requirements.

Systems shall complete the applicable source water monitoring and treatment requirements (described in the referenced portions of paragraph (b) of this section, and in §§ 141.86, and 141.88) by the following deadlines.

(a) Deadlines for completing source water treatment steps—(1) Step 1: A system exceeding the lead or copper action level shall complete lead and copper source water monitoring (§141.88(b)) and make a treatment recommendation to the State (§141.83(b)(1)) within 6 months after exceeding the lead or copper action level.

(2) Step 2: The State shall make a determination regarding source water treatment (\$141.83(b)(2)) within 6 months after submission of monitoring results under step 1.

(3) Step 3: If the State requires installation of source water treatment, the system shall install the treatment $(\S141.83(b)(3))$ within 24 months after completion of step 2.

(4) *Step 4:* The system shall complete follow-up tap water monitoring (§141.86(d)(2) and source water monitoring (§141.88(c)) within 36 months after completion of step 2.

(5) *Step 5:* The State shall review the system's installation and operation of source water treatment and specify maximum permissible source water levels (§141.83(b)(4)) within 6 months after completion of step 4.

(6) *Step 6:* The system shall operate in compliance with the State-specified maximum permissible lead and copper source water levels (§141.83(b)(4)) and continue source water monitoring (§141.88(d)).

(b) Description of source water treatment requirements—(1) System treatment recommendation. Any system which exceeds the lead or copper action level shall recommend in writing to the State the installation and operation of one of the source water treatments listed in paragraph (b)(2) of this section. A system may recommend that no treatment be installed based upon a demonstration that source water treatment is not necessary to minimize lead and copper levels at users' taps.

(2) State determination regarding source water treatment. The State shall complete an evaluation of the results of all source water samples submitted by the water system to determine whether source water treatment is necessary to minimize lead or copper levels in water delivered to users' taps. If the State determines that treatment is needed, the State shall either require installation and operation of the source water treatment recommended by the system (if any) or require the installation and operation of another source water treatment from among the following: Ion exchange, reverse osmosis, lime softening or coagulation/filtration. If the State requests additional information to aid in its review, the water system shall provide the information by the date specified by the State in its request. The State shall notify the system in writing of its determination and set forth the basis for its decision.

(3) *Installation of source water treatment.* Each system shall properly install and operate the source water treatment designated by the State under paragraph (b)(2) of this section.

(4) State review of source water treatment and specification of maximum permissible source water levels. The State shall review the source water samples taken by the water system both before and after the system installs source water treatment, and determine whether the system has properly installed and operated the source water treatment designated by the State. Based upon its review, the State shall designate the maximum permissible lead and copper concentrations for finished water entering the distribution system. Such levels shall reflect the contaminant removal capability of the treatment properly operated and maintained. The State shall notify the system in writing and explain the basis for its decision.

(5) *Continued operation and maintenance.* Each water system shall maintain lead and copper levels below the maximum permissible concentrations 40 CFR Ch. I (7–1–96 Edition)

designated by the State at each sampling point monitored in accordance with §141.88. The system is out of compliance with this paragraph if the level of lead or copper at any sampling point is greater than the maximum permissible concentration designated by the State.

(6) Modification of State treatment decisions. Upon its own initiative or in response to a request by a water system or other interested party, a State may modify its determination of the source water treatment under paragraph (b)(2)of this section, or maximum permissible lead and copper concentrations for finished water entering the distribution system under paragraph (b)(4) of this section. A request for modification by a system or other interested party shall be in writing, explain why the modification is appropriate, and provide supporting documentation. The State may modify its determination where it concludes that such change is necessary to ensure that the system continues to minimize lead and copper concentrations in source water. A revised determination shall be made in writing, set forth the new treatment requirements, explain the basis for the State's decision, and provide an implementation schedule for completing the treatment modifications.

(7) Treatment decisions by EPA in lieu of the State. Pursuant to the procedures in \$142.19, the EPA Regional Administrator may review treatment determinations made by a State under paragraphs (b) (2), (4), or (6) of this section and issue Federal treatment determinations consistent with the requirements of those paragraphs where the Administrator finds that:

(i) A State has failed to issue a treatment determination by the applicable deadlines contained in §141.83(a),

(ii) A state has abused its discretion in a substantial number of cases or in cases affecting a substantial population, or

(iii) The technical aspects of a State's determination would be indefensible in an expected Federal enforcement action taken against a system.

§141.84 Lead service line replacement requirements.

(a) Systems that fail to meet the lead action level in tap samples taken pursuant to §141.86(d)(2), after installing corrosion control and/or source water treatment (whichever sampling occurs later), shall replace lead service lines in accordance with the requirements of this section. If a system is in violation of §141.81 or §141.83 for failure to install source water or corrosion control treatment, the State may require the system to commence lead service line replacement under this section after the date by which the system was required to conduct monitoring under §141.86(d)(2) has passed.

(b) A system shall replace annually at least 7 percent of the initial number of lead service lines in its distribution system. The initial number of lead service lines is the number of lead lines in place at the time the replacement program begins. The system shall identify the initial number of lead service lines in its distribution system based upon a materials evaluation, including the evaluation reauired under §141.86(a). The first year of lead service line replacement shall begin on the date the action level was exceeded in tap sampling referenced in paragraph (a) of this section.

(c) A system is not required to replace an individual lead service line if the lead concentration in all service line samples from that line, taken pursuant to \$141.86(b)(3), is less than or equal to 0.015 mg/L.

(d) A water system shall replace the entire service line (up to the building inlet) unless it demonstrates to the satisfaction of the State under paragraph (e) of this section that it controls less than the entire service line. In such cases, the system shall replace the portion of the line which the State determines is under the system's control. The system shall notify the user served by the line that the system will replace the portion of the service line under its control and shall offer to replace the building owner's portion of the line, but is not required to bear the cost of replacing the building owner's portion of the line. For buildings where only a portion of the lead service line is replaced, the water system shall inform the resident(s) that the system will collect a first flush tap water sample after partial replacement of the service line is completed if the resident(s) so desire. In cases where the resident(s) accept the offer, the system shall collect the sample and report the results to the resident(s) within 14 days following partial lead service line replacement.

(e) A water system is presumed to control the entire lead service line (up to the building inlet) unless the system demonstrates to the satisfaction of the State, in a letter submitted under §141.90(e)(4), that it does not have any of the following forms of control over the entire line (as defined by state statutes, municipal ordinances, public service contracts or other applicable legal authority): authority to set standards for construction, repair, or maintenance of the line, authority to replace, repair, or maintain the service line, or ownership of the service line. The State shall review the information supplied by the system and determine whether the system controls less than the entire service line and, in such cases, shall determine the extent of the system's control. The State's determination shall be in writing and explain the basis for its decision.

(f) The State shall require a system to replace lead service lines on a shorter schedule than that required by this section, taking into account the number of lead service lines in the system, where such a shorter replacement schedule is feasible. The State shall make this determination in writing and notify the system of its finding within 6 months after the system is triggered into lead service line replacement based on monitoring referenced in paragraph (a) of this section.

(g) Any system may cease replacing lead service lines whenever first draw samples collected pursuant to §141.86(b)(2) meet the lead action level during each of two consecutive monitoring periods and the system submits the results to the State. If first draw tap samples collected in any such system thereafter exceeds the lead action level, the system shall recommence replacing lead service lines pursuant to paragraph (b) of this section.

§141.85

(h) To demonstrate compliance with paragraphs (a) through (d) of this section, a system shall report to the State the information specified in \$141.90(e).

[56 FR 26548, June 7, 1991; 57 FR 28788, June 29, 1992]

§141.85 Public education and supplemental monitoring requirements.

A water system that exceeds the lead action level based on tap water samples collected in accordance with \$141.86 shall deliver the public education materials contained in paragraphs (a) and (b) of this section in accordance with the requirements in paragraph (c) of this section.

(a) *Content of written materials.* A water system shall include the following text in all of the printed materials it distributes through its lead public education program. Any additional information presented by a system shall be consistent with the information below and be in plain English that can be understood by laypersons.

(1) Introduction. The United States Environmental Protection Agency (EPA) and [insert name of water supplier] are concerned about lead in your drinking water. Although most homes have very low levels of lead in their drinking water, some homes in the community have lead levels above the EPA action level of 15 parts per billion (ppb), or 0.015 milligrams of lead per liter of water (mg/L). Under Federal law we are required to have a program in place to minimize lead in your drinking water by [insert date when corrosion control will be completed for your system]. This program includes corrosion control treatment, source water treatment, and public education. We are also required to replace each lead service line that we control if the line contributes lead concentrations of more than 15 ppb after we have completed the comprehensive treatment program. If you have any questions about how we are carrying out the requirements of the lead regulation please give us a call at [insert water system's phone number]. This brochure explains the simple steps you can take to protect you and your family by reducing your exposure to lead in drinking water.

40 CFR Ch. I (7–1–96 Edition)

(2) Health effects of lead. Lead is a common metal found throughout the environment in lead-based paint, air, soil, household dust, food, certain types of pottery porcelain and pewter, and water. Lead can pose a significant risk to your health if too much of it enters your body. Lead builds up in the body over many years and can cause damage to the brain, red blood cells and kidneys. The greatest risk is to young children and pregnant women. Amounts of lead that won't hurt adults can slow down normal mental and physical development of growing bodies. In addition, a child at play often comes into contact with sources of lead contamination-like dirt and dustthat rarely affect an adult. It is important to wash children's hands and toys often, and to try to make sure they only put food in their mouths.

(3) Lead in drinking water. (i) Lead in drinking water, although rarely the sole cause of lead poisoning, can significantly increase a person's total lead exposure, particularly the exposure of infants who drink baby formulas and concentrated juices that are mixed with water. The EPA estimates that drinking water can make up 20 percent or more of a person's total exposure to lead.

(ii) Lead is unusual among drinking water contaminants in that it seldom occurs naturally in water supplies like rivers and lakes. Lead enters drinking water primarily as a result of the corrosion, or wearing away, of materials containing lead in the water distribution system and household plumbing. These materials include lead-based solder used to join copper pipe, brass and chrome plated brass faucets, and in some cases, pipes made of lead that connect your house to the water main (service lines). In 1986, Congress banned the use of lead solder containing greater than 0.2% lead, and restricted the lead content of faucets, pipes and other plumbing materials to 8.0%.

(iii) When water stands in lead pipes or plumbing systems containing lead for several hours or more, the lead may dissolve into your drinking water. This means the first water drawn from the tap in the morning, or later in the afternoon after returning from work or

school, can contain fairly high levels of lead.

(4) Steps you can take in the home to reduce exposure to lead in drinking water. (i) Despite our best efforts mentioned earlier to control water corrosivity and remove lead from the water supply, lead levels in some homes or buildings can be high. To find out whether you need to take action in your own home, have your drinking water tested to determine if it contains excessive concentrations of lead. Testing the water is essential because you cannot see, taste, or smell lead in drinking water. Some local laboratories that can provide this service are listed at the end of this booklet. For more information on having your water tested, please call [insert phone number of water system].

(ii) If a water test indicates that the drinking water drawn from a tap in your home contains lead above 15 ppb, then you should take the following precautions:

(A) Let the water run from the tap before using it for drinking or cooking any time the water in a faucet has gone unused for more than six hours. The longer water resides in your home's plumbing the more lead it may contain. Flushing the tap means running the cold water faucet until the water gets noticeably colder, usually about 15-30 seconds. If your house has a lead service line to the water main, you may have to flush the water for a longer time, perhaps one minute, before drinking. Although toilet flushing or showering flushes water through a portion of your home's plumbing system, you still need to flush the water in each faucet before using it for drinking or cooking. Flushing tap water is a simple and inexpensive measure you can take to protect your family's health. It usually uses less than one or two gallons of water and costs less than [insert a cost estimate based on flushing two times a day for 30 days] per month. To conserve water, fill a couple of bottles for drinking water after flushing the tap, and whenever possible use the first flush water to wash the dishes or water the plants. If you live in a high-rise building, letting the water flow before using it may not work to lessen your risk from lead. The plumbing systems have more, and

sometimes larger pipes than smaller buildings. Ask your landlord for help in locating the source of the lead and for advice on reducing the lead level.

(B) Try not to cook with, or drink water from the hot water tap. Hot water can dissolve more lead more quickly than cold water. If you need hot water, draw water from the cold tap and heat it on the stove.

(C) Remove loose lead solder and debris from the plumbing materials installed in newly constructed homes, or homes in which the plumbing has recently been replaced, by removing the faucet strainers from all taps and running the water from 3 to 5 minutes. Thereafter, periodically remove the strainers and flush out any debris that has accumulated over time.

(D) If your copper pipes are joined with lead solder that has been installed illegally since it was banned in 1986, notify the plumber who did the work and request that he or she replace the lead solder with lead-free solder. Lead solder looks dull gray, and when scratched with a key looks shiny. In addition, notify your State [insert name of department responsible for enforcing the Safe Drinking Water Act in your State] about the violation.

(E) Determine whether or not the service line that connects your home or apartment to the water main is made of lead. The best way to determine if your service line is made of lead is by either hiring a licensed plumber to inspect the line or by contacting the plumbing contractor who installed the line. You can identify the plumbing contractor by checking the city's record of building permits which should be maintained in the files of the [insert name of department that issues building permits]. A licensed plumber can at the same time check to see if your homes's plumbing contains lead solder, lead pipes, or pipe fittings that contain lead. The public water system that delivers water to your home should also maintain records of the materials located in the distribution system. If the service line that connects your dwelling to the water main contributes more than 15 ppb to drinking water, after our comprehensive treatment program is in place, we are required to replace the line. If the line

40 CFR Ch. I (7–1–96 Edition)

is only partially controlled by the [insert name of the city, county, or water system that controls the line], we are required to provide you with information on how to replace your portion of the service line, and offer to replace that portion of the line at your expense and take a follow-up tap water sample within 14 days of the replacement. Acceptable replacement alternatives include copper, steel, iron, and plastic pipes.

§141.85

(F) Have an electrician check your wiring. If grounding wires from the electrical system are attached to your pipes, corrosion may be greater. Check with a licensed electrician or your local electrical code to determine if your wiring can be grounded elsewhere. DO NOT attempt to change the wiring yourself because improper grounding can cause electrical shock and fire hazards.

(iii) The steps described above will reduce the lead concentrations in your drinking water. However, if a water test indicates that the drinking water coming from your tap contains lead concentrations in excess of 15 ppb after flushing, or after we have completed our actions to minimize lead levels, then you may want to take the following additional measures:

(A) Purchase or lease a home treatment device. Home treatment devices are limited in that each unit treats only the water that flows from the faucet to which it is connected, and all of the devices require periodic maintenance and replacement. Devices such as reverse osmosis systems or distillers can effectively remove lead from your drinking water. Some activated carbon filters may reduce lead levels at the tap, however all lead reduction claims should be investigated. Be sure to check the actual performance of a specific home treatment device before and after installing the unit.

(B) Purchase bottled water for drinking and cooking.

(iv) You can consult a variety of sources for additional information. Your family doctor or pediatrician can perform a blood test for lead and provide you with information about the health effects of lead. State and local government agencies that can be contacted include: (A) [insert the name of city or county department of public utilities] at [insert phone number] can provide you with information about your community's water supply, and a list of local laboratories that have been certified by EPA for testing water quality;

(B) [insert the name of city or county department that issues building permits] at [insert phone number] can provide you with information about building permit records that should contain the names of plumbing contractors that plumbed your home; and

(C) [insert the name of the State Department of Public Health] at [insert phone number] or the [insert the name of the city or county health department] at [insert phone number] can provide you with information about the health effects of lead and how you can have your child's blood tested.

(v) The following is a list of some State approved laboratories in your area that you can call to have your water tested for lead. [Insert names and phone numbers of at least two laboratories].

(b) Content of broadcast materials. A water system shall include the following information in all public service announcements submitted under its lead public education program to television and radio stations for broadcasting:

(1) Why should everyone want to know the facts about lead and drinking water? Because unhealthy amounts of lead can enter drinking water through the plumbing in your home. That's why I urge you to do what I did. I had my water tested for [insert free or \$ per sample]. You can contact the [insert the name of the city or water system] for information on testing and on simple ways to reduce your exposure to lead in drinking water.

(2) To have your water tested for lead, or to get more information about this public health concern, please call [insert the phone number of the city or water system].

(c) Delivery of a public education program. (1) In communities where a significant proportion of the population speaks a language other than English, public education materials shall be communicated in the appropriate language(s).

(2) A community water system that fails to meet the lead action level on the basis of tap water samples collected in accordance with §141.86 shall, within 60 days:

(i) Insert notices in each customer's water utility bill containing the information in paragraph (a) of this section, along with the following alert on the water bill itself in large print: "SOME HOMES IN THIS COMMUNITY HAVE ELEVATED LEAD LEVELS IN THEIR DRINKING WATER. LEAD CAN POSE A SIGNIFICANT RISK TO YOUR HEALTH. PLEASE READ THE EN-CLOSED NOTICE FOR FURTHER IN-FORMATION."

(ii) Submit the information in paragraph (a) of this section to the editorial departments of the major daily and weekly newspapers circulated throughout the community.

(iii) Deliver pamphlets and/or brochures that contain the public education materials in paragraphs (a) (2) and (4) of this section to facilities and organizations, including the following:

(A) Public schools and/or local school boards;

(B) City or county health department;

(C) Women, Infants, and Children and/or Head Start Program(s) whenever available:

(D) Public and private hospitals and/ or clinics;

(E) Pediatricians;

(F) Family planning clinics; and

(G) Local welfare agencies.

(iv) Submit the public service announcement in paragraph (b) of this section to at least five of the radio and television stations with the largest audiences that broadcast to the community served by the water system.

(3) A community water system shall repeat the tasks contained in paragraphs (c)(2) (i), (ii) and (iii) of this section every 12 months, and the tasks contained in paragraphs (c)(2)(iv) of this section every 6 months for as long as the system exceeds the lead action level.

(4) Within 60 days after it exceeds the lead action level, a non-transient noncommunity water system shall deliver the public education materials contained in paragraphs (a) (1), (2), and (4) of this section as follows: (i) Post informational posters on lead in drinking water in a public place or common area in each of the buildings served by the system; and

(ii) Distribute informational pamphlets and/or brochures on lead in drinking water to each person served by the non-transient non-community water system.

(5) A non-transient non-community water system shall repeat the tasks contained in paragraph (c)(4) of this section at least once during each calendar year in which the system exceeds the lead action level.

(6) A water system may discontinue delivery of public education materials if the system has met the lead action level during the most recent six-month monitoring period conducted pursuant to §141.86. Such a system shall recommence public education in accordance with this section if it subsequently exceeds the lead action level during any monitoring period.

(d) Supplemental monitoring and notification of results. A water system that fails to meet the lead action level on the basis of tap samples collected in accordance with §141.86 shall offer to sample the tap water of any customer who requests it. The system is not required to pay for collecting or analyzing the sample, nor is the system required to collect and analyze the sample itself.

[56 FR 26548, June 7, 1991; 57 FR 28788, June 29, 1992]

§141.86 Monitoring requirements for lead and copper in tap water.

(a) Sample site location. (1) By the applicable date for commencement of monitoring under paragraph (d)(1) of this section, each water system shall complete a materials evaluation of its distribution system in order to identify a pool of targeted sampling sites that meets the requirements of this section, and which is sufficiently large to ensure that the water system can collect the number of lead and copper tap samples required in paragraph (c) of this section. All sites from which first draw samples are collected shall be selected from this pool of targeted sampling sites. Sampling sites may not include faucets that have point-of-use or pointof-entry treatment devices designed to remove inorganic contaminants.

(2) A water system shall use the information on lead, copper, and galvanized steel that it is required to collect under §141.42(d) of this part [special monitoring for corrosivity characteristics] when conducting a materials evaluation. When an evaluation of the information collected pursuant to §141.42(d) is insufficient to locate the requisite number of lead and copper sampling sites that meet the targeting criteria in paragraph (a) of this section, the water system shall review the sources of information listed below in order to identify a sufficient number of sampling sites. In addition, the system shall seek to collect such information where possible in the course of its normal operations (e.g., checking service line materials when reading water meters or performing maintenance activities):

(i) All plumbing codes, permits, and records in the files of the building department(s) which indicate the plumbing materials that are installed within publicly and privately owned structures connected to the distribution system;

(ii) All inspections and records of the distribution system that indicate the material composition of the service connections that connect a structure to the distribution system; and

(iii) All existing water quality information, which includes the results of all prior analyses of the system or individual structures connected to the system, indicating locations that may be particularly susceptible to high lead or copper concentrations.

(3) The sampling sites selected for a community water system's sampling pool ("tier l sampling sites") shall consist of single family structures that:

(i) Contain copper pipes with lead solder installed after 1982 or contain lead pipes; and/or

(ii) Are served by a lead service line. When multiple-family residences comprise at least 20 percent of the structures served by a water system, the system may include these types of structures in its sampling pool.

(4) Any community water system with insufficient tier 1 sampling sites shall complete its sampling pool with 40 CFR Ch. I (7–1–96 Edition)

"tier 2 sampling sites", consisting of buildings, including multiple-family residences that:

(i) Contain copper pipes with lead solder installed after 1982 or contain lead pipes; and/or

(ii) Are served by a lead service line.

(5) Any community water system with insufficient tier 1 and tier 2 sampling sites shall complete its sampling pool with "tier 3 sampling sites", consisting of single family structures that contain copper pipes with lead solder installed before 1983.

(6) The sampling sites selected for a non-transient noncommunity water system ("tier l sampling sites") shall consist of buildings that:

(i) Contain copper pipes with lead solder installed after 1982 or contain lead pipes; and/or

(ii) Are served by a lead service line.

(7) A non-transient non-community water system with insufficient tier 1 sites that meet the targeting criteria in paragraph (a)(6) of this section shall complete its sampling pool with sampling sites that contain copper pipes with lead solder installed before 1983.

(8) Any water system whose sampling pool does not consist exclusively of tier 1 sites shall demonstrate in a letter submitted to the State under §141.90(a)(2) why a review of the information listed in paragraph (a)(2) of this section was inadequate to locate a sufficient number of tier l sites. Any community water system which includes tier 3 sampling sites in its sampling pool shall demonstrate in such a letter why it was unable to locate a sufficient number of tier 1 and tier 2 sampling sites.

(9) Any water system whose distribution system contains lead service lines shall draw 50 percent of the samples it collects during each monitoring period from sites that contain lead pipes, or copper pipes with lead solder, and 50 percent of the samples from sites served by a lead service line. A water system that cannot identify a sufficient number of sampling sites served by a lead service line shall demonstrate in a letter submitted to the State under §141.90(a)(4) why the system was unable to locate a sufficient number of such sites. Such a water system shall collect first draw samples

from all of the sites identified as being served by such lines.

(b) Sample collection methods. (1) All tap samples for lead and copper collected in accordance with this subpart, with the exception of lead service line samples collected under §141.84(c), shall be first draw samples.

(2) Each first draw tap sample for lead and copper shall be one liter in volume and have stood motionless in the plumbing system of each sampling site for at least six hours. First draw samples from residential housing shall be collected from the cold water kitchen tap or bathroom sink tap. Firstdraw samples from a nonresidential building shall be collected at an interior tap from which water is typically drawn for consumption. First draw samples may be collected by the system or the system may allow residents to collect first draw samples after instructing the residents of the sampling procedures specified in this paragraph. To avoid problems of residents handling nitric acid, acidification of first draw samples may be done up to 14 days after the sample is collected. If the sample is not acidified immediately after collection, then the sample must stand in the original container for at least 28 hours after acidification. If a system allows residents to perform sampling, the system may not challenge, based on alleged errors in sample collection, the accuracy of sampling results.

(3) Each service line sample shall be one liter in volume and have stood motionless in the lead service line for at least six hours. Lead service line samples shall be collected in one of the following three ways:

(i) At the tap after flushing the volume of water between the tap and the lead service line. The volume of water shall be calculated based on the interior diameter and length of the pipe between the tap and the lead service line;

(ii) Tapping directly into the lead service line; or

(iii) If the sampling site is a building constructed as a single-family residence, allowing the water to run until there is a significant change in temperature which would be indicative of water that has been standing in the lead service line. (4) A water system shall collect each first draw tap sample from the same sampling site from which it collected a previous sample. If, for any reason, the water system cannot gain entry to a sampling site in order to collect a follow-up tap sample, the system may collect the follow-up tap sample from another sampling site in its sampling pool as long as the new site meets the same targeting criteria, and is within reasonable proximity of the original site.

(c) Number of samples. Water systems shall collect at least one sample during each monitoring period specified in paragraph (d) of this section from the number of sites listed in the first column below (''standard monitoring''). A system conducting reduced monitoring under paragraph (d)(4) of this section may collect one sample from the number of sites specified in the second column below during each monitoring period specified in paragraph (d)(4) of this section.

System size (No. people served)	No. of sites (standard monitoring)	No. of sites (reduced mon- itoring)	
>100,000	100	50	
10,001–100,000	60	30	
3,301 to 10,000	40	20	
501 to 3,300	20	10	
101 to 500	10	5	
≤100	5	5	

(d) *Timing of monitoring*—(1) *Initial tap sampling.*

The first six-month monitoring period for small, medium-size and large systems shall begin on the following dates:

System size (No. people served)	First six-month monitor- ing period begins on	
>50,000	January 1, 1992.	
3,301 to 50,000	July 1, 1992.	

(i) All large systems shall monitor during two consecutive six-month periods.

(ii) All small and medium-size systems shall monitor during each sixmonth monitoring period until:

(A) The system exceeds the lead or copper action level and is therefore required to implement the corrosion control treatment requirements under §141.81, in which case the system shall continue monitoring in accordance with paragraph (d)(2) of this section, or

(B) The system meets the lead and copper action levels during two consecutive six-month monitoring periods, in which case the system may reduce monitoring in accordance with paragraph (d)(4) of this section.

(2) Monitoring after installation of corrosion control and source water treatment. (i) Any large system which installs optimal corrosion control treatment pursuant to §141.81(d)(4) shall monitor during two consecutive sixmonth monitoring periods by the date specified in §141.81(d)(5).

(ii) Any small or medium-size system which installs optimal corrosion control treatment pursuant to \$141.81(e)(5)shall monitor during two consecutive six-month monitoring periods by the date specified in \$141.81(e)(6).

(iii) Any system which installs source water treatment pursuant to \$141.83(a)(3) shall monitor during two consecutive six-month monitoring periods by the date specified in \$141.83(a)(4).

(3) Monitoring after State specifies water quality parameter values for optimal corrosion control. After the State specifies the values for water quality control parameters under §141.82(f), the system shall monitor during each subsequent six-month monitoring period, with the first monitoring period to begin on the date the State specifies the optimal values under §141.82(f).

(4) *Reduced monitoring.* (i) A small or medium-size water system that meets the lead and copper action levels during each of two consecutive six-month monitoring periods may reduce the number of samples in accordance with paragraph (c) of this section, and reduce the frequency of sampling to once per year.

(ii) Any water system that maintains the range of values for the water quality control parameters reflecting optimal corrosion control treatment specified by the State under §141.82(f) during each of two consecutive six-month monitoring periods may request that the State allow the system to reduce the frequency of monitoring to once per year and to reduce the number of lead and copper samples in accordance with paragraph (c) of this section. The 40 CFR Ch. I (7–1–96 Edition)

State shall review the information submitted by the water system and shall make its decision in writing, setting forth the basis for its determination. The State shall review, and where appropriate, revise its determination when the system submits new monitoring or treatment data, or when other data relevant to the number and frequency of tap sampling becomes available.

(iii) A small or medium-size water system that meets the lead and copper action levels during three consecutive years of monitoring may reduce the frequency of monitoring for lead and copper from annually to once every three years. Any water system that maintains the range of values for the water quality control parameters reflecting optimal corrosion control treatment specified by the State under §141.82(f) during three consecutive years of monitoring may request that the State allow the system to reduce the frequency of monitoring from annually to once every three years. The State shall review the information submitted by the water system and shall make its decision in writing, setting forth the basis for its determination. The State shall review, and where appropriate, revise its determination when the system submits new monitoring or treatment data, or when other data relevant to the number and frequency of tap sampling becomes available.

(iv) A water system that reduces the number and frequency of sampling shall collect these samples from sites included in the pool of targeted sampling sites identified in paragraph (a) of this section. Systems sampling annually or less frequently shall conduct the lead and copper tap sampling during the months of June, July, August or September.

(v) A small- or medium-size water system subject to reduced monitoring that exceeds the lead or copper action level shall resume sampling in accordance with paragraph (d)(3) of this section and collect the number of samples specified for standard monitoring under paragraph (d) of this section. Such system shall also conduct water quality parameter monitoring in accordance with \$141.87 (b), (c) or (d) (as

appropriate) during the monitoring period in which it exceeded the action level. Any water system subject to the reduced monitoring frequency that fails to operate within the range of values for the water quality parameters specified by the State under §141.82(f) shall resume tap water sampling in accordance with paragraph (d)(3) of this section and collect the number of samples specified for standard monitoring under paragraph (c) of this section.

(e) Additional monitoring by systems. The results of any monitoring conducted in addition to the minimum requirements of this section shall be considered by the system and the State in making any determinations (i.e., calculating the 90th percentile lead or copper level) under this subpart.

[56 FR 26548, June 7, 1991; 56 FR 32113, July 15, 1991; 57 FR 28788, June 29, 1992]

§141.87 Monitoring requirements for water quality parameters.

All large water systems, and all small- and medium-size systems that exceed the lead or copper action level shall monitor water quality parameters in addition to lead and copper in accordance with this section. The requirements of this section are summarized in the table at the end of this section.

(a) General requirements—(1) Sample *collection methods.* (i) Tap samples shall be representative of water quality throughout the distribution system taking into account the number of persons served, the different sources of water, the different treatment methods employed by the system, and seasonal variability. Tap sampling under this section is not required to be conducted at taps targeted for lead and copper sampling under §141.86(a). [Note: Systems may find it convenient to conduct tap sampling for water quality parameters at sites used for coliform sampling under 40 CFR 141.21.]

(ii) Samples collected at the entry point(s) to the distribution system shall be from locations representative of each source after treatment. If a system draws water from more than one source and the sources are combined before distribution, the system must sample at an entry point to the distribution system during periods of normal operating conditions (i.e., when water is representative of all sources being used).

(2) Number of samples. (i) Systems shall collect two tap samples for applicable water quality parameters during each monitoring period specified under paragraphs (b) through (e) of this section from the following number of sites.

System size (No. people served)	No. of sites for water quality parameters	
>100,000	25	
10,001–100,000	10	
3,301 to 10,000	3	
501 to 3,300	2	
101 to 500	1	
≤100	1	

(ii) Systems shall collect two samples for each applicable water quality parameter at each entry point to the distribution system during each monitoring period specified in paragraph (b) of this section. During each monitoring period specified in paragraphs (c)-(e) of this section, systems shall collect one sample for each applicable water quality parameter at each entry point to the distribution system.

(b) Initial sampling All large water systems shall measure the applicable water quality parameters as specified below at taps and at each entry point to the distribution system during each six-month monitoring period specified in 141.86(d)(1). All small and mediumsize systems shall measure the applicable water quality parameters at the locations specified below during each sixmonth monitoring period specified in 141.86(d)(1) during which the system exceeds the lead or copper action level.

(1) At taps:

(i) pH;

(ii) Alkalinity;

(iii) Orthophosphate, when an inhibitor containing a phosphate compound is used;

(iv) Silica, when an inhibitor containing a silicate compound is used;

(v) Calcium;

(vi) Conductivity; and

(vii) Water temperature.

(2) At each entry point to the distribution system: all of the applicable parameters listed in paragraph (b)(1) of this section.

§141.87

(c) Monitoring after installation of corrosion control. Any large system which installs optimal corrosion control treatment pursuant to §141.81(d)(4) shall measure the water quality parameters at the locations and frequencies specified below during each six-month monitoring period specified in §141.86(d)(2)(i). Any small or mediumsize system which installs optimal corrosion control treatment shall conduct such monitoring during each six-month monitoring period specified in §141.86(d)(2)(ii) in which the system exin ceeds the lead or copper action level.

(1) At taps, two samples for:

(i) pH;

(ii) Alkalinity;

(iii) Orthophosphate, when an inhibitor containing a phosphate compound is used;

(iv) Silica, when an inhibitor containing a silicate compound is used;

(v) Calcium, when calcium carbonate stabilization is used as part of corrosion control.

(2) At each entry point to the distribution system, one sample every two weeks (bi-weekly) for:

(i) pH;

(ii) When alkalinity is adjusted as part of optimal corrosion control, a reading of the dosage rate of the chemical used to adjust alkalinity, and the alkalinity concentration; and

(iii) When a corrosion inhibitor is used as part of optimal corrosion control, a reading of the dosage rate of the inhibitor used, and the concentration of orthophosphate or silica (whichever is applicable).

(d) Monitoring after State specifies water quality parameter values for optimal corrosion control. After the State specifies the values for applicable water quality control parameters reflecting optimal corrosion control treatment under §141.82(f), all large systems shall measure the applicable water quality parameters in accordance with paragraph (c) of this section during each monitoring period specified in \$141.86(d)(3). Any small or me-dium-size system shall conduct such monitoring during each monitoring period specified in §141.86(d)(3) in which the system exceeds the lead or copper action level. The system may take a confirmation sample for any water

40 CFR Ch. I (7–1–96 Edition)

quality parameter value no later than 3 days after the first sample. If a confirmation sample is taken, the result must be averaged with the first sampling result and the average must be used for any compliance determinations under \$141.82(g). States have discretion to delete results of obvious sampling errors from this calculation.

(e) *Reduced monitoring.* (1) Any water system that maintains the range of values for the water quality parameters reflecting optimal corrosion control treatment during each of two consecutive six-month monitoring periods under paragraph (d) of this section shall continue monitoring at the entry point(s) to the distribution system as specified in paragraph (c)(2) of this section. Such system may collect two tap samples for applicable water quality parameters from the following reduced number of sites during each six-month monitoring period.

System size (No. of people served)	Reduced No. of sites for water quality parameters
>100.000	10
	10
10,001 to 100,000	
3,301 to 10,000	3
501 to 3,300	2
101 to 500	1
≤100	1

(2) Any water system that maintains the range of values for the water quality parameters reflecting optimal corrosion control treatment specified by the State under §141.82(f) during three consecutive years of monitoring may reduce the frequency with which it collects the number of tap samples for applicable water quality parameters specified in this paragraph (e)(1) of this section from every six months to annually. Any water system that maintains the range of values for the water quality parameters reflecting optimal corrosion control treatment specified by the State under §141.82(f) during three consecutive years of annual monitoring under this paragraph may reduce the frequency with which it collects the number of tap samples for applicable water quality parameters specified in paragraph (e)(1) from annually to every three years.

(3) A water system that conducts sampling annually shall collect these

samples evenly throughout the year so as to reflect seasonal variability.

(4) Any water system subject to the reduced monitoring frequency that fails to operate within the range of values for the water quality parameters specified by the State in §141.82(f) shall resume tap water sampling in accordance with the number and frequency requirements in paragraph (d) of this section.

(f) Additional monitoring by systems. The results of any monitoring conducted in addition to the minimum requirements of this section shall be considered by the system and the State in making any determinations (i.e., determining concentrations of water quality parameters) under this section or §141.82.

SUMMARY OF MONITORI	G REQUIREMENTS FOR WATE	r Quality Parameters ¹
---------------------	-------------------------	-----------------------------------

Monitoring Period	Parameters ²	Location	Frequency
Initial Monitoring	pH, alkalinity, orthophosphate or silica ³ , calcium, conductivity, temperature.	Taps and at entry point(s) to dis- tribution sys- tem.	Every 6 months
After Installation of Corrosion Control	pH, alkalinity, orthophosphate or silica ³ , calcium ⁴ .	Taps	Every 6 months
	pH, alkalinity dosage rate and concentra- tion (if alkalinity adjusted as part of cor- rosion control), inhibitor dosage rate and inhibitor residual ⁵ .	Entry point(s) to distribution sys- tem.	Biweekly
After State Specifies Parameter Values For Optimal Corrosion Control.	pH, alkalinity, orthophosphate or silica ³ , calcium ⁴ .	Taps	Every 6 months
	pH, alkalinity dosage rate and concentra- tion (if alkalinity adjusted as part of cor- rosion control), inhibitor dosage rate and inhibitor residual ⁵ .	Entry point(s) to distribution sys- tem.	Biweekly
Reduced Monitoring	pH, alkalinity, orthophosphate or silica 3, calcium 4.	Taps	Every 6 months at a reduced number of sites
	pH, alkalinity dosage rate and concentra- tion (if alkalinity adjusted as part of cor- rosion control), inhibitor dosage rate and inhibitor residual ⁵ .	Entry point(s) to distribution sys- tem.	Biweekly

¹ Table is for illustrative purposes; consult the text of this section for precise regulatory requirements

¹ Table is for illustrative purposes; consult the text of this section for precise regulatory requirements.
² Small and medium-size systems have to monitor for water quality parameters only during monitoring periods in which the system exceeds the lead or copper action level.
³ Orthophosphate must be measured only when an inhibitor containing a phosphate compound is used. Silica must be measured only when an inhibitor containing silicate compound is used.
⁴ Calcium must be measured only when calcium carbonate stabilization is used as part of corrosion control.
⁵ Inhibitor dosage rates and inhibitor residual concentrations (orthophosphate or silica) must be measured only when an inhibitor is used.

tor is used.

[56 FR 26548, June 7, 1991; 57 FR 28788, June 29, 1992, as amended at 59 FR 33862, June 30, 1994]

§141.88 Monitoring requirements for lead and copper in source water.

(a) Sample location, collection methods, and number of samples. (1) A water system that fails to meet the lead or copper action level on the basis of tap samples collected in accordance with §141.86 shall collect lead and copper source water samples in accordance with the requirements regarding sample location, number of samples, and collection methods specified in §141.23(a)(1)-(4) (inorganic chemical sampling). (Note: The timing of sampling for lead and copper shall be in accordance with paragraphs (b) and (c) of this section, and not dates specified in §141.23(a)(1) and (2)).

(2) Where the results of sampling indicate an exceedance of maximum permissible source water levels established under §141.83(b)(4), the State may require that one additional sample be collected as soon as possible after

§141.88

the initial sample was taken (but not to exceed two weeks) at the same sampling point. If a State-required confirmation sample is taken for lead or copper, then the results of the initial and confirmation sample shall be averaged in determining compliance with the State-specified maximum permissible levels. Any sample value below the detection limit shall be considered to be zero. Any value above the detection limit but below the PQL shall either be considered as the measured value or be considered one-half the PQL.

(b) Monitoring frequency after system exceeds tap water action level. Any system which exceeds the lead or copper action level at the tap shall collect one source water sample from each entry point to the distribution system within six months after the exceedance.

(c) Monitoring frequency after installation of source water treatment. Any system which installs source water treatment pursuant to \$141.83(a)(3) shall collect an additional source water sample from each entry point to the distribution system during two consecutive six-month monitoring periods by the deadline specified in \$141.83(a)(4).

(d) Monitoring frequency after State specifies maximum permissible source water levels or determines that source water treatment is not needed. (1) A system shall monitor at the frequency specified below in cases where the State specifies maximum permissible source water levels under §141.83(b)(4) or determines that the system is not required to install source water treatment under §141.83(b)(2).

(i) A water system using only groundwater shall collect samples once during the three-year compliance period (as that term is defined in §141.2) in effect when the applicable State determination under paragraph (d)(1) of this section is made. Such systems shall collect samples once during each subsequent compliance period.

(ii) A water system using surface water (or a combination of surface and groundwater) shall collect samples once during each year, the first annual monitoring period to begin on the date on which the applicable State determination is made under paragraph (d)(1) of this section. 40 CFR Ch. I (7–1–96 Edition)

(2) A system is not required to conduct source water sampling for lead and/or copper if the system meets the action level for the specific contaminant in tap water samples during the entire source water sampling period applicable to the system under paragraph (d)(1) (i) or (ii) of this section.

(e) Reduced monitoring frequency. (1) A water system using only groundwater which demonstrates that finished drinking water entering the distribution system has been maintained below the maximum permissible lead and/or copper concentrations specified by the State in §141.83(b)(4) during at least three consecutive compliance periods under paragraph (d)(1) of this section may reduce the monitoring frequency for lead and/or copper to once during each nine-year compliance cycle (as that term is defined in §141.2).

(2) A water system using surface water (or a combination of surface and ground waters) which demonstrates that finished drinking water entering the distribution system has been maintained below the maximum permissible lead and copper concentrations specified by the State in §141.83(b)(4) for at least three consecutive years may reduce the monitoring frequency in paragraph (d)(1) of this section to once during each nine-year compliance cycle (as that term is defined in §141.2).

(3) A water system that uses a new source of water is not eligible for reduced monitoring for lead and/or copper until concentrations in samples collected from the new source during three consecutive monitoring periods are below the maximum permissible lead and copper concentrations specified by the State in §141.83(a) (5).

[56 FR 26548, June 7, 1991; 57 FR 28788 and 28789, June 29, 1992]

§141.89 Analytical methods.

(1) Analyses under this section shall only be conducted by laboratories that have been certified by EPA or the State. To obtain certification to conduct analyses for lead and copper, laboratories must:

(i) Analyze performance evaluation samples which include lead and copper provided by EPA Environmental Monitoring and Support Laboratory or equivalent samples provided by the State; and

(ii) Achieve quantitative acceptance limits as follows:

(A) For lead: ± 30 percent of the actual amount in the Performance Evaluation sample when the actual amount is greater than or equal to 0.005 mg/L. The Practical Quantitation Level, or PQL for lead is 0.005 mg/L.

(B) For Copper: ±10 percent of the actual amount in the Performance Evaluation sample when the actual amount is greater than or equal to 0.050 mg/L. The Practical Quantitation Level, or PQL for copper is 0.050 mg/L;

(iii) Achieve method detection limits according to the procedures in appendix B of part 136 of this title as follows:

(A) Lead: 0.001 mg/L (only if source water compositing is done under §141.23(a)(4)); and

(B) Copper: 0.001 mg/L or 0.020 mg/L when atomic absorption direct aspiration is used (only if source water compositing is done under \$141.23(a)(4)).

(iv) Be currently certified by EPA or the State to perform analyses to the specifications described in paragraph (a)(2) of this section.

(2) States have the authority to allow the use of previously collected monitoring data for purposes of monitoring, if the data were collected and analyzed in accordance with the requirements of this subpart.

(3) All lead and copper levels measured between the PQL and MDL must be either reported as measured or they can be reported as one-half the PQL specified for lead and copper in paragraph (a)(1)(ii) of this section. All levels below the lead and copper MDLs must be reported as zero.

(4) All copper levels measured between the PQL and the MDL must be either reported as measured or they can be reported as one-half the PQL (0.025 mg/L). All levels below the copper MDL must be reported as zero.

(b) [Reserved]

[56 FR 26548, June 7, 1991, as amended at 57 FR 28789, June 29, 1992; 57 FR 31847, July 17, 1992; 59 FR 33863, June 30, 1994; 59 FR 62470, Dec. 5, 1994]

§141.90 Reporting requirements.

All water systems shall report all of the following information to the State in accordance with this section.

(a) Reporting requirements for tap water monitoring for lead and copper and for water quality parameter monitoring. (1) A water system shall report the information specified below for all tap water samples within the first 10 days following the end of each applicable monitoring period specified in §141.86 and §141.87 and §141.88 (i.e., every sixmonths, annually, or every 3 years).

(i) The results of all tap samples for lead and copper including the location of each site and the criteria under §141.86(a) (3), (4), (5), (6), and/or (7) under which the site was selected for the system's sampling pool;

(ii) A certification that each first draw sample collected by the water system is one-liter in volume and, to the best of their knowledge, has stood motionless in the service line, or in the interior plumbing of a sampling site, for at least six hours;

(iii) Where residents collected samples, a certification that each tap sample collected by the residents was taken after the water system informed them of proper sampling procedures specified in §141.86(b)(2);

(iv) The 90th percentile lead and copper concentrations measured from among all lead and copper tap water samples collected during each monitoring period (calculated in accordance with §141.80(c)(3));

(v) With the exception of initial tap sampling conducted pursuant to §141.86(d)(1), the system shall designate any site which was not sampled during previous monitoring periods, and include an explanation of why sampling sites have changed;

(vi) The results of all tap samples for pH, and where applicable, alkalinity, calcium, conductivity, temperature, and orthophosphate or silica collected under §141.87(b)-(e);

(vii) The results of all samples collected at the entry point(s) to the distribution system for applicable water quality parameters under §141.87(b)-(e).

(2) By the applicable date in §141.86(d)(1) for commencement of monitoring, each community water system which does not complete its targeted sampling pool with tier 1 sampling sites meeting the criteria in \$141.86(a)(3) shall send a letter to the State justifying its selection of tier 2 and/or tier 3 sampling sites under \$141.86(a)(4) and/or (a)(5).

(3) By the applicable date in \$141.86(d)(1) for commencement of monitoring, each non-transient, non-community water system which does not complete its sampling pool with tier 1 sampling sites meeting the criteria in \$141.86(a)(6) shall send a letter to the State justifying its selection of sampling sites under \$141.86(a)(7).

(4) By the applicable date in \$141.86(d)(1) for commencement of monitoring, each water system with lead service lines that is not able to locate the number of sites served by such lines required under \$141.86(a)(9) shall send a letter to the State demonstrating why it was unable to locate a sufficient number of such sites based upon the information listed in \$141.86(a)(2).

(5) Each water system that requests that the State reduce the number and frequency of sampling shall provide the information required under \$141.86(d)(4).

(b) Source water monitoring reporting requirements. (1) A water system shall report the sampling results for all source water samples collected in accordance with §141.88 within the first 10 days following the end of each source water monitoring period (i.e., annually, per compliance period, per compliance cycle) specified in §141.88.

(2) With the exception of the first round of source water sampling conducted pursuant to §141.88(b), the system shall specify any site which was not sampled during previous monitoring periods, and include an explanation of why the sampling point has changed.

(c) *Corrosion control treatment reporting requirements.* By the applicable dates under §141.81, systems shall report the following information:

(1) For systems demonstrating that they have already optimized corrosion control, information required in §141.81(b) (2) or (3).

(2) For systems required to optimize corrosion control, their recommendation regarding optimal corrosion control treatment under §141.82(a). 40 CFR Ch. I (7–1–96 Edition)

(3) For systems required to evaluate the effectiveness of corrosion control treatments under §141.82(c), the information required by that paragraph.

(4) For systems required to install optimal corrosion control designated by the State under §141.82(d), a letter certifying that the system has completed installing that treatment.

(d) *Source water treatment reporting requirements.* By the applicable dates in §141.83, systems shall provide the following information to the State:

(1) If required under §141.83(b)(1), their recommendation regarding source water treatment;

(2) For systems required to install source water treatment under §141.83(b)(2), a letter certifying that the system has completed installing the treatment designated by the State within 24 months after the State designated the treatment.

(e) *Lead service line replacement reporting requirements.* Systems shall report the following information to the State to demonstrate compliance with the requirements of §141.84:

(1) Within 12 months after a system exceeds the lead action level in sampling referred to in §141.84(a), the system shall demonstrate in writing to the State that it has conducted a material evaluation, including the evaluation in §141.86(a), to identify the initial number of lead service lines in its distribution system, and shall provide the State with the system's schedule for replacing annually at least 7 percent of the initial number of lead service lines in its distribution system.

(2) Within 12 months after a system exceeds the lead action level in sampling referred to in §141.84(a), and every 12 months thereafter, the system shall demonstrate to the State in writing that the system has either:

(i) Replaced in the previous 12 months at least 7 percent of the initial lead service lines (or a greater number of lines specified by the State under §141.84(f)) in its distribution system, or

(ii) Conducted sampling which demonstrates that the lead concentration in all service line samples from an individual line(s), taken pursuant to \$141.86(b)(3), is less than or equal to 0.015 mg/L. In such cases, the total number of lines replaced and/or which

meet the criteria in \$141.84(c) shall equal at least 7 percent of the initial number of lead lines identified under paragraph (a) of this section (or the percentage specified by the State under \$141.84(f)).

(3) The annual letter submitted to the State under paragraph (e)(2) of this section shall contain the following information:

(i) The number of lead service lines scheduled to be replaced during the previous year of the system's replacement schedule;

(ii) The number and location of each lead service line replaced during the previous year of the system's replacement schedule;

(iii) If measured, the water lead concentration and location of each lead service line sampled, the sampling method, and the date of sampling.

(4) As soon as practicable, but in no case later than three months after a system exceeds the lead action level in sampling referred to in §141.84(a), any system seeking to rebut the presumption that it has control over the entire lead service line pursuant to §141.84(d) shall submit a letter to the State describing the legal authority (e.g., state statutes, municipal ordinances, public service contracts or other applicable legal authority) which limits the system's control over the service lines and the extent of the system's control.

(f) Public education program reporting requirements. By December 31st of each year, any water system that is subject to the public education requirements in §141.85 shall submit a letter to the State demonstrating that the system has delivered the public education materials that meet the content requirements in §141.85(a) and (b) and the delivery requirements in §141.85(c). This information shall include a list of all the newspapers, radio stations, television stations, facilities and organizations to which the system delivered public education materials during the previous year. The water system shall submit the letter required by this paragraph annually for as long as it exceeds the lead action level.

(g) *Reporting of additional monitoring data*. Any system which collects sampling data in addition to that required by this subpart shall report the results

to the State within the first ten days following the end of the applicable monitoring period under §§141.86, 141.87 and 141.88 during which the samples are collected.

[56 FR 26548, June 7, 1991; 57 FR 28789, June 29, 1992, as amended at 59 FR 33864, June 30, 1994]

§141.91 Recordkeeping requirements.

Any system subject to the requirements of this subpart shall retain on its premises original records of all sampling data and analyses, reports, surveys, letters, evaluations, schedules, State determinations, and any other information required by §141.81 through §141.88. Each water system shall retain the records required by this section for no fewer than 12 years.

Subpart J—Use of Non-Centralized Treatment Devices

SOURCE: 52 FR 25716, July 8, 1987, unless otherwise noted.

§141.100 Criteria and procedures for public water systems using point-ofentry devices.

(a) Public water systems may use point-of-entry devices to comply with maximum contaminant levels only if they meet the requirements of this section.

(b) It is the responsibility of the public water system to operate and maintain the point-of-entry treatment system.

(c) The public water system must develop and obtain State approval for a monitoring plan before point-of-entry devices are installed for compliance. Under the plan approved by the State, point-of-entry devices must provide health protection equivalent to central water treatment. "Equivalent" means that the water would meet all national primary drinking water regulations and would be of acceptable quality similar to water distributed by a welloperated central treatment plant. In addition to the VOCs, monitoring must include physical measurements and observations such as total flow treated and mechanical condition of the treatment equipment.

(d) Effective technology must be properly applied under a plan ap-