may consider and grant extensions beyond November 30, 1985, for completion of environmental qualification.

The schedule in this paragraph supersedes the June 30, 1982, deadline, or any other previously imposed date, for environmental qualification of electric equipment contained in certain nuclear power operating licenses.

(h) Each license shall notify the Commission as specified in §50.4 of any significant equipment qualification problem that may require extension of the completion date provided in accordance with paragraph (g) of this section within 60 days of its discovery.

(i) Applicants for operating licenses granted after February 22, 1983, but prior to November 30, 1985, shall perform an analysis to ensure that the plant can be safely operated pending completion of equipment qualification required by this section. This analysis must be submitted, as specified in \$50.4, for consideration prior to the granting of an operating license and must include, where appropriate, consideration of:

(1) Accomplishing the safety function by some designated alternative equipment if the principal equipment has not been demonstrated to be fully qualified.

(2) The validity of partial test data in support of the original qualification.

(3) Limited use of administrative controls over equipment that has not been demonstrated to be fully qualified.

(4) Completion of the safety function prior to exposure to the accident environment resulting from a design basis event and ensuring that the subsequent failure of the equipment does not degrade any safety function or mislead the operator.

(5) No significant degradation of any safety function or misleading information to the operator as a result of failure of equipment under the accident environment resulting from a design basis event.

(j) A record of the qualification, including documentation in paragraph (d) of this section, must be maintained in an auditable form for the entire period during which the covered item is installed in the nuclear power plant or is stored for future use to permit

10 CFR Ch. I (1–1–16 Edition)

verification that each item of electric equipment important to safety covered by this section:

(1) Is qualified for its application; and (2) Meets its specified performance requirements when it is subjected to the conditions predicted to be present when it must perform its safety func-

tion up to the end of its qualified life. (k) Applicants for and holders of operating licenses are not required to requalify electric equipment important to safety in accordance with the provisions of this section if the Commission has previously required qualification of that equipment in accordance with "Guidelines for Evaluating Environmental Qualification of Class 1E Electrical Equipment in Operating Reactors," November 1979 (DOR Guidelines), NUREG-0588 (For Comment or version). "Interim Staff Position on Environmental Qualification of Safety-Related Electrical Equipment.'

(1) Replacement equipment must be qualified in accordance with the provisions of this section unless there are sound reasons to the contrary.

[48 FR 2733, Jan. 21, 1983, as amended at 49 FR 45576, Nov. 19, 1984; 51 FR 40308, Nov. 6, 1986; 51 FR 43709, Dec. 3, 1986; 52 FR 31611, Aug. 21, 1987; 53 FR 19250, May 27, 1988; 61 FR 39300, July 29, 1996; 61 FR 65173, Dec. 11, 1996; 62 FR 47271, Sept. 8, 1997; 64 FR 72001, Dec. 23, 1999; 66 FR 64738, Dec. 14, 2001; 72 FR 49495, Aug. 28, 2007; 80 FR 45843, Aug. 3, 2015]

ISSUANCE, LIMITATIONS, AND CONDITIONS OF LICENSES AND CONSTRUCTION PER-MITS

§ 50.50 Issuance of licenses and construction permits.

Upon determination that an application for a license meets the standards and requirements of the act and regulations, and that notifications, if any, to other agencies or bodies have been duly made, the Commission will issue a license, or if appropriate a construction permit, in such form and containing such conditions and limitations including technical specifications, as it deems appropriate and necessary.

§ 50.51 Continuation of license.

(a) Each license will be issued for a fixed period of time to be specified in the license but in no case to exceed 40 years from date of issuance. Where the

operation of a facility is involved, the Commission will issue the license for the term requested by the applicant or for the estimated useful life of the facility if the Commission determines that the estimated useful life is less than the term requested. Where construction of a facility is involved, the Commission may specify in the construction permit the period for which the license will be issued if approved pursuant to §50.56. Licenses may be renewed by the Commission upon the expiration of the period. Renewal of operating licenses for nuclear power plants is governed by 10 CFR part 54. Application for termination of license is to be made pursuant to §50.82.

(b) Each license for a facility that has permanently ceased operations, continues in effect beyond the expiration date to authorize ownership and possession of the production or utilization facility, until the Commission notifies the licensee in writing that the license is terminated. During such period of continued effectiveness the licensee shall—

(1) Take actions necessary to decommission and decontaminate the facility and continue to maintain the facility, including, where applicable, the storage, control and maintenance of the spent fuel, in a safe condition, and

(2) Conduct activities in accordance with all other restrictions applicable to the facility in accordance with the NRC regulations and the provisions of the specific 10 CFR part 50 license for the facility.

[56 FR 64976, Dec. 13, 1991, as amended at 61 FR 39300, July 29, 1996]

§ 50.52 Combining licenses.

The Commission may combine in a single license the activities of an applicant which would otherwise be licensed severally.

§ 50.53 Jurisdictional limitations.

No license under this part shall be deemed to have been issued for activities which are not under or within the jurisdiction of the United States.

 $[21\ {\rm FR}\ 355,\ {\rm Jan.}\ 19,\ 1956,\ {\rm as}\ {\rm amended}\ {\rm at}\ 43\ {\rm FR}\ 6924,\ {\rm Feb.}\ 17,\ 1978]$

§ 50.54 Conditions of licenses.

The following paragraphs of this section, with the exception of paragraphs (r) and (gg), and the applicable requirements of 10 CFR 50.55a, are conditions in every nuclear power reactor operating license issued under this part. The following paragraphs with the exception of paragraph (r), (s), and (u) of this section are conditions in every combined license issued under part 52 of this chapter, provided, however, that paragraphs (i) introductory text, (i)(1), (j), (k), (l), (m), (n), (w), (x), (y), (z), and (hh) of this section are only applicable after the Commission makes the finding under §52.103(g) of this chapter.

(a)(1) Each nuclear power plant or fuel reprocessing plant licensee subject to the quality assurance criteria in appendix B of this part shall implement, under §50.34(b)(6)(ii) or §52.79 of this chapter, the quality assurance program described or referenced in the safety analysis report, including changes to that report. However, a holder of a combined license under part 52 of this chapter shall implement the quality assurance program described or referenced in the safety analysis report applicable to operation 30 days prior to the scheduled date for the initial loading of fuel.

(2) Each licensee described in paragraph (a)(1) of this section shall, by June 10, 1983, submit to the appropriate NRC Regional Office shown in appendix D of part 20 of this chapter the current description of the quality assurance program it is implementing for inclusion in the Safety Analysis Report, unless there are no changes to the description previously accepted by NRC. This submittal must identify changes made to the quality assurance program description since the description was submitted to NRC. (Should a licensee need additional time beyond June 10, 1983 to submit its current quality assurance program description to NRC, it shall notify the appropriate NRC Regional Office in writing, explain why additional time is needed, and provide a schedule for NRC approval showing when its current quality assurance program description will be submitted.)

(3) Each licensee described in paragraph (a)(1) of this section may make a

change to a previously accepted quality assurance program description included or referenced in the Safety Analysis Report without prior NRC approval, provided the change does not reduce the commitments in the program description as accepted by the NRC. Changes to the quality assurance program description that do not reduce the commitments must be submitted to the NRC in accordance with the requirements of 50.71(e). In addition to quality assurance program changes involving administrative improvements and clarifications, spelling corrections, punctuation, or editorial items, the following changes are not considered to be reductions in commitment:

(i) The use of a QA standard approved by the NRC which is more recent than the QA standard in the licensee's current QA program at the time of the change;

(ii) The use of a quality assurance alternative or exception approved by an NRC safety evaluation, provided that the bases of the NRC approval are applicable to the licensee's facility;

(iii) The use of generic organizational position titles that clearly denote the position function, supplemented as necessary by descriptive text, rather than specific titles;

(iv) The use of generic organizational charts to indicate functional relationships, authorities, and responsibilities, or, alternately, the use of descriptive text:

(v) The elimination of quality assurance program information that duplicates language in quality assurance regulatory guides and quality assurance standards to which the licensee is committed; and

(vi) Organizational revisions that ensure that persons and organizations performing quality assurance functions continue to have the requisite authority and organizational freedom, including sufficient independence from cost and schedule when opposed to safety considerations.

(4) Changes to the quality assurance program description that do reduce the commitments must be submitted to the NRC and receive NRC approval prior to implementation, as follows:

(i) Changes made to the quality assurance program description as pre10 CFR Ch. I (1-1-16 Edition)

sented in the Safety Analysis Report or in a topical report must be submitted as specified in §50.4.

(ii) The submittal of a change to the Safety Analysis Report quality assurance program description must include all pages affected by that change and must be accompanied by a forwarding letter identifying the change, the reason for the change, and the basis for concluding that the revised program incorporating the change continues to satisfy the criteria of appendix B of this part and the Safety Analysis Report quality assurance program description commitments previously accepted by the NRC (the letter need not provide the basis for changes that correct spelling, punctuation, or editorial items).

(iii) A copy of the forwarding letter identifying the change must be maintained as a facility record for three years.

(iv) Changes to the quality assurance program description included or referenced in the Safety Analysis Report shall be regarded as accepted by the Commission upon receipt of a letter to this effect from the appropriate reviewing office of the Commission or 60 days after submittal to the Commission, whichever occurs first.

(b) No right to the special nuclear material shall be conferred by the license except as may be defined by the license.

(c) Neither the license, nor any right thereunder, nor any right to utilize or produce special nuclear material shall be transferred, assigned, or disposed of in any manner, either voluntarily or involuntarily, directly or indirectly, through transfer of control of the license to any person, unless the Commission shall, after securing full information, find that the transfer is in accordance with the provisions of the act and give its consent in writing.

(d) The license shall be subject to suspension and to the rights of recapture of the material or control of the facility reserved to the Commission under section 108 of the act in a state of war or national emergency declared by Congress.

(e) The license shall be subject to revocation, suspension, modification, or amendment for cause as provided in

the act and regulations, in accordance with the procedures provided by the act and regulations.

(f) The licensee shall at any time before expiration of the license, upon request of the Commission, submit, as specified in §50.4, written statements, signed under oath or affirmation, to enable the Commission to determine whether or not the license should be modified, suspended, or revoked. Except for information sought to verify licensee compliance with the current licensing basis for that facility, the NRC must prepare the reason or reasons for each information request prior to issuance to ensure that the burden to be imposed on respondents is justified in view of the potential safety significance of the issue to be addressed in the requested information. Each such justification provided for an evaluation performed by the NRC staff must be approved by the Executive Director for Operations or his or her designee prior to issuance of the request.

(g) The issuance or existence of the license shall not be deemed to waive, or relieve the licensee from compliance with, the antitrust laws, as specified in subsection 105a of the Act. In the event that the licensee should be found by a court of competent jurisdiction to have violated any provision of such antitrust laws in the conduct of the licensed activity, the Commission may suspend or revoke the license or take such other action with respect to it as shall be deemed necessary.

(h) The license shall be subject to the provisions of the Act now or hereafter in effect and to all rules, regulations, and orders of the Commission. The terms and conditions of the license shall be subject to amendment, revision, or modification, by reason of amendments of the Act or by reason of rules, regulations, and orders issued in accordance with the terms of the act.

(i) Except as provided in §55.13 of this chapter, the licensee may not permit the manipulation of the controls of any facility by anyone who is not a licensed operator or senior operator as provided in part 55 of this chapter.

(i-1) Within 3 months after either the issuance of an operating license or the date that the Commission makes the finding under §52.103(g) of this chapter for a combined license, as applicable, the licensee shall have in effect an operator requalification program. The operator requalification program must, as a minimum, meet the requirements of §55.59(c) of this chapter. Notwithstanding the provisions of §50.59, the licensee may not, except as specifically authorized by the Commission decrease the scope of an approved operator requalification program.

(j) Apparatus and mechanisms other than controls, the operation of which may affect the reactivity or power level of a reactor shall be manipulated only with the knowledge and consent of an operator or senior operator licensed pursuant to part 55 of this chapter present at the controls.

(k) An operator or senior operator licensed pursuant to part 55 of this chapter shall be present at the controls at all times during the operation of the facility.

(1) The licensee shall designate individuals to be responsible for directing the licensed activities of licensed operators. These individuals shall be licensed as senior operators pursuant to part 55 of this chapter.

(m)(1) A senior operator licensed pursuant to part 55 of this chapter shall be present at the facility or readily available on call at all times during its operation, and shall be present at the facility during initial start-up and approach to power, recovery from an unplanned or unscheduled shut-down or significant reduction in power, and refueling, or as otherwise prescribed in the facility license.

(2) Notwithstanding any other provisions of this section, by January 1, 1984, licensees of nuclear power units shall meet the following requirements:

(i) Each licensee shall meet the minimum licensed operator staffing requirements in the following table:

§50.54

10 CFR Ch. I (1-1-16 Edition)

	Position	One unit	Two units		Three units	
Number of nuclear power units operating ²		One control room	One control room	Two control rooms	Two control rooms	Three control rooms
None	Senior Operator	1	1	1	1	1
	Operator	1	2	2	3	3
One	Senior Operator	2	2	2	2	2
	Operator	2	3	3	4	4
Тwo	Senior Operator		2	3	з3	3
	Operator		3	4	³ 5	5
Three	Senior Operator				3	4
	Operator				5	6

MINIMUM REQUIREMENTS¹ PER SHIFT FOR ON-SITE STAFFING OF NUCLEAR POWER UNITS BY OPERATORS AND SENIOR OPERATORS LICENSED UNDER 10 CFR PART 55

¹Temporary deviations from the numbers required by this table shall be in accordance with criteria established in the unit's technical specifications. ²For the purpose of this table, a nuclear power unit is considered to be operating when it is in a mode other than cold shut-

down or refueling as defined by the unit's technical specifications. ³The number of required licensed personnel when the operating nuclear power units are controlled from a common control room are two senior operators and four operators.

(ii) Each licensee shall have at its site a person holding a senior operator license for all fueled units at the site who is assigned responsibility for overall plant operation at all times there is fuel in any unit. If a single senior operator does not hold a senior operator license on all fueled units at the site, then the licensee must have at the site two or more senior operators, who in combination are licensed as senior operators on all fueled units.

(iii) When a nuclear power unit is in an operational mode other than cold shutdown or refueling, as defined by the unit's technical specifications, each licensee shall have a person holding a senior operator license for the nuclear power unit in the control room at all times. In addition to this senior operator, for each fueled nuclear power unit, a licensed operator or senior operator shall be present at the controls at all times.

(iv) Each licensee shall have present, during alteration of the core of a nuclear power unit (including fuel loading or transfer), a person holding a senior operator license or a senior operator license limited to fuel handling to directly supervise the activity and, during this time, the licensee shall not assign other duties to this person.

(3) Licensees who cannot meet the January 1, 1984 deadline must submit by October 1, 1983 a request for an extension to the Director of the Office of Nuclear Regulation and demonstrate good cause for the request.

(n) The licensee shall not, except as authorized pursuant to a construction permit, make any alteration in the facility constituting a change from the technical specifications previously incorporated in a license or construction permit pursuant to §50.36 of this part.

(o) Primary reactor containments for water cooled power reactors, other than facilities for which the certifications required under \$ 50.82(a)(1) or 52.110(a)(1) of this chapter have been submitted, shall be subject to the requirements set forth in appendix J to this part.

(p)(1) The licensee shall prepare and maintain safeguards contingency plan procedures in accordance with appendix C of part 73 of this chapter for affecting the actions and decisions contained in the Responsibility Matrix of the safeguards contingency plan. The licensee may not make a change which would decrease the effectiveness of a physical security plan, or guard training and qualification plan, or cyber security plan prepared under §50.34(c) or §52.79(a), or part 73 of this chapter, or of the first four categories of information (Background, Generic Planning Base, Licensee Planning Base, Responsibility Matrix) contained in a licensee safeguards contingency plan prepared under §50.34(d) or §52.79(a), or part 73 of this chapter, as applicable, without prior approval of the Commission. A licensee desiring to make such a change

shall submit an application for amendment to the licensee's license under §50.90.

(2) The licensee may make changes to the plans referenced in paragraph (p)(1) of this section, without prior Commission approval if the changes do not decrease the safeguards effectiveness of the plan. The licensee shall maintain records of changes to the plans made without prior Commission approval for a period of 3 years from the date of the change, and shall submit, as specified in §50.4 or §52.3 of this chapter, a report containing a description of each change within 2 months after the change is made. Prior to the safeguards contingency plan being put into effect, the licensee shall have:

(i) All safeguards capabilities specified in the safeguards contingency plan available and functional;

(ii) Detailed procedures developed according to appendix C to part 73 of this chapter available at the licensee's site; and

(iii) All appropriate personnel trained to respond to safeguards incidents as outlined in the plan and specified in the detailed procedures.

(3) The licensee shall provide for the development, revision, implementation, and maintenance of its safeguards contingency plan. The licensee shall ensure that all program elements are reviewed by individuals independent of both security program management and personnel who have direct responsibility for implementation of the security program either:

(i) At intervals not to exceed 12 months; or

(ii) As necessary, based on an assessment by the licensee against performance indicators, and as soon as reasonably practicable after a change occurs in personnel, procedures, equipment, or facilities that potentially could adversely affect security, but no longer than 12 months after the change. In any case, all elements of the safeguards contingency plan must be reviewed at least once every 24 months.

(4) The review must include a review and audit of safeguards contingency procedures and practices, an audit of the security system testing and maintenance program, and a test of the safeguards systems along with commitments established for response by local law enforcement authorities. The results of the review and audit, along with recommendations for improvements, must be documented, reported to the licensee's corporate and plant management, and kept available at the plant for inspection for a period of 3 years.

(q) *Emergency plans*—(1) Definitions for the purpose of this section:

(i) *Change* means an action that results in modification or addition to, or removal from, the licensee's emergency plan. All such changes are subject to the provisions of this section except where the applicable regulations establish specific criteria for accomplishing a particular change.

(ii) *Emergency plan* means the document(s), prepared and maintained by the licensee, that identify and describe the licensee's methods for maintaining emergency preparedness and responding to emergencies. An emergency plan includes the plan as originally approved by the NRC and all subsequent changes made by the licensee with, and without, prior NRC review and approval under paragraph (q) of this section.

(iii) Emergency planning function means a capability or resource necessary to prepare for and respond to a radiological emergency, as set forth in the elements of section IV. of appendix E to this part and, for nuclear power reactor licensees, the planning standards of 50.47(b).

(iv) *Reduction in effectiveness* means a change in an emergency plan that results in reducing the licensee's capability to perform an emergency planning function in the event of a radiological emergency.

(2) A holder of a license under this part, or a combined license under part 52 of this chapter after the Commission makes the finding under §52.103(g) of this chapter, shall follow and maintain the effectiveness of an emergency plan that meets the requirements in appendix E to this part and, for nuclear power reactor licensees, the planning standards of §50.47(b).

(3) The licensee may make changes to its emergency plan without NRC approval only if the licensee performs and retains an analysis demonstrating that the changes do not reduce the effectiveness of the plan and the plan, as changed, continues to meet the requirements in appendix E to this part and, for nuclear power reactor licensees, the planning standards of \$50.47(b).

(4) The changes to a licensee's emergency plan that reduce the effectiveness of the plan as defined in paragraph (q)(1)(iv) of this section may not be implemented without prior approval by the NRC. A licensee desiring to make such a change after February 21, 2012 shall submit an application for an amendment to its license. In addition to the filing requirements of §§ 50.90 and 50.91, the request must include all emergency plan pages affected by that change and must be accompanied by a forwarding letter identifying the change, the reason for the change, and the basis for concluding that the licensee's emergency plan, as revised, will continue to meet the requirements in appendix E to this part and, for nuclear power reactor licensees, the planning standards of §50.47(b).

(5) The licensee shall retain a record of each change to the emergency plan made without prior NRC approval for a period of three years from the date of the change and shall submit, as specified in §50.4, a report of each such change made after February 21, 2012, including a summary of its analysis, within 30 days after the change is put in effect.

(6) The nuclear power reactor licensee shall retain the emergency plan and each change for which prior NRC approval was obtained pursuant to paragraph (q)(4) of this section as a record until the Commission terminates the license for the nuclear power reactor.

(r) [Reserved]

(s)(1) [Reserved]

(2)(i) [Reserved]

(ii) If after April 1, 1981, the NRC finds that the state of emergency preparedness does not provide reasonable assurance that adequate protective measures can and will be taken in the event of a radiological emergency (including findings based on requirements of appendix E, section IV.D.3) and if the deficiencies (including deficiencies based on requirements of appendix E, section IV.D.3) are not corrected within four

10 CFR Ch. I (1–1–16 Edition)

months of that finding, the Commission will determine whether the reactor shall be shut down until such deficiencies are remedied or whether other enforcement action is appropriate. In determining whether a shutdown or other enforcement action is appropriate, the Commission shall take into account, among other factors, whether the licensee can demonstrate to the Commission's satisfaction that the deficiencies in the plan are not significant for the plant in question, or that adequate interim compensating actions have been or will be taken promptly, or that there are other compelling reasons for continued operation.

(3) The NRC will base its finding on a review of the FEMA findings and determinations as to whether State and local emergency plans are adequate and capable of being implemented, and on the NRC assessment as to whether the licensee's emergency plans are adequate and capable of being implemented. Nothing in this paragraph shall be construed as limiting the authority of the Commission to take action under any other regulation or authority of the Commission or at any time other than that specified in this paragraph.

(t)(1) The licensee shall provide for the development, revision, implementation, and maintenance of its emergency preparedness program. The licensee shall ensure that all program elements are reviewed by persons who have no direct responsibility for the implementation of the emergency preparedness program either:

(i) At intervals not to exceed 12 months or,

(ii) As necessary, based on an assessment by the licensee against performance indicators, and as soon as reasonably practicable after a change occurs in personnel, procedures, equipment, or facilities that potentially could adversely affect emergency preparedness, but no longer than 12 months after the change. In any case, all elements of the emergency preparedness program must be reviewed at least once every 24 months.

(2) The review must include an evaluation for adequacy of interfaces with State and local governments and of licensee drills, exercises, capabilities,

and procedures. The results of the review, along with recommendations for improvements, must be documented, reported to the licensee's corporate and plant management, and retained for a period of 5 years. The part of the review involving the evaluation for adequacy of interface with State and local governments must be available to the appropriate State and local governments.

(u) [Reserved]

(v) Each licensee subject to the requirements of Part 73 of this chapter shall ensure that Safeguards Information is protected against unauthorized disclosure in accordance with the requirements in \$73.21 and the requirements in \$73.22 or \$73.23 of this chapter, as applicable.

(w) Each power reactor licensee under this part for a production or utilization facility of the type described in §50.21(b) or §50.22 shall take reasonable steps to obtain insurance available at reasonable costs and on reasonable terms from private sources or to demonstrate to the satisfaction of the NRC that it possesses an equivalent amount of protection covering the licensee's obligation, in the event of an accident at the licensee's reactor, to stabilize and decontaminate the reactor and the reactor station site at which the reactor experiencing the accident is located, provided that:

(1) The insurance required by paragraph (w) of this section must have a minimum coverage limit for each reactor station site of either \$1.06 billion or whatever amount of insurance is generally available from private sources, whichever is less. The required insurance must clearly state that, as and to the extent provided in paragraph (w)(4)of this section, any proceeds must be payable first for stabilization of the reactor and next for decontamination of the reactor and the reactor station site. If a licensee's coverage falls below the required minimum, the licensee shall within 60 days take all reasonable steps to restore its coverage to the required minimum. The required insurance may, at the option of the licensee, be included within policies that also provide coverage for other risks, including, but not limited to, the risk of direct physical damage.

(2)(i) With respect to policies issued or annually renewed on or after April 2, 1991, the proceeds of such required insurance must be dedicated, as and to the extent provided in this paragraph, to reimbursement or payment on behalf of the insured of reasonable expenses incurred or estimated to be incurred by the licensee in taking action to fulfill the licensee's obligation, in the event of an accident at the licensee's reactor, to ensure that the reactor is in, or is returned to, and maintained in, a safe and stable condition and that radioactive contamination is removed or controlled such that personnel exposures are consistent with the occupational exposure limits in 10 CFR part 20. These actions must be consistent with any other obligation the licensee may have under this chapter and must be subject to paragraph (w)(4) of this section. As used in this section, an "accident" means an event that involves the release of radioactive material from its intended place of confinement within the reactor or on the reactor station site such that there is a present danger of release off site in amounts that would pose a threat to the public health and safety.

(ii) The stabilization and decontamination requirements set forth in paragraph (w)(4) of this section must apply uniformly to all insurance policies required under paragraph (w) of this section.

(3) The licensee shall report to the NRC on April 1 of each year the current levels of this insurance or financial security it maintains and the sources of this insurance or financial security.

(4)(i) In the event of an accident at the licensee's reactor, whenever the estimated costs of stabilizing the licensed reactor and of decontaminating the reactor and the reactor station site exceed \$100 million, the proceeds of the insurance required by paragraph (w) of this section must be dedicated to and used, first, to ensure that the licensed reactor is in, or is returned to, and can be maintained in, a safe and stable condition so as to prevent any significant risk to the public health and safety and, second, to decontaminate the reactor and the reactor station site in accordance with the licensee's cleanup

§ 50.54

10 CFR Ch. I (1-1-16 Edition)

plan as approved by order of the Director of the Office of Nuclear Reactor Regulation. This priority on insurance proceeds must remain in effect for 60 days or, upon order of the Director, for such longer periods, in increments not to exceed 60 days except as provided for activities under the cleanup plan required in paragraphs (w)(4)(iii) and (w)(4)(iv) of this section, as the Director may find necessary to protect the public health and safety. Actions needed to bring the reactor to and maintain the reactor in a safe and stable condition may include one or more of the following, as appropriate:

(A) Shutdown of the reactor;

(B) Establishment and maintenance of long-term cooling with stable decay heat removal;

(C) Maintenance of sub-criticality;

(D) Control of radioactive releases; and

(E) Securing of structures, systems, or components to minimize radiation exposure to onsite personnel or to the offsite public or to facilitate later decontamination or both.

(ii) The licensee shall inform the Director of the Office of Nuclear Reactor Regulation in writing when the reactor is and can be maintained in a safe and stable condition so as to prevent any significant risk to the public health and safety. Within 30 days after the licensee informs the Director that the reactor is in this condition, or at such earlier time as the licensee may elect or the Director may for good cause direct, the licensee shall prepare and submit a cleanup plan for the Director's approval. The cleanup plan must identify and contain an estimate of the cost of each cleanup operation that will be required to decontaminate the reactor sufficiently to permit the licensee either to resume operation of the reactor or to apply to the Commission under §50.82 for authority to decommission the reactor and to surrender the license voluntarily. Cleanup operations may include one or more of the following, as appropriate:

(A) Processing any contaminated water generated by the accident and by decontamination operations to remove radioactive materials;

(B) Decontamination of surfaces inside the auxiliary and fuel-handling buildings and the reactor building to levels consistent with the Commission's occupational exposure limits in 10 CFR part 20, and decontamination or disposal of equipment;

(C) Decontamination or removal and disposal of internal parts and damaged fuel from the reactor vessel; and

(D) Cleanup of the reactor coolant system.

(iii) Following review of the licensee's cleanup plan, the Director will order the licensee to complete all operations that the Director finds are necessary to decontaminate the reactor sufficiently to permit the licensee either to resume operation of the reactor or to apply to the Commission under §50.82 for authority to decommission the reactor and to surrender the license voluntarily. The Director shall approve or disapprove, in whole or in part for stated reasons, the licensee's estimate of cleanup costs for such operations. Such order may not be effective for more than 1 year, at which time it may be renewed. Each subsequent renewal order, if imposed, may be effective for not more than 6 months.

(iv) Of the balance of the proceeds of the required insurance not already expended to place the reactor in a safe and stable condition pursuant to paragraph (w)(2)(i) of this section, an amount sufficient to cover the expenses of completion of those decontamination operations that are the subject of the Director's order shall be dedicated to such use, provided that, upon certification to the Director of the amounts expended previously and from time to time for stabilization and decontamination and upon further certification to the Director as to the sufficiency of the dedicated amount remaining, policies of insurance may provide for payment to the licensee or other loss payees of amounts not so dedicated, and the licensee may proceed to use in parallel (and not in preference thereto) any insurance proceeds not so dedicated for other purposes.

(x) A licensee may take reasonable action that departs from a license condition or a technical specification (contained in a license issued under this part) in an emergency when this action is immediately needed to protect the public health and safety and no action

§ 50.54

consistent with license conditions and technical specifications that can provide adequate or equivalent protection is immediately apparent.

(y) Licensee action permitted by paragraph (x) of this section shall be approved, as a minimum, by a licensed senior operator, or, at a nuclear power reactor facility for which the certifications required under $\S50.82(a)(1)$ have been submitted, by either a licensed senior operator or a certified fuel handler, prior to taking the action.

(z) Each licensee with a utilization facility licensed pursuant to sections 103 or 104b. of the Act shall immediately notify the NRC Operations Center of the occurrence of any event specified in 50.72 of this part.

(aa) The license shall be subject to all conditions deemed imposed as a matter of law by sections 401(a)(2) and 401(d) of the Federal Water Pollution Control Act, as amended (33 U.S.C.A. 1341 (a)(2) and (d).)

(bb) For nuclear power reactors li-censed by the NRC, the licensee shall, within 2 years following permanent cessation of operation of the reactor or 5 years before expiration of the reactor operating license, whichever occurs first, submit written notification to the Commission for its review and preliminary approval of the program by which the licensee intends to manage and provide funding for the management of all irradiated fuel at the reactor following permanent cessation of operation of the reactor until title to the irradiated fuel and possession of the fuel is transferred to the Secretary of Energy for its ultimate disposal in a repository. Licensees of nuclear power reactors that have permanently ceased operation by April 4, 1994 are required to submit such written notification by April 4, 1996. Final Commission review will be undertaken as part of any proceeding for continued licensing under part 50 or part 72 of this chapter. The licensee must demonstrate to NRC that the elected actions will be consistent with NRC requirements for licensed possession of irradiated nuclear fuel and that the actions will be implemented on a timely basis. Where implementation of such actions requires NRC authorizations, the licensee shall verify in the notification that submittals for such actions have been or will be made to NRC and shall identify them. A copy of the notification shall be retained by the licensee as a record until expiration of the reactor operating license. The licensee shall notify the NRC of any significant changes in the proposed waste management program as described in the initial notification.

(cc)(1) Each licensee shall notify the appropriate NRC Regional Administrator, in writing, immediately following the filing of a voluntary or involuntary petition for bankruptcy under any chapter of title 11 (Bankruptcy) of the United States Code by or against:

(i) The licensee;

(ii) An entity (as that term is defined in 11 U.S.C. 101(14)) controlling the licensee or listing the license or licensee as property of the estate; or

(iii) An affiliate (as that term is defined in 11 U.S.C. 101(2)) of the licensee.(2) This notification must indicate:

(i) The bankruptcy court in which the petition for bankruptcy was filed; and

(ii) The date of the filing of the petition.

(dd) A licensee may take reasonable action that departs from a license condition or a technical specification (contained in a license issued under this part) in a national security emergency:

(1) When this action is immediately needed to implement national security objectives as designated by the national command authority through the Commission, and

(2) No action consistent with license conditions and technical specifications that can meet national security objectives is immediately apparent.

A national security emergency is established by a law enacted by the Congress or by an order or directive issued by the President pursuant to statutes or the Constitution of the United States. The authority under this paragraph must be exercised in accordance with law, including section 57e of the Act, and is in addition to the authority granted under paragraph (x) of this section, which remains in effect unless otherwise directed by the Commission during a national security emergency. (ee)(1) Each license issued under this part authorizing the possession of byproduct and special nuclear material produced in the operation of the licensed reactor includes, whether stated in the license or not, the authorization to receive back that same material, in the same or altered form or combined with byproduct or special nuclear material produced in the operation of another reactor of the same licensee located at that site, from a licensee of the Commission or an Agreement State, or from a non-licensed entity authorized to possess the material.

(2) The authorizations in this subsection are subject to the same limitations and requirements applicable to the original possession of the material.

(3) This paragraph does not authorize the receipt of any material recovered from the reprocessing of irradiated fuel.

(ff) For licensees of nuclear power plants that have implemented the earthquake engineering criteria in appendix S to this part, plant shutdown is required as provided in paragraph IV(a)(3) of appendix S to this part. Prior to resuming operations, the licensee shall demonstrate to the Commission that no functional damage has occurred to those features necessary for continued operation without undue risk to the health and safety of the public and the licensing basis is maintained.

Notwithstanding 10 CFR (gg)(1)52.103, if, following the conduct of the exercise required by paragraph IV.f.2.a of appendix E to part 50 of this chapter, FEMA identifies one or more deficiencies in the state of offsite emergency preparedness, the holder of a combined license under 10 CFR part 52 may operate at up to 5 percent of rated thermal power only if the Commission finds that the state of onsite emergency preparedness provides reasonable assurance that adequate protective measures can and will be taken in the event of a radiological emergency. The NRC will base this finding on its assessment of the applicant's onsite emergency plans against the pertinent standards in §50.47 and appendix E to this part. Review of the applicant's emergency plans will include the following standards with offsite aspects:

10 CFR Ch. I (1–1–16 Edition)

(i) Arrangements for requesting and effectively using offsite assistance onsite have been made, arrangements to accommodate State and local staff at the licensee's Emergency Operations Facility have been made, and other organizations capable of augmenting the planned onsite response have been identified.

(ii) Procedures have been established for licensee communications with State and local response organizations, including initial notification of the declaration of emergency and periodic provision of plant and response status reports.

(iii) Provisions exist for prompt communications among principal response organizations to offsite emergency personnel who would be responding onsite.

(iv) Adequate emergency facilities and equipment to support the emergency response onsite are provided and maintained.

(v) Adequate methods, systems, and equipment for assessing and monitoring actual or potential offsite consequences of a radiological emergency condition are in use onsite.

(vi) Arrangements are made for medical services for contaminated and injured onsite individuals.

(vii) Radiological emergency response training has been made available to those offsite who may be called to assist in an emergency onsite.

(2) The condition in this paragraph, regarding operation at up to 5 percent power, ceases to apply 30 days after FEMA informs the NRC that the offsite deficiencies have been corrected, unless the NRC notifies the combined license holder before the expiration of the 30day period that the Commission finds under paragraphs (s)(2) and (3) of this section that the state of emergency preparedness does not provide reasonable assurance that adequate protective measures can and will be taken in the event of a radiological emergency.

(hh) (1) Each licensee shall develop, implement and maintain procedures that describe how the licensee will address the following areas if the licensee is notified of a potential aircraft threat:

(i) Verification of the authenticity of threat notifications;

(ii) Maintenance of continuous communication with threat notification sources;

(iii) Contacting all onsite personnel and applicable offsite response organizations;

(iv) Onsite actions necessary to enhance the capability of the facility to mitigate the consequences of an aircraft impact;

(v) Measures to reduce visual discrimination of the site relative to its surroundings or individual buildings within the protected area;

(vi) Dispersal of equipment and personnel, as well as rapid entry into site protected areas for essential onsite personnel and offsite responders who are necessary to mitigate the event; and

(vii) Recall of site personnel.

(2) Each licensee shall develop and implement guidance and strategies intended to maintain or restore core cooling, containment, and spent fuel pool cooling capabilities under the circumstances associated with loss of large areas of the plant due to explosions or fire, to include strategies in the following areas:

(i) Fire fighting;

(ii) Operations to mitigate fuel damage; and

(iii) Actions to minimize radiological release.

(3) This section does not apply to a nuclear power plant for which the certifications required under \$50.82(a) or \$52.110(a)(1) of this chapter have been submitted.

(ii) [Reserved]

(jj) Structures, systems, and components subject to the codes and standards in 10 CFR 50.55a must be designed, fabricated, erected, constructed, tested, and inspected to quality standards commensurate with the importance of the safety function to be performed.

[21 FR 355, Jan. 19, 1956]

EDITORIAL NOTE: FOR FEDERAL REGISTER citations affecting §50.54, see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed volume and at *www.fdsys.gov*.

§ 50.55 Conditions of construction permits, early site permits, combined licenses, and manufacturing licenses.

Each construction permit for a utilization facility is subject to the following terms and conditions and the applicable requirements of §50.55a; each construction permit for a production facility is subject to the following terms and conditions with the exception of paragraph (i); each early site permit is subject to the terms and conditions in paragraph (f) of this section; each manufacturing license is subject to the terms and conditions in paragraphs (e), (f), and (i) of this section and the applicable requirements of §50.55a; and each combined license is subject to the terms and conditions in paragraphs (e), (f), and (i) of this section and the applicable requirements of §50.55a until the date that the Commission makes the finding under §52.103(g) of this chapter:

(a) The construction permit shall state the earliest and latest dates for completion of the construction or modification.

(b) If the proposed construction or modification of the facility is not completed by the latest completion date, the construction permit shall expire and all rights are forfeited. However, upon good cause shown, the Commission will extend the completion date for a reasonable period of time. The Commission will recognize, among other things, developmental problems attributable to the experimental nature of the facility or fire, flood, explosion, strike, sabotage, domestic violence, enemy action, an act of the elements, and other acts beyond the control of the permit holder, as a basis for extending the completion date.

(c) Except as modified by this section and §50.55a, the construction permit shall be subject to the same conditions to which a license is subject.

(d) At or about the time of completion of the construction or modification of the facility, the applicant will file any additional information needed to bring the original application for license up to date, and will file an application for an operating license or an amendment to an application for a license to construct and operate the facility for the issuance of an operating license, as appropriate, as specified in §50.30(d) of this part.

(e)(1) *Definitions*. For purposes of this paragraph, the definitions in §21.3 of this chapter apply.

(2) Posting requirements. (i) Each individual, partnership, corporation, dedicating entity, or other entity subject to the regulations in this part shall post current copies of the regulations in this part; Section 206 of the Energy Reorganization Act of 1974 (ERA); and procedures adopted under the regulations in this part. These documents must be posted in a conspicuous position on any premises within the United States where the activities subject to this part are conducted.

(ii) If posting of the regulations in this part or the procedures adopted under the regulations in this part is not practicable, the licensee or firm subject to the regulations in this part may, in addition to posting Section 206 of the ERA, post a notice which describes the regulations/procedures, including the name of the individual to whom reports may be made, and states where the regulation, procedures, and reports may be examined.

(3) *Procedures.* Each individual, corporation, partnership, or other entity holding a facility construction permit subject to this part, combined license (until the Commission makes the finding under 10 CFR 52.103(g)), and manufacturing license under 10 CFR part 52 must adopt appropriate procedures to—

(i) Evaluate deviations and failures to comply to identify defects and failures to comply associated with substantial safety hazards as soon as practicable, and, except as provided in paragraph (e)(3)(ii) of this section, in all cases within 60 days of discovery, to identify a reportable defect or failure to comply that could create a substantial safety hazard, were it to remain uncorrected.

(ii) Ensure that if an evaluation of an identified deviation or failure to comply potentially associated with a substantial safety hazard cannot be completed within 60 days from discovery of the deviation or failure to comply, an interim report is prepared and sub10 CFR Ch. I (1–1–16 Edition)

mitted to the Commission through a director or responsible officer or designated person as discussed in paragraph (e)(4)(v) of this section. The interim report should describe the deviation or failure to comply that is being evaluated and should also state when the evaluation will be completed. This interim report must be submitted in writing within 60 days of discovery of the deviation or failure to comply.

(iii) Ensure that a director or responsible officer of the holder of a facility construction permit subject to this part, combined license (until the Commission makes the finding under 10 CFR 52.103(g)), and manufacturing license under 10 CFR part 52 is informed as soon as practicable, and, in all cases, within the 5 working days after completion of the evaluation described in paragraph (e)(3)(i) or (e)(3)(ii) of this section, if the construction or manufacture of a facility or activity, or a basic component supplied for such facility or activity—

(A) Fails to comply with the AEA, as amended, or any applicable regulation, order, or license of the Commission, relating to a substantial safety hazard;

(B) Contains a defect; or

(C) Undergoes any significant breakdown in any portion of the quality assurance program conducted under the requirements of appendix B to 10 CFR part 50 which could have produced a defect in a basic component. These breakdowns in the quality assurance program are reportable whether or not the breakdown actually resulted in a defect in a design approved and released for construction, installation, or manufacture.

(4) Notification. (i) The holder of a facility construction permit subject to this part, combined license (until the Commission makes the finding under 10 CFR 52.103(g)), and manufacturing license who obtains information reasonably indicating that the facility fails to comply with the AEA, as amended, or any applicable regulation, order, or license of the Commission relating to a substantial safety hazard must notify the Commission of the failure to comply through a director or responsible officer or designated person as discussed in paragraph (e)(4)(v) of this section.

(ii) The holder of a facility construction permit subject to this part, combined license, or manufacturing license, who obtains information reasonably indicating the existence of any defect found in the construction or manufacture, or any defect found in the final design of a facility as approved and released for construction or manufacture, must notify the Commission of the defect through a director or responsible officer or designated person as discussed in paragraph (e)(4)(v) of this section.

(iii) The holder of a facility construction permit subject to this part, combined license, or manufacturing license, who obtains information reasonably indicating that the quality assurance program has undergone any significant breakdown discussed in paragraph (e)(3)(iii)(C) of this section must notify the Commission of the breakdown in the quality assurance program through a director or responsible officer or designated person as discussed in paragraph (e)(4)(v) of this section.

(iv) A dedicating entity is responsible for identifying and evaluating deviations and reporting defects and failures to comply associated with substantial safety hazards for dedicated items; and maintaining auditable records for the dedication process.

(v) The notification requirements of this paragraph apply to all defects and failures to comply associated with a substantial safety hazard regardless of whether extensive evaluation, redesign, or repair is required to conform to the criteria and bases stated in the safety analysis report, construction permit, combined license, or manufacturing license. Evaluation of potential defects and failures to comply and reporting of defects and failures to comply under this section satisfies the construction permit holder's, combined license holder's, and manufacturing license holder's evaluation and notification obligations under part 21 of this chapter, and satisfies the responsibility of individual directors or responsible officers of holders of construction permits issued under §50.23, holders of combined licenses (until the Commission makes the finding under §52.103 of this chapter), and holders of manufacturing licenses to report defects, and failures

to comply associated with substantial safety hazards under Section 206 of the ERA. The director or responsible officer may authorize an individual to provide the notification required by this section, provided that this must not relieve the director or responsible officer of his or her responsibility under this section.

(5) Notification—timing and where sent. The notification required by paragraph (e)(4) of this section must consist of—

(i) Initial notification by facsimile, which is the preferred method of notification, to the NRC Operations Center at (301) 816–5151 or by telephone at (301) 816–5100 within 2 days following receipt of information by the director or responsible corporate officer under paragraph (e)(3)(ii) of this section, on the identification of a defect or a failure to comply. Verification that the facsimile has been received should be made by calling the NRC Operations Center. This paragraph does not apply to interim reports described in paragraph (e)(3)(ii) of this section.

(ii) Written notification submitted to the Document Control Desk, U.S. Nuclear Regulatory Commission, by an appropriate method listed in §50.4, with a copy to the appropriate Regional Administrator at the address specified in appendix D to part 20 of this chapter and a copy to the appropriate NRC resident inspector within 30 days following receipt of information by the director or responsible corporate officer under paragraph (e)(3)(iii) of this section, on the identification of a defect or failure to comply.

(6) Content of notification. The written notification required by paragraph (e)(5)(i) of this section must clearly indicate that the written notification is being submitted under \$50.55(e) and include the following information, to the extent known.

(i) Name and address of the individual or individuals informing the Commission.

(ii) Identification of the facility, the activity, or the basic component supplied for the facility or the activity within the United States which contains a defect or fails to comply.

(iii) Identification of the firm constructing or manufacturing the facility or supplying the basic component which fails to comply or contains a defect.

(iv) Nature of the defect or failure to comply and the safety hazard which is created or could be created by the defect or failure to comply.

(v) The date on which the information of a defect or failure to comply was obtained.

(vi) In the case of a basic component which contains a defect or fails to comply, the number and location of all the basic components in use at the facility subject to the regulations in this part.

(vii) In the case of a completed reactor manufactured under part 52 of this chapter, the entities to which the reactor was supplied.

(viii) The corrective action which has been, is being, or will be taken; the name of the individual or organization responsible for the action; and the length of time that has been or will be taken to complete the action.

(ix) Any advice related to the defect or failure to comply about the facility, activity, or basic component that has been, is being, or will be given to other entities.

(7) Procurement documents. Each individual, corporation, partnership, dedicating entity, or other entity subject to the regulations in this part shall ensure that each procurement document for a facility, or a basic component specifies or is issued by the entity subject to the regulations, when applicable, that the provisions of 10 CFR part 21 or 10 CFR 50.55(e) applies, as applicable.

(8) Coordination with 10 CFR part 21. The requirements of §50.55(e) are satisfied when the defect or failure to comply associated with a substantial safety hazard has been previously reported under part 21 of this chapter, under §73.71 of this chapter, or under §50.55(e) or 50.73. For holders of construction permits issued before October 29, 1991, evaluation, reporting and recordkeeping requirements of §50.55(e) may be met by complying with the comparable requirements of part 21 of this chapter.

(9) *Records retention*. The holder of a construction permit, combined license, and manufacturing license must prepare and maintain records necessary to

10 CFR Ch. I (1–1–16 Edition)

accomplish the purposes of this section, specifically—

(i) Retain procurement documents, which define the requirements that facilities or basic components must meet in order to be considered acceptable, for the lifetime of the facility or basic component.

(ii) Retain records of evaluations of all deviations and failures to comply under paragraph (e)(3)(i) of this section for the longest of:

(A) Ten (10) years from the date of the evaluation;

(B) Five (5) years from the date that an early site permit is referenced in an application for a combined license; or

(C) Five (5) years from the date of delivery of a manufactured reactor.

(iii) Retain records of all interim reports to the Commission made under paragraph (e)(3)(ii) of this section, or notifications to the Commission made under paragraph (e)(4) of this section for the minimum time periods stated in paragraph (e)(9)(ii) of this section;

(iv) Suppliers of basic components must retain records of:

(A) All notifications sent to affected licensees or purchasers under paragraph (e)(4)(iv) of this section for a minimum of ten (10) years following the date of the notification;

(B) The facilities or other purchasers to whom basic components or associated services were supplied for a minimum of fifteen (15) years from the delivery of the basic component or associated services.

(v) Maintaining records in accordance with this section satisfies the recordkeeping obligations under part 21 of this chapter of the entities, including directors or responsible officers thereof, subject to this section.

(f)(1) Each nuclear power plant or fuel reprocessing plant construction permit holder subject to the quality assurance criteria in appendix B of this part shall implement, pursuant to $\S 50.34(a)(7)$ of this part, the quality assurance program described or referenced in the Safety Analysis Report, including changes to that report.

(2) Each construction permit holder described in paragraph (f)(1) of this section shall, by June 10, 1983, submit to the appropriate NRC Regional Office shown in appendix D of part 20 of this

chapter the current description of the quality assurance program it is implementing for inclusion in the Safety Analysis Report, unless there are no changes to the description previously accepted by NRC. This submittal must identify changes made to the quality assurance program description since the description was submitted to NRC. (Should a permit holder need additional time beyond June 10, 1983 to submit its current quality assurance program description to NRC, it shall notify the appropriate NRC Regional Office in writing, explain why additional time is needed, and provide a schedule for NRC approval showing when its current quality assurance program description will be submitted.)

(3) After March 11, 1983, each construction permit holder described in paragraph (f)(1) of this section may make a change to a previously accepted quality assurance program description included or referenced in the Safety Analysis Report, provided the change does not reduce the commitments in the program description previously accepted by the NRC. Changes to the quality assurance program description that do not reduce the commitments must be submitted to NRC within 90 days. Changes to the quality assurance program description that do reduce the commitments must be submitted to NRC and receive NRC approval before implementation, as follows:

(i) Changes to the Safety Analysis Report must be submitted for review as specified in §50.4. Changes made to NRC-accepted quality assurance topical report descriptions must be submitted as specified in §50.4.

(ii) The submittal of a change to the Safety Analysis Report quality assurance program description must include all pages affected by that change and must be accompanied by a forwarding letter identifying the change, the reason for the change, and the basis for concluding that the revised program incorporating the change continues to satisfy the criteria of appendix B of this part and the Safety Analysis Report quality assurance program description commitments previously accepted by the NRC (the letter need not provide the basis for changes that correct spelling, punctuation, or editorial items).

(iii) A copy of the forwarding letter identifying the changes must be maintained as a facility record for three years.

(iv) Changes to the quality assurance program description included or referenced in the Safety Analysis Report shall be regarded as accepted by the Commission upon receipt of a letter to this effect from the appropriate reviewing office of the Commission or 60 days after submittal to the Commission, whichever occurs first.

(4) Each holder of an early site permit or a manufacturing license under part 52 of this chapter shall implement the quality assurance program described or referenced in the safety analysis report, including changes to that report. Each holder of a combined license shall implement the quality assurance program for design and construction described or referenced in the safety analysis report, including changes to that report, provided, however, that the holder of a combined license is not subject to the terms and conditions in this paragraph after the Commission makes the finding under §52.103(g) of this chapter.

(i) Each holder described in paragraph (f)(4) of this section may make a change to a previously accepted quality assurance program description included or referenced in the safety analysis report, if the change does not reduce the commitments in the program description previously accepted by the NRC. Changes to the quality assurance program description that do not reduce the commitments must be submitted to NRC within 90 days. Changes to the quality assurance program description that reduce the commitments must be submitted to NRC and receive NRC approval before implementation, as follows:

(A) Changes to the safety analysis report must be submitted for review as specified in §50.4. Changes made to NRC-accepted quality assurance topical report descriptions must be submitted as specified in §50.4.

(B) The submittal of a change to the safety analysis report quality assurance program description must include all pages affected by that change and must be accompanied by a forwarding letter identifying the change, the reason for the change, and the basis for concluding that the revised program incorporating the change continues to satisfy the criteria of appendix B of this part and the safety analysis report quality assurance program description commitments previously accepted by the NRC (the letter need not provide the basis for changes that correct spelling, punctuation, or editorial items).

(C) A copy of the forwarding letter identifying the changes must be maintained as a facility record for three (3) years.

(D) Changes to the quality assurance program description included or referenced in the safety analysis report shall be regarded as accepted by the Commission upon receipt of a letter to this effect from the appropriate reviewing office of the Commission or 60 days after submittal to the Commission, whichever occurs first.

(ii) [Reserved]

(g) [Reserved]

(h) [Reserved]

(i) Structures, systems, and components subject to the codes and standards in 10 CFR 50.55a must be designed, fabricated, erected, constructed, tested, and inspected to quality standards commensurate with the importance of the safety function to be performed.

[21 FR 355, Jan. 19, 1956, as amended at 32 FR 4055, Mar. 15, 1967; 35 FR 11461, July 17, 1970; 35 FR 19661, Dec. 29, 1970; 36 FR 11424, June 12, 1971; 37 FR 6460, Mar. 30, 1972; 38 FR 1272, Jan. 11, 1973; 41 FR 16446, Apr. 19, 1976; 42 FR 43385, Aug. 29, 1977; 48 FR 1029, Jan. 10, 1983; 51 FR 40309, Nov. 6, 1986; 56 FR 36091, July 31, 1991; 59 FR 14087, Mar. 25, 1994; 68 FR 58809, Oct. 10, 2003; 72 FR 49497, Aug. 28, 2007; 78 FR 34248, June 7, 2013; 79 FR 65798, Nov. 5, 2014]

§50.55a Codes and standards.

(a) Documents approved for incorporation by reference. The standards listed in this paragraph have been approved for incorporation by reference by the Director of the Federal Register pursuant to 5 U.S.C. 552(a) and 1 CFR part 51. The standards are available for inspection at the NRC Technical Library, 11545 Rockville Pike, Rockville, Maryland 20852; telephone: 301-415-6239; or at the National Archives and Records Administration (NARA). For information on the availability of this material at 10 CFR Ch. I (1–1–16 Edition)

NARA, call 202–741–6030 or go to http:// www.archives.gov/federal-register/cfr/ibrlocations.html.

(1) American Society of Mechanical Engineers (ASME), Three Park Avenue, New York, NY 10016; telephone:

1–800–843–2763; http://www.asme.org/ Codes/.

(i) ASME Boiler and Pressure Vessel Code, Section III. The editions and addenda for Section III of the ASME Boiler and Pressure Vessel Code are listed below, but limited to those provisions identified in paragraph (b)(1) of this section.

(A) "Rules for Construction of Nuclear Vessels:"

(1) 1963 Edition,

(2) Summer 1964 Addenda,

(3) Winter 1964 Addenda,

(4) 1965 Edition,

(5) 1965 Summer Addenda,

(6) 1965 Winter Addenda,

(7) 1966 Summer Addenda,

(8) 1966 Winter Addenda,

(9) 1967 Summer Addenda,

(10) 1967 Winter Addenda.

(11) 1968 Edition,

(12) 1968 Summer Addenda.

(12) 1966 Summer Addenda, (13)1968 Winter Addenda,

(13) 1969 Summer Addenda,

(15) 1969 Winter Addenda,

(16) 1909 Winter Addenda, (16) 1970 Summer Addenda, and

(16) 1970 Summer Addenda, a (17) 1970 Winter Addenda.

(17) 1970 Whiter Addenda.

(B) "Rules for Construction of Nuclear Power Plant Components:"

(1) 1971 Edition,

(2) 1971 Summer Addenda,

(3) 1971 Winter Addenda,

(3) 1971 Whiter Addenda,

(4) 1972 Summer Addenda,

(5) 1972 Winter Addenda,

(6) 1973 Summer Addenda, and

(7) 1973 Winter Addenda.

(C) "Division 1 Rules for Construction of Nuclear Power Plant Components:"

(1) 1974 Edition,

(2) 1974 Summer Addenda,

(3) 1974 Winter Addenda,

(4) 1975 Summer Addenda,

(5) 1975 Winter Addenda,

(6) 1976 Summer Addenda, and

(7) 1976 Winter Addenda;

(D) "Rules for Construction of Nu-

clear Power Plant Components—Division 1'':

(1) 1977 Edition,

(2) 1977 Summer Addenda,

2) 1977 Summer Addarda

(3) 1977 Winter Addenda,

(4) 1978 Summer Addenda, (5) 1978 Winter Addenda, (6) 1979 Summer Addenda, (7) 1979 Winter Addenda, (8) 1980 Edition, (9) 1980 Summer Addenda, (10) 1980 Winter Addenda, (11) 1981 Summer Addenda, (12) 1981 Winter Addenda, (13) 1982 Summer Addenda, (14) 1982 Winter Addenda, (15) 1983 Edition. (16) 1983 Summer Addenda, (17) 1983 Winter Addenda, (18) 1984 Summer Addenda, (19) 1984 Winter Addenda, (20) 1985 Summer Addenda, (21) 1985 Winter Addenda, (22) 1986 Edition, (23) 1986 Addenda, (24) 1987 Addenda, (25) 1988 Addenda, (26) 1989 Edition, (27) 1989 Addenda, (28) 1990 Addenda, (29) 1991 Addenda, (30) 1992 Edition, (31) 1992 Addenda, (32) 1993 Addenda, (33) 1994 Addenda, (34) 1995 Edition, (35) 1995 Addenda, (36) 1996 Addenda, and (37) 1997 Addenda. (E) "Rules for Construction of Nuclear Facility Components-Division 1:" (1) 1998 Edition. (2) 1998 Addenda, (3) 1999 Addenda, (4) 2000 Addenda, (5) 2001 Edition, (6) 2001 Addenda, (7) 2002 Addenda, (8) 2003 Addenda, (9) 2004 Edition, (10) 2005 Addenda, (11) 2006 Addenda, (12) 2007 Edition, and (13) 2008 Addenda. (ii) ASME Boiler and Pressure Vessel Code, Section XI. The editions and addenda for Section XI of the ASME Boiler and Pressure Vessel Code are listed below, but limited to those provisions identified in paragraph (b)(2) of this

section. (A) "Rules for Inservice Inspection of Nuclear Reactor Coolant Systems:" § 50.55a

(1) 1970 Edition, (2) 1971 Edition, (3) 1971 Summer Addenda, (4) 1971 Winter Addenda, (5) 1972 Summer Addenda, (6) 1972 Winter Addenda, (7) 1973 Summer Addenda, and (8) 1973 Winter Addenda. (B) "Rules for Inservice Inspection of Nuclear Power Plant Components:' (1) 1974 Edition, (2) 1974 Summer Addenda, (3) 1974 Winter Addenda, and (4) 1975 Summer Addenda. (5) 1975 Winter Addenda, (6) 1976 Summer Addenda, and (7) 1976 Winter Addenda. (C) "Rules for Inservice Inspection of Nuclear Power Plant Components-Division 1:" (1) 1977 Edition, (2) 1977 Summer Addenda, (3) 1977 Winter Addenda, (4) 1978 Summer Addenda, (5) 1978 Winter Addenda, (6) 1979 Summer Addenda, (7) 1979 Winter Addenda, (8) 1980 Edition, (9) 1980 Winter Addenda, (10) 1981 Summer Addenda, (11) 1981 Winter Addenda, (12) 1982 Summer Addenda, (13) 1982 Winter Addenda, (14) 1983 Edition, (15) 1983 Summer Addenda, (16) 1983 Winter Addenda, (17) 1984 Summer Addenda, (18) 1984 Winter Addenda, (19) 1985 Summer Addenda, (20) 1985 Winter Addenda, (21) 1986 Edition, (22) 1986 Addenda, (23) 1987 Addenda, (24) 1988 Addenda, (25) 1989 Edition, (26) 1989 Addenda, (27) 1990 Addenda, (28) 1991 Addenda, (29) 1992 Edition, (30) 1992 Addenda, (31) 1993 Addenda, (32) 1994 Addenda, (33) 1995 Edition, (34) 1995 Addenda, (35) 1996 Addenda, (36) 1997 Addenda, (37) 1998 Edition, (38) 1998 Addenda, (39) 1999 Addenda,

(40) 2000 Addenda,

(*41*) 2001 Edition,

(42) 2001 Addenda, (43) 2002 Addenda,

(43) 2002 Addenda, (44) 2003 Addenda,

(45) 2003 Addenda (45) 2004 Edition,

(46) 2005 Addenda,

(47) 2006 Addenda,

(48) 2007 Edition, and

(49) 2008 Addenda.

(iii) ASME Code Cases: Nuclear Components—(A) ASME Code Case N-722-1. ASME Code Case N-722-1, "Additional Examinations for PWR Pressure Retaining Welds in Class 1 Components Fabricated with Alloy 600/82/182 Materials, Section XI, Division 1" (Approval Date: January 26, 2009), with the conditions in paragraph (g)(6)(ii)(E) of this section.

(B) ASME Code Case N-729-1. ASME Code Case N-729-1, "Alternative Examination Requirements for PWR Reactor Vessel Upper Heads With Nozzles Having Pressure-Retaining Partial-Penetration Welds, Section XI, Division 1" (Approval Date: March 28, 2006), with the conditions in paragraph (g)(6)(ii)(D) of this section.

(C) ASME Code Case N-770-1. ASME Code Case N-770-1, "Additional Examinations for PWR Pressure Retaining Welds in Class 1 Components Fabricated with Alloy 600/82/182 Materials, Section XI, Division 1" (Approval Date: December 25, 2009), with the conditions in paragraph (g)(6)(ii)(F) of this section.

(iv) ASME Operation and Maintenance Code. The editions and addenda for the ASME Code for Operation and Maintenance of Nuclear Power Plants are listed below, but limited to those provisions identified in paragraph (b)(3) of this section.

(A) "Code for Operation and Maintenance of Nuclear Power Plants:"

(1) 1995 Edition,
 (2) 1996 Addenda,
 (3) 1997 Addenda,
 (4) 1998 Edition,

(5) 1999 Addenda,

(6) 2000 Addenda,

(7) 2001 Edition,

(7) 2001 Edition,

(8) 2002 Addenda,

(9) 2003 Addenda,

(10) 2004 Edition,

(11) 2005 Addenda, and

(12) 2006 Addenda.

10 CFR Ch. I (1-1-16 Edition)

(B) [Reserved]

(2) Institute of Electrical and Electronics Engineers (IEEE) Service Center, 445 Hoes Lane, Piscataway, NJ 08855; telephone: 1-800-678-4333; http:// ieeexplore.ieee.org.

(i) *IEEE standard 279–1968*. (IEEE Std 279–1968), "Proposed IEEE Criteria for Nuclear Power Plant Protection Systems" (Approval Date: August 30, 1968), referenced in paragraph (h)(2) of this section. (Copies of this document may be purchased from IHS Global, 15 Inverness Way East, Englewood, CO 80112; *https://global.ihs.com.*)

(ii) *IEEE standard 279–1971*. (IEEE Std 279–1971), "Criteria for Protection Systems for Nuclear Power Generating Stations" (Approval Date: June 3, 1971), referenced in paragraph (h)(2) of this section.

(iii) *IEEE standard 603–1991*. (IEEE Std 603–1991), "Standard Criteria for Safety Systems for Nuclear Power Generating Stations" (Approval Date: June 27, 1991), referenced in paragraphs (h)(2) and (h)(3) of this section. All other standards that are referenced in IEEE Std 603–1991 are not approved for incorporation by reference.

(iv) IEEE standard 603–1991, correction sheet. (IEEE Std 603–1991 correction sheet), "Standard Criteria for Safety Systems for Nuclear Power Generating Stations, Correction Sheet, Issued January 30, 1995," referenced in paragraphs (h)(2) and (h)(3) of this section. (This correction sheet is available from IEEE at http://standards.ieee.org/findstds/errata/).

(3) U.S. Nuclear Regulatory Commission (NRC) Public Document Room, 11555 Rockville Pike, Rockville, Maryland 20852; telephone: 1-800-397-4209; email: pdr.resource@nrc.gov; http:// www.nrc.gov/reading-rm/doc-collections/ req-quides/.

(i) NRC Regulatory Guide 1.84, Revision 36. NRC Regulatory Guide 1.84, Revision 36, "Design, Fabrication, and Materials Code Case Acceptability, ASME Section III," dated August 2014, with the requirements in paragraph (b)(4) of this section.

(ii) NRC Regulatory Guide 1.147, Revision 17. NRC Regulatory Guide 1.147, Revision 17, "Inservice Inspection Code Case Acceptability, ASME Section XI, Division 1," dated August 2014, which

lists ASME Code Cases that the NRC has approved in accordance with the requirements in paragraph (b)(5) of this section.

(iii) NRC Regulatory Guide 1.192, Revision 1. NRC Regulatory Guide 1.192, Revision 1, "Operation and Maintenance Code Case Acceptability, ASME OM Code," dated August 2014, which lists ASME Code Cases that the NRC has approved in accordance with the requirements in paragraph (b)(6) of this section.

(b) Use and conditions on the use of standards. Systems and components of boiling and pressurized water-cooled nuclear power reactors must meet the requirements of the ASME Boiler and Pressure Vessel Code (BPV Code) and the ASME Code for Operation and Maintenance of Nuclear Power Plants (OM Code) as specified in this paragraph. Each combined license for a utilization facility is subject to the following conditions.

(1) Conditions on ASME BPV Code Section III. Each manufacturing license, standard design approval, and design certification under part 52 of this chapter is subject to the following conditions. As used in this section, references to Section III refer to Section III of the ASME Boiler and Pressure Vessel Code and include the 1963 Edition through 1973 Winter Addenda and the 1974 Edition (Division 1) through the 2008 Addenda (Division 1), subject to the following conditions:

(i) Section III condition: Section III materials. When applying the 1992 Edition of Section III, applicants or licensees must apply the 1992 Edition with the 1992 Addenda of Section II of the ASME Boiler and Pressure Vessel Code.

(ii) Section III condition: Weld leg dimensions. When applying the 1989 Addenda through the latest edition and addenda, applicants or licensees may not apply subparagraphs NB-3683.4(c)(1) and NB-3683.4(c)(2) or Footnote 11 from the 1989 Addenda through the 2003 Addenda, or Footnote 13 from the 2004 Addenda through the 2008 Addenda to Figures NC-3673.2(b)-1 and ND-3673.2(b)-1 for welds with leg size less than 1.09 t_n.

(iii) Section III condition: Seismic design of piping. Applicants or licensees may use Subarticles NB-3200, NB-3600, NC-3600, and ND-3600 for seismic design of piping, up to and including the 1993 Addenda, subject to the condition specified in paragraph (b)(1)(ii) of this section. Applicants or licensees may not use these subarticles for seismic design of piping in the 1994 Addenda through the 2005 Addenda incorporated by reference in paragraph (a)(1) of this section, except that Subarticle NB-3200 in the 2004 Edition through the 2008 Addenda may be used by applicants and licensees, subject to the condition in paragraph (b)(1)(iii)(A) of this section. Applicants or licensees may use Subarticles NB-3600, NC-3600, and ND-3600 for the seismic design of piping in the 2006 Addenda through the 2008 Addenda, subject to the conditions of this paragraph corresponding to those subarticles.

(A) Seismic design of piping: First provision. When applying Note (1) of Figure NB-3222-1 for Level B service limits, the calculation of P_b stresses must include reversing dynamic loads (including inertia earthquake effects) if evaluation of these loads is required by NB-3223(b).

(B) Seismic design of piping: Second provision. For Class 1 piping, the material and D_o/t requirements of NB-3656(b) must be met for all Service Limits when the Service Limits include reversing dynamic loads, and the alternative rules for reversing dynamic loads are used.

(iv) Section III condition: Quality assurance. When applying editions and addenda later than the 1989 Edition of Section III, the requirements of NQA-1, "Quality Assurance Requirements for Facilities," Nuclear 1986 Edition through the 1994 Edition, are acceptable for use, provided that the edition and addenda of NQA-1 specified in NCA-4000 is used in conjunction with the administrative, quality, and technical provisions contained in the edition and addenda of Section III being used.

(v) Section III condition: Independence of inspection. Applicants or licensees may not apply NCA-4134.10(a) of Section III, 1995 Edition through the latest edition and addenda incorporated by reference in paragraph (a)(1) of this section.

§ 50.55a

(vi) Section III condition: Subsection NH. The provisions in Subsection NH, "Class 1 Components in Elevated Temperature Service," 1995 Addenda through the latest edition and addenda incorporated by reference in paragraph (a)(1) of this section, may only be used for the design and construction of Type 316 stainless steel pressurizer heater sleeves where service conditions do not cause the components to reach temperatures exceeding 900 °F.

(vii) Section III condition: Capacity certification and demonstration of function incompressible-fluid pressure-relief of valves. When applying the 2006 Addenda through the 2007 Edition up to and including the 2008 Addenda, applicants and licensees may use paragraph NB-7742, except that paragraph NR-7742(a)(2) may not be used. For a valve design of a single size to be certified over a range of set pressures, the demonstration of function tests under paragraph NB-7742 must be conducted as prescribed in NB-7732.2 on two valves covering the minimum set pressure for the design and the maximum set pressure that can be accommodated at the demonstration facility selected for the test.

(2) Conditions on ASME BPV Code Section XI. As used in this section, references to Section XI refer to Section XI, Division 1, of the ASME Boiler and Pressure Vessel Code, and include the 1970 Edition through the 1976 Winter Addenda and the 1977 Edition through the 2007 Edition with the 2008 Addenda, subject to the following conditions:

(i) [Reserved]

(ii) Section XI condition: Pressure-retaining welds in ASME Code Class 1 piping (applies to Table IWB-2500 and IWB-2500-1 and Category B-J). If the facility's application for a construction permit was docketed prior to July 1, 1978, the extent of examination for Code Class 1 pipe welds may be determined by the requirements of Table IWB-2500 and Table IWB-2600 Category B-J of Section XI of the ASME BPV Code in the 1974 Edition and Addenda through the Summer 1975 Addenda or other requirements the NRC may adopt.

(iii-v) [Reserved]

(vi) Section XI condition: Effective edition and addenda of Subsection IWE and Subsection IWL. Applicants or licensees 10 CFR Ch. I (1-1-16 Edition)

may use either the 1992 Edition with the 1992 Addenda or the 1995 Edition with the 1996 Addenda of Subsection IWE and Subsection IWL, as conditioned by the requirements in paragraphs (b)(2)(viii) and (ix) of this section, when implementing the initial 120-month inspection interval for the containment inservice inspection requirements of this section. Successive 120-month interval updates must be implemented in accordance with paragraph (g)(4)(ii) of this section.

(vii) Section XI condition: Section XI references to OM Part 4, OM Part 6, and OM Part 10 (Table IWA-1600-1). When using Table IWA-1600-1, "Referenced Standards and Specifications," in the Section XI, Division 1, 1987 Addenda, 1988 Addenda, or 1989 Edition, the specified "Revision Date or Indicator" for ASME/ANSI OM part 4, ASME/ANSI part 6, and ASME/ANSI part 10 must be the OMa-1988 Addenda to the OM-1987 Edition. These requirements have been incorporated into the OM Code, which is incorporated by reference in paragraph (a)(1)(iv) of this section.

(viii) Section XI condition: Concrete containment examinations. Applicants or licensees applying Subsection IWL, 1992 Edition with the 1992 Addenda, must apply paragraphs (b)(2)(viii)(A) through (E) of this section. Applicants or licensees applying Subsection IWL, 1995 Edition with the 1996 Addenda, must apply paragraphs (b)(2)(viii)(A).(b)(2)(viii)(D)(3), and (b)(2)(viii)(E) of this section. Applicants or licensees applying Subsection IWL, 1998 Edition through the 2000 Addenda, must apply paragraphs (b)(2)(viii)(E) and (F) of this section. Applicants or licensees applying Subsection IWL, 2001 Edition through the 2004 Edition, up to and including the 2006 Addenda, must apply paragraphs (b)(2)(viii)(E) through (G) of this section. Applicants or licensees applying Subsection IWL, 2007 Edition through the latest edition and addenda incorporated by reference in paragraph (a)(1)(ii) of this section, must apply paragraph (b)(2)(viii)(E) of this section.

(A) Concrete containment examinations: First provision. Grease caps that are accessible must be visually examined to detect grease leakage or grease cap deformations. Grease caps must be removed for this examination when there

is evidence of grease cap deformation that indicates deterioration of anchorage hardware.

(B) Concrete containment examinations: Second provision. When evaluation of consecutive surveillances of pre-stressing forces for the same tendon or tendons in a group indicates a trend of pre-stress loss such that the tendon force(s) would be less than the minimum design pre-stress requirements before the next inspection interval, an evaluation must be performed and reported in the Engineering Evaluation Report as prescribed in IWL-3300.

(C) Concrete containment examinations: Third provision. When the elongation corresponding to a specific load (adjusted for effective wires or strands) during re-tensioning of tendons differs by more than 10 percent from that recorded during the last measurement, an evaluation must be performed to determine whether the difference is related to wire failures or slip of wires in anchorage. A difference of more than 10 percent must be identified in the ISI Summary Report required by IWA-6000.

(D) Concrete containment examinations: Fourth provision. The applicant or licensee must report the following conditions, if they occur, in the ISI Summary Report required by IWA-6000:

(1) The sampled sheathing filler grease contains chemically combined water exceeding 10 percent by weight or the presence of free water;

(2) The absolute difference between the amount removed and the amount replaced exceeds 10 percent of the tendon net duct volume; and

(3) Grease leakage is detected during general visual examination of the containment surface.

(E) Concrete containment examinations: Fifth provision. For Class CC applications, the applicant or licensee must evaluate the acceptability of inaccessible areas when conditions exist in accessible areas that could indicate the presence of or the result in degradation to such inaccessible areas. For each inaccessible area identified, the applicant or licensee must provide the following in the ISI Summary Report required by IWA-6000:

(I) A description of the type and estimated extent of degradation, and the conditions that led to the degradation;

(2) An evaluation of each area, and the result of the evaluation; and

(3) A description of necessary corrective actions.

(F) Concrete containment examinations: Sixth provision. Personnel that examine containment concrete surfaces and tendon hardware, wires, or strands must meet the qualification provisions in IWA-2300. The 'owner-defined' personnel qualification provisions in IWL-2310(d) are not approved for use.

(G) Concrete containment examinations: Seventh provision. Corrosion protection material must be restored following concrete containment post-tensioning system repair and replacement activities in accordance with the quality assurance program requirements specified in IWA-1400.

(ix) Section XI condition: Metal containment examinations. Applicants or licensees applying Subsection IWE, 1992 Edition with the 1992 Addenda, or the 1995 Edition with the 1996 Addenda, must satisfy the requirements of paragraphs (b)(2)(ix)(A) through (E) of this section. Applicants or licensees applying Subsection IWE, 1998 Edition through the 2001 Edition with the 2003 Addenda, must satisfy the requirements of paragraphs (b)(2)(ix)(A) and (B) and (b)(2)(ix)(F) through (I) of this section. Applicants or licensees applying Subsection IWE, 2004 Edition, up to and including the 2005 Addenda, must satisfy the requirements of paragraphs (b)(2)(ix)(A) and (B) and (b)(2)(ix)(F)through (H) of this section. Applicants or licensees applying Subsection IWE, 2004 Edition with the 2006 Addenda, must satisfy the requirements of paragraphs (b)(2)(ix)(A)(2) and (b)(2)(ix)(B)of this section. Applicants or licensees applying Subsection IWE, 2007 Edition through the latest addenda incorporated by reference in paragraph (a)(1)(ii) of this section, must satisfy the requirements of paragraphs (b)(2)(ix)(A)(2) and (b)(2)(ix)(B) and (J)of this section.

(A) Metal containment examinations: First provision. For Class MC applications, the following apply to inaccessible areas.

(1) The applicant or licensee must evaluate the acceptability of inaccessible areas when conditions exist in accessible areas that could indicate the presence of or could result in degradation to such inaccessible areas.

(2) For each inaccessible area identified for evaluation, the applicant or licensee must provide the following in the ISI Summary Report as required by IWA-6000:

(i) A description of the type and estimated extent of degradation, and the conditions that led to the degradation;

(*ii*) An evaluation of each area, and the result of the evaluation; and

(*iii*) A description of necessary corrective actions.

(B) Metal containment examinations: Second provision. When performing remotely the visual examinations required by Subsection IWE, the maximum direct examination distance specified in Table IWA-2210-1 may be extended and the minimum illumination requirements specified in Table IWA-2210-1 may be decreased provided that the conditions or indications for which the visual examination is performed can be detected at the chosen distance and illumination.

(C) Metal containment examinations: Third provision. The examinations specified in Examination Category E-B, Pressure Retaining Welds, and Examination Category E-F, Pressure Retaining Dissimilar Metal Welds, are optional.

(D) Metal containment examinations: Fourth provision. This paragraph (b)(2)(ix)(D) may be used as an alternative to the requirements of IWE-2430.

(1) If the examinations reveal flaws or areas of degradation exceeding the acceptance standards of Table IWE-3410-1, an evaluation must be performed to determine whether additional component examinations are required. For each flaw or area of degradation identified that exceeds acceptance standards, the applicant or licensee must provide the following in the ISI Summary Report required by IWA-6000:

(*i*) A description of each flaw or area, including the extent of degradation, and the conditions that led to the degradation;

(*ii*) The acceptability of each flaw or area and the need for additional examinations to verify that similar degradation does not exist in similar components; and 10 CFR Ch. I (1–1–16 Edition)

(*iii*) A description of necessary corrective actions.

(2) The number and type of additional examinations to ensure detection of similar degradation in similar components.

(E) Metal containment examinations: Fifth provision. A general visual examination as required by Subsection IWE must be performed once each period.

(F) Metal containment examinations: Sixth provision. VT-1 and VT-3 examinations must be conducted in accordance with IWA-2200. Personnel conducting examinations in accordance with the VT-1 or VT-3 examination method must be qualified in accordance with IWA-2300. The "owner-defined" personnel qualification provisions in IWE-2330(a) for personnel that conduct VT-1 and VT-3 examinations are not approved for use.

(G) Metal containment examinations: Seventh provision. The VT-3 examination method must be used to conduct the examinations in Items E1.12 and E1.20 of Table IWE-2500-1, and the VT-1 examination method must be used to conduct the examination in Item E4.11 of Table IWE-2500-1. An examination of the pressure-retaining bolted connections in Item E1.11 of Table IWE-2500-1 using the VT-3 examination method must be conducted once each interval. The "owner-defined" visual examination provisions in IWE-2310(a) are not approved for use for VT-1 and VT-3 examinations.

(H) Metal containment examinations: Eighth provision. Containment bolted connections that are disassembled during the scheduled performance of the examinations in Item E1.11 of Table IWE-2500-1 must be examined using the VT-3 examination method. Flaws or degradation identified during the performance of a VT-3 examination must be examined in accordance with the VT-1 examination method. The criteria in the material specification or IWB-3517.1 must be used to evaluate containment bolting flaws or degradation. As an alternative to performing VT-3 examinations of containment bolted connections that are disassembled during the scheduled performance of Item E1.11, VT-3 examinations of containment bolted connections may be conducted whenever containment bolted

connections are disassembled for any reason.

(I) Metal containment examinations: Ninth provision. The ultrasonic examination acceptance standard specified in IWE-3511.3 for Class MC pressure-retaining components must also be applied to metallic liners of Class CC pressure-retaining components.

(J) Metal containment examinations: Tenth provision. In general, a repair/replacement activity such as replacing a large containment penetration, cutting a large construction opening in the containment pressure boundary to replace steam generators, reactor vessel heads, pressurizers, or other major equipment; or other similar modification is considered a major containment modification. When applying IWE-5000 to Class MC pressure-retaining components, any major containment modification or repair/replacement must be followed by a Type A test to provide assurance of both containment structural integrity and leak-tight integrity prior to returning to service, in accordance with 10 CFR part 50, Appendix J, Option A or Option B on which the applicant's or licensee's Containment Leak-Rate Testing Program is based. When applying IWE-5000, if a Type A, B, or C Test is performed, the test pressure and acceptance standard for the test must be in accordance with 10 CFR part 50, Appendix J.

(x) Section XI condition: Quality assurance. When applying Section XI editions and addenda later than the 1989 Edition, the requirements of NQA-1, "Quality Assurance Requirements for Nuclear Facilities," 1979 Addenda through the 1989 Edition, are acceptable as permitted by IWA-1400 of Section XI, if the licensee uses its 10 CFR part 50, Appendix B, quality assurance program, in conjunction with Section XI requirements. Commitments contained in the licensee's quality assurance program description that are more stringent than those contained in NQA-1 must govern Section XI activities. Further, where NQA-1 and Section XI do not address the commitments contained in the licensee's Appendix B quality assurance program description, the commitments must be applied to Section XI activities.

(xi) [Reserved]

(xii) Section XI condition: Underwater welding. The provisions in IWA-4660, "Underwater Welding," of Section XI, 1997 Addenda through the latest edition and addenda incorporated by reference in paragraph (a)(1)(ii) of this section, are not approved for use on irradiated material.

(xiii) [Reserved]

(xiv) Section XI condition: Appendix VIII personnel qualification. All personnel qualified for performing ultrasonic examinations in accordance with Appendix VIII must receive 8 hours of annual hands-on training on specimens that contain cracks. Licensees applying the 1999 Addenda through the latest edition and addenda incorporated by reference in paragraph (a)(1)(ii) of this section may use the annual practice requirements in VII-4240 of Appendix VII of Section XI in place of the 8 hours of annual hands-on training provided that the supplemental practice is performed on material or welds that contain cracks, or by analyzing prerecorded data from material or welds that contain cracks. In either case, training must be completed no earlier than 6 months prior to performing ultrasonic examinations at a licensee's facility.

(xv) Section XI condition: Appendix VIII specimen set and qualification requirements. Licensees using Appendix VIII in the 1995 Edition through the 2001 Edition of the ASME Boiler and Pressure Vessel Code may elect to comply with all of the provisions in paragraphs (b)(2)(xv)(A) through (M) of this section. exceptfor paragraph (b)(2)(xy)(F) of this section, which may be used at the licensee's option. Licensees using editions and addenda after 2001 Edition through the 2006 Addenda must use the 2001 Edition of Appendix VIII and may elect to comply with all of the provisions in paragraphs (b)(2)(xv)(A) through (M) of this section, except for paragraph (b)(2)(xv)(F)of this section, which may be used at the licensee's option.

(A) Specimen set and qualification: First provision. When applying Supplements 2, 3, and 10 to Appendix VIII, the following examination coverage criteria requirements must be used:

(1) Piping must be examined in two axial directions, and when examination

in the circumferential direction is required, the circumferential examination must be performed in two directions, provided access is available. Dissimilar metal welds must be examined axially and circumferentially.

(2) Where examination from both sides is not possible, full coverage credit may be claimed from a single side for ferritic welds. Where examination from both sides is not possible on austenitic welds or dissimilar metal welds, full coverage credit from a single side may be claimed only after completing a successful single-sided Appendix VIII demonstration using flaws on the opposite side of the weld. Dissimilar metal weld qualifications must be demonstrated from the austenitic side of the weld, and the qualification may be expanded for austenitic welds with no austenitic sides using a separate addon performance demonstration. Dissimilar metal welds may be examined from either side of the weld.

(B) Specimen set and qualification: Second provision. The following conditions must be used in addition to the requirements of Supplement 4 to Appendix VIII:

(1) Paragraph 3.1, Detection acceptance criteria—Personnel are qualified for detection if the results of the performance demonstration satisfy the detection requirements of ASME Section XI, Appendix VIII, Table VIII–S4–1, and no flaw greater than 0.25 inch throughwall dimension is missed.

(2) Paragraph 1.1(c), Detection test matrix—Flaws smaller than the 50 percent of allowable flaw size, as defined in IWB-3500, need not be included as detection flaws. For procedures applied from the inside surface, use the minimum thickness specified in the scope of the procedure to calculate a/t. For procedures applied from the outside surface, the actual thickness of the test specimen is to be used to calculate a/t.

(C) Specimen set and qualification: Third provision. When applying Supplement 4 to Appendix VIII, the following conditions must be used:

(1) A depth sizing requirement of 0.15 inch RMS must be used in lieu of the requirements in Subparagraphs 3.2(a)and 3.2(c), and a length sizing requirement of 0.75 inch RMS must be used in 10 CFR Ch. I (1–1–16 Edition)

lieu of the requirement in Subparagraph 3.2(b).

(2) In lieu of the location acceptance criteria requirements of Subparagraph 2.1(b), a flaw will be considered detected when reported within 1.0 inch or 10 percent of the metal path to the flaw, whichever is greater, of its true location in the X and Y directions.

(3) In lieu of the flaw type requirements of Subparagraph 1.1(e)(1), a minimum of 70 percent of the flaws in the detection and sizing tests must be cracks. Notches, if used, must be limited by the following:

(*i*) Notches must be limited to the case where examinations are performed from the clad surface.

(*ii*) Notches must be semielliptical with a tip width of less than or equal to 0.010 inches.

(iii) Notches must be perpendicular to the surface within ± 2 degrees.

(4) In lieu of the detection test matrix requirements in paragraphs 1.1(e)(2) and 1.1(e)(3), personnel demonstration test sets must contain a representative distribution of flaw orientations, sizes, and locations.

(D) Specimen set and qualification: Fourth provision. The following conditions must be used in addition to the requirements of Supplement 6 to Appendix VIII:

(1) Paragraph 3.1, Detection Acceptance Criteria—Personnel are qualified for detection if:

(i) No surface connected flaw greater than 0.25 inch through-wall has been missed.

(*ii*) No embedded flaw greater than 0.50 inch through-wall has been missed.

(2) Paragraph 3.1, Detection Acceptance Criteria—For procedure qualification, all flaws within the scope of the procedure are detected.

(3) Paragraph 1.1(b) for detection and sizing test flaws and locations—Flaws smaller than the 50 percent of allowable flaw size, as defined in IWB-3500, need not be included as detection flaws. Flaws that are less than the allowable flaw size, as defined in IWB-3500, may be used as detection and sizing flaws.

(4) Notches are not permitted.

(E) Specimen set and qualification: Fifth provision. When applying Supplement 6 to Appendix VIII, the following conditions must be used:

(1) A depth sizing requirement of 0.25 inch RMS must be used in lieu of the requirements of subparagraphs 3.2(a), 3.2(c)(2), and 3.2(c)(3).

(2) In lieu of the location acceptance criteria requirements in Subparagraph 2.1(b), a flaw will be considered detected when reported within 1.0 inch or 10 percent of the metal path to the flaw, whichever is greater, of its true location in the X and Y directions.

(3) In lieu of the length sizing criteria requirements of Subparagraph 3.2(b), a length sizing acceptance criteria of 0.75 inch RMS must be used.

(4) In lieu of the detection specimen requirements in Subparagraph 1.1(e)(1), a minimum of 55 percent of the flaws must be cracks. The remaining flaws may be cracks or fabrication type flaws, such as slag and lack of fusion. The use of notches is not allowed.

(5) In lieu of paragraphs 1.1(e)(2) and 1.1(e)(3) detection test matrix, personnel demonstration test sets must contain a representative distribution of flaw orientations, sizes, and locations.

(F) Specimen set and qualification: Sixth provision. The following conditions may be used for personnel qualification for combined Supplement 4 to Appendix VIII and Supplement 6 to Appendix VIII qualification. Licensees choosing to apply this combined qualification must apply all of the provisions of Supplements 4 and 6 including the following conditions:

(1) For detection and sizing, the total number of flaws must be at least 10. A minimum of 5 flaws must be from Supplement 4, and a minimum of 50 percent of the flaws must be from Supplement 6. At least 50 percent of the flaws in any sizing must be cracks. Notches are not acceptable for Supplement 6.

(2) Examination personnel are qualified for detection and length sizing when the results of any combined performance demonstration satisfy the acceptance criteria of Supplement 4 to Appendix VIII.

(3) Examination personnel are qualified for depth sizing when Supplement 4 to Appendix VIII and Supplement 6 to Appendix VIII flaws are sized within the respective acceptance criteria of those supplements.

(G) Specimen set and qualification: Seventh provision. When applying Supple-

ment 4 to Appendix VIII, Supplement 6 to Appendix VIII, or combined Supplement 4 and Supplement 6 qualification, the following additional conditions must be used, and examination coverage must include:

(1) The clad-to-base-metal-interface, including a minimum of 15 percent T (measured from the clad-to-base-metalinterface), must be examined from four orthogonal directions using procedures and personnel qualified in accordance with Supplement 4 to Appendix VIII.

(2) If the clad-to-base-metal-interface procedure demonstrates detectability of flaws with a tilt angle relative to the weld centerline of at least 45 degrees, the remainder of the examination volume is considered fully examined if coverage is obtained in one parallel and one perpendicular direction. This must be accomplished using a procedure and personnel qualified for single-side examination in accordance with Supplement 6. Subsequent examinations of this volume may be performed using examination techniques qualified for a tilt angle of at least 10 degrees.

(3) The examination volume not addressed by paragraph (b)(2)(xv)(G)(1) of this section is considered fully examined if coverage is obtained in one parallel and one perpendicular direction, using a procedure and personnel qualified for single sided examination when the conditions in paragraph (b)(2)(xv)(G)(2) are met.

(H) Specimen set and qualification: Eighth provision. When applying Supplement 5 to Appendix VIII, at least 50 percent of the flaws in the demonstration test set must be cracks and the maximum misorientation must be demonstrated with cracks. Flaws in nozzles with bore diameters equal to or less than 4 inches may be notches.

(I) Specimen set and qualification: Ninth provision. When applying Supplement 5, Paragraph (a), to Appendix VIII, the number of false calls allowed must be D/10, with a maximum of 3, where D is the diameter of the nozzle. (J) [Reserved]

(K) Specimen set and qualification: Eleventh provision. When performing nozzle-to-vessel weld examinations, the following conditions must be used when the requirements contained in Supplement 7 to Appendix VIII are applied for nozzle-to-vessel welds in conjunction with Supplement 4 to Appendix VIII, Supplement 6 to Appendix VIII, or combined Supplement 4 and Supplement 6 qualification.

(1) For examination of nozzle-to-vessel welds conducted from the bore, the following conditions are required to qualify the procedures, equipment, and personnel:

(i) For detection, a minimum of four flaws in one or more full-scale nozzle mock-ups must be added to the test set. The specimens must comply with Supplement 6, paragraph 1.1, to Appendix VIII, except for flaw locations specified in Table VIII S6-1. Flaws may be notches, fabrication flaws, or cracks. Seventy-five (75) percent of the flaws must be cracks or fabrication flaws. Flaw locations and orientations must be selected from the choices shown in paragraph (b)(2)(xv)(K)(4) of this section, Table VIII-S7-1-Modified, with the exception that flaws in the outer eighty-five (85) percent of the weld need not be perpendicular to the weld. There may be no more than two flaws from each category, and at least one subsurface flaw must be included.

(*ii*) For length sizing, a minimum of four flaws as in paragraph (b)(2)(xv)(K)(1)(*i*) of this section must be included in the test set. The length sizing results must be added to the results of combined Supplement 4 to Appendix VIII and Supplement 6 to Appendix VIII. The combined results must meet the acceptance standards contained in paragraph (b)(2)(xv)(E)(3) of this section.

(iii) For depth sizing, a minimum of four flaws asin paragraph (b)(2)(xv)(K)(1)(i) of this section must be included in the test set. Their depths must be distributed over the ranges of Supplement 4, Paragraph 1.1, to Appendix VIII, for the inner 15 percent of the wall thickness and Supplement 6, Paragraph 1.1, to Appendix VIII, for the remainder of the wall thickness. The depth sizing results must be combined with the sizing results from Supplement 4 to Appendix VIII for the inner 15 percent and to Supplement 6 to Appendix VIII for the remainder of the wall thickness. The combined results must meet the depth 10 CFR Ch. I (1-1-16 Edition)

sizing acceptance criteria contained in paragraphs (b)(2)(xv)(C)(1), (b)(2)(xv)(E)(1), and (b)(2)(xv)(F)(3) of this section.

(2) For examination of reactor pressure vessel nozzle-to-vessel welds conducted from the inside of the vessel, the following conditions are required:

(i) The clad-to-base-metal-interface and the adjacent examination volume to a minimum depth of 15 percent T (measured from the clad-to-base-metalinterface) must be examined from four orthogonal directions using a procedure and personnel qualified in accordance with Supplement 4 to Appendix VIII as conditioned by paragraphs (b)(2)(xv)(B) and (C) of this section.

(*ii*) When the examination volume defined in paragraph (b)(2)(xv)(K)(2)(i) of this section cannot be effectively examined in all four directions, the examination must be augmented by examination from the nozzle bore using a procedure and personnel qualified in accordance with paragraph (b)(2)(xv)(K)(1) of this section.

(iii) The remainder of the examination volume not covered by paragraph (b)(2)(xv)(K)(2)(ii) of this section or a combination of paragraphs (b)(2)(xy)(K)(2)(i) and (ii) of this section, must be examined from the nozzle bore using a procedure and personnel qualified in accordance with paragraph (b)(2)(xv)(K)(1) of this section, or from the vessel shell using a procedure and personnel qualified for single sided examination in accordance with Supplement 6 to Appendix VIII, as conditioned by paragraphs (b)(2)(xv)(D)through (G) of this section.

(3) For examination of reactor pressure vessel nozzle-to-shell welds conducted from the outside of the vessel, the following conditions are required:

(i) The clad-to-base-metal-interface and the adjacent metal to a depth of 15 percent T (measured from the clad-tobase-metal-interface) must be examined from one radial and two opposing circumferential directions using a procedure and personnel qualified in accordance with Supplement 4 to Appendix VIII, as conditioned by paragraphs (b)(2)(xv)(B) and (C) of this section, for examinations performed in the radial direction, and Supplement 5 to Appendix VIII, as conditioned by paragraph

(b)(2)(xv)(J) of this section, for examinations performed in the circumferential direction.

(*ii*) The examination volume not addressed by paragraph (b)(2)(xv)(K)(3)(i)of this section must be examined in a minimum of one radial direction using a procedure and personnel qualified for single sided examination in accordance with Supplement 6 to Appendix VIII, as conditioned by paragraphs (b)(2)(xv)(D)through (G) of this section.

(4) Table VIII-S7-1, "Flaw Locations and Orientations," Supplement 7 to Appendix VIII, is conditioned as follows:

TABLE VIII-S7-1-MODIFIED

[Flaw locations and orientations]

	Parallel to weld	Perpendicular to weld
Inner 15 percent	x	х
Outside Diameter Surface	X	
Subsurface	X	

(L) Specimen set and qualification: Twelfth provision. As a condition to the requirements of Supplement 8, Subparagraph 1.1(c), to Appendix VIII, notches may be located within one diameter of each end of the bolt or stud.

(M) Specimen set and qualification: Thirteenth provision. When implementing Supplement 12 to Appendix VIII, only the provisions related to the coordinated implementation of Supplement 3 to Supplement 2 performance demonstrations are to be applied.

(xvi) Section XI condition: Appendix VIII single side ferritic vessel and piping and stainless steel piping examinations. When applying editions and addenda prior to the 2007 Edition of Section XI, the following conditions apply.

(A) Ferritic and stainless steel piping examinations: First provision. Examinations performed from one side of a ferritic vessel weld must be conducted with equipment, procedures, and personnel that have demonstrated proficiency with single side examinations. To demonstrate equivalency to two sided examinations, the demonstration must be performed to the requirements of Appendix VIII, as conditioned by and this paragraph paragraphs (b)(2)(xv)(B) through (G) of this section, on specimens containing flaws with non-optimum sound energy reflecting characteristics or flaws similar to those in the vessel being examined.

(B) Ferritic and stainless steel piping examinations: Second provision. Examinations performed from one side of a ferritic or stainless steel pipe weld must be conducted with equipment, procedures, and personnel that have demonstrated proficiency with single side examinations. To demonstrate equivalency to two sided examinations, the demonstration must be performed to the requirements of Appendix VIII, as conditioned by this paragraph and paragraph (b)(2)(xv)(A) of this section.

(xvii) Section XI condition: Reconciliation of quality requirements. When purchasing replacement items, in addition to the reconciliation provisions of IWA-4200, 1995 Addenda through 1998 Edition, the replacement items must be purchased, to the extent necessary, in accordance with the licensee's quality assurance program description required by 10 CFR 50.34(b)(6)(ii).

(xviii) Section XI condition: NDE personnel certification. (A) NDE personnel certification: First provision. Level I and II nondestructive examination personnel must be recertified on a 3-year interval in lieu of the 5-year interval specified in the 1997 Addenda and 1998 Edition of IWA-2314, and IWA-2314(a) and IWA-2314(b) of the 1999 Addenda through the latest edition and addenda incorporated by reference in paragraph (a)(1)(ii) of this section.

(B) NDE personnel certification: Second provision. When applying editions and addenda prior to the 2007 Edition of Section XI, paragraph IWA-2316 may only be used to qualify personnel that observe leakage during system leakage and hydrostatic tests conducted in accordance with IWA 5211(a) and (b).

(C) NDE personnel certification: Third provision. When applying editions and

addenda prior to the 2005 Addenda of Section XI, licensee's qualifying visual examination personnel for VT-3 visual examination under paragraph IWA-2317 of Section XI must demonstrate the proficiency of the training by administering an initial qualification examination and administering subsequent examinations on a 3-year interval.

(xix) Section XI condition: Substitution of alternative methods. The provisions for substituting alternative examination methods, a combination of methods, or newly developed techniques in the 1997 Addenda of IWA-2240 must be applied when using the 1998 Edition through the 2004 Edition of Section XI of the ASME BPV Code. The provisions in IWA-4520(c), 1997 Addenda through the 2004 Edition, allowing the substitution of alternative methods, a combination of methods, or newly developed techniques for the methods specified in the Construction Code, are not approved for use. The provisions in IWA-4520(b)(2) and IWA-4521 of the 2008 Addenda through the latest edition and addenda incorporated by reference in paragraph (a)(1)(ii) of this section, allowing the substitution of ultrasonic examination for radiographic examination specified in the Construction Code. are not approved for use.

(xx) Section XI condition: System leakage tests-(A) System leakage tests: First provision. When performing system leakage tests in accordance with IWA-5213(a), 1997 through 2002 Addenda, the licensee must maintain a 10-minute hold time after test pressure has been reached for Class 2 and Class 3 components that are not in use during normal operating conditions. No hold time is required for the remaining Class 2 and Class 3 components provided that the system has been in operation for at least 4 hours for insulated components or 10 minutes for uninsulated components.

(B) System leakage tests: Second provision. The NDE provision in IWA-4540(a)(2) of the 2002 Addenda of Section XI must be applied when performing system leakage tests after repair and replacement activities performed by welding or brazing on a pressure retaining boundary using the 2003 Addenda through the latest edition and 10 CFR Ch. I (1-1-16 Edition)

addenda incorporated by reference in paragraph (a)(1)(ii) of this section.

(xxi) Section XI condition: Table IWB-2500–1 examination requirements. (A) Table IWB-2500-1 examination requirements: First provision. The provisions of Table IWB 2500-1, Examination Category B-D, Full Penetration Welded Nozzles in Vessels, Items B3.40 and B3.60 (Inspection Program A) and Items B3.120 and B3.140 (Inspection Program B) of the 1998 Edition must be applied when using the 1999 Addenda through the latest edition and addenda incorporated by reference in paragraph (a)(1)(ii) of this section. A visual examination with magnification that has a resolution sensitivity to detect a 1-mil width wire or crack, utilizing the allowable flaw length criteria in Table IWB-3512-1, 1997 Addenda through the latest edition and addenda incorporated by reference in paragraph (a)(1)(ii) of this section, with a limiting assumption on the flaw aspect ratio (i.e., a/l = 0.5), may be performed instead of an ultrasonic examination.

(B) [Reserved]

(xxii) Section XI condition: Surface examination. The use of the provision in IWA-2220, "Surface Examination," of Section XI, 2001 Edition through the latest edition and addenda incorporated by reference in paragraph (a)(1)(ii) of this section, that allows use of an ultrasonic examination method is prohibited.

(xxiii) Section XI condition: Evaluation of thermally cut surfaces. The use of the provisions for eliminating mechanical processing of thermally cut surfaces in IWA-4461.4.2 of Section XI, 2001 Edition through the latest edition and addenda incorporated by reference in paragraph (a)(1)(ii) of this section, is prohibited.

(xxiv) Section XI condition: Incorporation of the performance demonstration initiative and addition of ultrasonic examination criteria. The use of Appendix VIII and the supplements to Appendix VIII and Article I-3000 of Section XI of the ASME BPV Code, 2002 Addenda through the 2006 Addenda, is prohibited.

(xxv) Section XI condition: Mitigation of defects by modification. The use of the provisions in IWA-4340, "Mitigation of Defects by Modification," Section XI, 2001 Edition through the latest edition

and addenda incorporated by reference in paragraph (a)(1)(ii) of this section are prohibited.

(xxvi) Section XI condition: Pressure testing Class 1, 2 and 3 mechanical joints. The repair and replacement activity provisions in IWA-4540(c) of the 1998 Edition of Section XI for pressure testing Class 1, 2, and 3 mechanical joints must be applied when using the 2001 Edition through the latest edition and addenda incorporated by reference in paragraph (a)(1)(ii) of this section.

(xxvii) Section XI condition: Removal of insulation. When performing visual examination in accordance with IWA-5242 of Section XI of the ASME BPV Code, 2003 Addenda through the 2006 Addenda, or IWA-5241 of the 2007 Edition through the latest edition and addenda incorporated by reference in paragraph (a)(1)(ii) of this section, insulation must be removed from 17-4 PH or 410 stainless steel studs or bolts aged at a temperature below 1100 °F or having a Rockwell Method C hardness value above 30, and from A-286 stainless steel studs or bolts preloaded to 100,000 pounds per square inch or higher.

(xxviii) Section XI condition: Analysis of flaws. Licensees using ASME BPV Code, Section XI, Appendix A, must use the following conditions when implementing Equation (2) in A-4300(b)(1):

For $R<0,\,\Delta K_{I}$ depends on the crack depth (a), and the flow stress (σ_{f}) . The flow stress is defined by σ_{f} = $1/2(\sigma_{ys} + \sigma_{ut})$, where σ_{ys} is the yield strength and σ_{ut} is the ultimate tensilestrength in units ksi (MPa) and (a) is in units in. (mm). For $-2 \leq R \leq 0$ and $K_{max} - K_{min} \leq 0.8 \times 1.12 \, \sigma_{f} \sqrt{(\pi a)}, \, S = 1$ and $\Delta K_{I} = K_{max}$. For R < -2 and $K_{max} - K_{min} \leq 0.8 \times 1.12 \, \sigma_{f} \sqrt{(\pi a)}, \, S = 1$ and $\Delta K_{I} = 0$ and $K_{max} - K_{min} > 0.8 \times 1.12 \, \sigma_{f} \sqrt{(\pi a)}, \, S = 1$ and $\Delta K_{I} = K_{max} - K_{min} > 0.8 \times 1.12 \, \sigma_{f} \sqrt{(\pi a)}, \, S = 1$ and $\Delta K_{I} = K_{max} - K_{min} > 0.8 \times 1.12 \, \sigma_{f} \sqrt{(\pi a)}, \, S = 1$ and $\Delta K_{I} = K_{max} - K_{min} > 0.8 \times 1.12 \, \sigma_{f} \sqrt{(\pi a)}, \, S = 1$ and $\Delta K_{I} = K_{max} - K_{min} > 0.8 \times 1.12 \, \sigma_{f} \sqrt{(\pi a)}, \, S = 1$ and $\Delta K_{I} = K_{max} - K_{min}$.

(xxix) Section XI condition: Nonmandatory Appendix R. Nonmandatory Appendix R, "Risk-Informed Inspection Requirements for Piping," of Section XI, 2005 Addenda through the latest edition and addenda incorporated by reference in paragraph (a)(1)(ii) of this section, may not be implemented without prior NRC authorization of the proposed alternative in accordance with paragraph (z) of this section.

(3) Conditions on ASME OM Code. As used in this section, references to the

OM Code refer to the ASME Code for Operation and Maintenance of Nuclear Power Plants, Subsections ISTA, ISTB, ISTC, ISTD, Mandatory Appendices I and II, and Nonmandatory Appendices A through H and J, including the 1995 Edition through the 2006 Addenda, subject to the following conditions:

(i) OM condition: Quality assurance. When applying editions and addenda of the OM Code, the requirements of NQA-1, "Quality Assurance Require-ments for Nuclear Facilities," 1979 Addenda, are acceptable as permitted by ISTA 1.4 of the 1995 Edition through 1997 Addenda or ISTA-1500 of the 1998 Edition through the latest edition and addenda incorporated by reference in paragraph (a)(1)(iv) of this section, provided the licensee uses its 10 CFR part 50, Appendix B, quality assurance program in conjunction with the OM Code requirements. Commitments contained in the licensee's quality assurance program description that are more stringent than those contained in NQA-1 govern OM Code activities. If NQA-1 and the OM Code do not address the commitments contained in the licensee's Appendix B quality assurance program description, the commitments must be applied to OM Code activities.

(ii) OM condition: Motor-Operated Valve (MOV) testing. Licensees must comply with the provisions for MOV testing in OM Code ISTC 4.2, 1995 Edition with the 1996 and 1997 Addenda, or ISTC-3500, 1998 Edition through the latest edition and addenda incorporated by reference in paragraph (a)(1)(iv) of this section, and must establish a program to ensure that motor-operated valves continue to be capable of performing their design basis safety functions.

(iii) [Reserved]

(iv) OM condition: Check values (Appendix II). Licensees applying Appendix II, "Check Value Condition Monitoring Program," of the OM Code, 1995 Edition with the 1996 and 1997 Addenda, must satisfy the requirements of (b)(3)(iv)(A) through (C) of this section. Licensees applying Appendix II, 1998 Edition through the 2002 Addenda, must satisfy the requirements of (b)(3)(iv)(A), (B), and (D) of this section.

(A) *Check valves: First provision.* Valve opening and closing functions must be

demonstrated when flow testing or examination methods (nonintrusive, or disassembly and inspection) are used;

(B) Check valves: Second provision. The initial interval for tests and associated examinations may not exceed two fuel cycles or 3 years, whichever is longer; any extension of this interval may not exceed one fuel cycle per extension with the maximum interval not to exceed 10 years. Trending and evaluation of existing data must be used to reduce or extend the time interval between tests.

(C) *Check valves: Third provision.* If the Appendix II condition monitoring program is discontinued, then the requirements of ISTC 4.5.1 through 4.5.4 must be implemented.

(D) Check valves: Fourth provision. The applicable provisions of subsection ISTC must be implemented if the Appendix II condition monitoring program is discontinued.

(v) OM condition: Snubbers ISTD. Article IWF-5000, "Inservice Inspection Requirements for Snubbers," of the ASME BPV Code, Section XI, must be used when performing inservice inspection examinations and tests of snubbers at nuclear power plants, except as conditioned in paragraphs (b)(3)(v)(A) and (B) of this section.

(A) Snubbers: First provision. Licensees may use Subsection ISTD. "Preservice and Inservice Examination and Testing of Dynamic Restraints (Snubbers) in Light-Water Reactor Power Plants," ASME OM Code, 1995 Edition through the latest edition and addenda incorporated by reference in paragraph (a)(1)(iv) of this section, in place of the requirements for snubbers in the editions and addenda up to the 2005 Addenda of the ASME BPV Code, Section XI, IWF-5200(a) and (b) and IWF-5300(a) and (b), by making appropriate changes to their technical specifications or licensee-controlled documents. Preservice and inservice examinations must be performed using the VT-3 visual examination method described in IWA-2213.

(B) *Snubbers: Second provision*. Licensees must comply with the provisions for examining and testing snubbers in Subsection ISTD of the ASME OM Code and make appropriate changes to their technical specifications or licensee10 CFR Ch. I (1-1-16 Edition)

controlled documents when using the 2006 Addenda and later editions and addenda of Section XI of the ASME BPV Code.

(vi) OM condition: Exercise interval for manual valves. Manual valves must be exercised on a 2-year interval rather than the 5-year interval specified in paragraph ISTC-3540 of the 1999 through the 2005 Addenda of the ASME OM Code, provided that adverse conditions do not require more frequent testing.

(4) Conditions on Design, Fabrication, and Materials Code Cases. Each manufacturing license, standard design approval, and design certification application under part 52 of this chapter is subject to the following conditions. Licensees may apply the ASME BPV Code Cases listed in NRC Regulatory Guide 1.84, Revision 36, without prior NRC approval, subject to the following conditions:

(i) Design, Fabrication, and Materials Code Case condition: Applying Code Cases. When an applicant or licensee initially applies a listed Code Case, the applicant or licensee must apply the most recent version of that Code Case incorporated by reference in paragraph (a) of this section.

(ii) Design, Fabrication, and Materials Code Case condition: Applying different revisions of Code Cases. If an applicant or licensee has previously applied a Code Case and a later version of the Code Case is incorporated by reference in paragraph (a) of this section, the applicant or licensee may continue to apply the previous version of the Code Case as authorized or may apply the later version of the Code Case, including any NRC-specified conditions placed on its use, until it updates its Code of Record for the component being constructed.

(iii) Design, Fabrication, and Materials Code Case condition: Applying annulled Code Cases. Application of an annulled Code Case is prohibited unless an applicant or licensee applied the listed Code Case prior to it being listed as annulled in Regulatory Guide 1.84. If an applicant or licensee has applied a listed Code Case that is later listed as annulled in Regulatory Guide 1.84, the applicant or licensee may continue to apply the Code Case until it updates its

Code of Record for the component being constructed.

(5) Conditions on inservice inspection Code Cases. Licensees may apply the ASME BPV Code Cases listed in Regulatory Guide 1.147, Revision 17, without prior NRC approval, subject to the following:

(i) *ISI Code Case condition: Applying Code Cases.* When a licensee initially applies a listed Code Case, the licensee must apply the most recent version of that Code Case incorporated by reference in paragraph (a) of this section.

(ii) ISI Code Case condition: Applying different revisions of Code Cases. If a licensee has previously applied a Code Case and a later version of the Code Case is incorporated by reference in paragraph (a) of this section, the licensee may continue to apply, to the end of the current 120-month interval, the previous version of the Code Case. as authorized, or may apply the later version of the Code Case, including any NRC-specified conditions placed on its use. Licensees who choose to continue use of the Code Case during subsequent 120-month ISI program intervals will be required to implement the latest version incorporated by reference into 10 CFR 50.55a as listed in Tables 1 and 2 of Regulatory Guide 1.147, Revision 17.

(iii) ISI Code Case condition: Applying annulled Code Cases. Application of an annulled Code Case is prohibited unless a licensee previously applied the listed Code Case prior to it being listed as annulled in Regulatory Guide 1.147. If a licensee has applied a listed Code Case that is later listed as annulled in Regulatory Guide 1.147, the licensee may continue to apply the Code Case to the end of the current 120-month interval.

(6) Conditions on Operation and Maintenance of Nuclear Power Plants Code Cases. Licensees may apply the ASME Operation and Maintenance Code Cases listed in Regulatory Guide 1.192, Revision 1, without prior NRC approval, subject to the following:

(i) *OM Code Case condition: Applying Code Cases.* When a licensee initially applies a listed Code Case, the licensee must apply the most recent version of that Code Case incorporated by reference in paragraph (a) of this section.

(ii) OM Code Case condition: Applying different revisions of Code Cases. If a licensee has previously applied a Code Case and a later version of the Code Case is incorporated by reference in paragraph (a) of this section, the licensee may continue to apply, to the end of the current 120-month interval, the previous version of the Code Case, as authorized, or may apply the later version of the Code Case, including any NRC-specified conditions placed on its use. Licensees who choose to continue use of the Code Case during subsequent 120-month ISI program intervals will be required to implement the latest version incorporated by reference into 10 CFR 50.55a as listed in Tables 1 and 2 of Regulatory Guide 1.192, Revision 1.

(iii) OM Code Case condition: Applying annulled Code Cases. Application of an annulled Code Case is prohibited unless a licensee previously applied the listed Code Case prior to it being listed as annulled in Regulatory Guide 1.192. If a licensee has applied a listed Code Case that is later listed as annulled in Regulatory Guide 1.192, the licensee may continue to apply the Code Case to the end of the current 120-month interval.

(c) Reactor coolant pressure boundary. Systems and components of boiling and pressurized water-cooled nuclear power reactors must meet the requirements of the ASME BPV Code as specified in this paragraph. Each manufacturing license, standard design approval, and design certification application under part 52 of this chapter and each combined license for a utilization facility is subject to the following conditions:

(1) Standards requirement for reactor coolant pressure boundary components. Components that are part of the reactor coolant pressure boundary must meet the requirements for Class 1 components in Section III^{1,4} of the ASME BPV Code, except as provided in paragraphs (c)(2) through (4) of this section.

(2) Exceptions to reactor coolant pressure boundary standards requirement. Components that are connected to the reactor coolant system and are part of the reactor coolant pressure boundary as defined in $\S50.2$ need not meet the requirements of paragraph (c)(1) of this section, provided that:

(i) Exceptions: Shutdown and cooling capability. In the event of postulated

failure of the component during normal reactor operation, the reactor can be shut down and cooled down in an orderly manner, assuming makeup is provided by the reactor coolant makeup system; or

(ii) Exceptions: Isolation capability. The component is or can be isolated from the reactor coolant system by two valves in series (both closed, both open, or one closed and the other open). Each open valve must be capable of automatic actuation and, assuming the other valve is open, its closure time must be such that, in the event of postulated failure of the component during normal reactor operation, each valve remains operable and the reactor can be shut down and cooled down in an orderly manner, assuming makeup is provided by the reactor coolant makeup system only.

(3) Applicable Code and Code Cases and conditions on their use. The Code edition, addenda, and optional ASME Code Cases to be applied to components of the reactor coolant pressure boundary must be determined by the provisions of paragraph NCA-1140, Subsection NCA of Section III of the ASME BPV Code, subject to the following conditions:

(i) Reactor coolant pressure boundary condition: Code edition and addenda. The edition and addenda applied to a component must be those that are incorporated by reference in paragraph (a)(1)(i) of this section;

(ii) Reactor coolant pressure boundary condition: Earliest edition and addenda for pressure vessel. The ASME Code provisions applied to the pressure vessel may be dated no earlier than the summer 1972 Addenda of the 1971 Edition;

(iii) Reactor coolant pressure boundary condition: Earliest edition and addenda for piping, pumps, and valves. The ASME Code provisions applied to piping, pumps, and valves may be dated no earlier than the Winter 1972 Addenda of the 1971 Edition; and

(iv) Reactor coolant pressure boundary condition: Use of Code Cases. The optional Code Cases applied to a component must be those listed in NRC Regulatory Guide 1.84 that is incorporated by reference in paragraph (a)(3)(i) of this section. 10 CFR Ch. I (1–1–16 Edition)

(4) Standards requirement for components in older plants. For a nuclear power plant whose construction permit was issued prior to May 14, 1984, the applicable Code edition and addenda for a component of the reactor coolant pressure boundary continue to be that Code edition and addenda that were required by Commission regulations for such a component at the time of issuance of the construction permit.

(d) Quality Group B components. Systems and components of boiling and pressurized water-cooled nuclear power reactors must meet the requirements of the ASME BPV Code as specified in this paragraph. Each manufacturing license, standard design approval, and design certification application under part 52 of this chapter, and each combined license for a utilization facility is subject to the following conditions:

(1) Standards requirement for Quality Group B components. For a nuclear power plant whose application for a construction permit under this part, or a combined license or manufacturing license under part 52 of this chapter, docketed after May 14, 1984, or for an application for a standard design approval or a standard design certification docketed after May 14, 1984, components classified Quality Group B^7 must meet the requirements for Class 2 Components in Section III of the ASME BPV Code.

(2) Quality Group B: Applicable Code and Code Cases and conditions on their use. The Code edition, addenda, and optional ASME Code Cases to be applied to the systems and components identified in paragraph (d)(1) of this section must be determined by the rules of paragraph NCA-1140, Subsection NCA of Section III of the ASME BPV Code, subject to the following conditions:

(i) Quality Group B condition: Code edition and addenda. The edition and addenda must be those that are incorporated by reference in paragraph (a)(1)(i) of this section;

(ii) Quality Group B condition: Earliest edition and addenda for components. The ASME Code provisions applied to the systems and components may be dated no earlier than the 1980 Edition; and

(iii) Quality Group B condition: Use of Code Cases. The optional Code Cases

must be those listed in NRC Regulatory Guide 1.84 that is incorporated by reference in paragraph (a)(3)(i) of this section.

(e) Quality Group C components. Systems and components of boiling and pressurized water-cooled nuclear power reactors must meet the requirements of the ASME BPV Code as specified in this paragraph. Each manufacturing license, standard design approval, and design certification application under part 52 of this chapter and each combined license for a utilization facility is subject to the following conditions.

(1) Standards requirement for Quality Group C components. For a nuclear power plant whose application for a construction permit under this part, or a combined license or manufacturing license under part 52 of this chapter, docketed after May 14, 1984, or for an application for a standard design approval or a standard design certification docketed after May 14, 1984, components classified Quality Group C⁷ must meet the requirements for Class 3 components in Section III of the ASME BPV Code.

(2) Quality Group C applicable Code and Code Cases and conditions on their use. The Code edition, addenda, and optional ASME Code Cases to be applied to the systems and components identified in paragraph (e)(1) of this section must be determined by the rules of paragraph NCA-1140, subsection NCA of Section III of the ASME BPV Code, subject to the following conditions:

(i) Quality Group C condition: Code edition and addenda. The edition and addenda must be those incorporated by reference in paragraph (a)(1)(i) of this section;

(ii) Quality Group C condition: Earliest edition and addenda for components. The ASME Code provisions applied to the systems and components may be dated no earlier than the 1980 Edition; and

(iii) Quality Group C condition: Use of Code Cases. The optional Code Cases must be those listed in NRC Regulatory Guide 1.84 that is incorporated by reference in paragraph (a)(3)(i) of this section.

(f) Inservice testing requirements. Systems and components of boiling and pressurized water-cooled nuclear power reactors must meet the requirements

of the ASME BPV Code and ASME Code for Operation and Maintenance of Nuclear Power Plants as specified in this paragraph. Each operating license for a boiling or pressurized watercooled nuclear facility is subject to the following conditions. Each combined license for a boiling or pressurized water-cooled nuclear facility is subject to the following conditions, but the conditions in paragraphs (f)(4) through (6) of this section must be met only after the Commission makes the finding under §52.103(g) of this chapter. Requirements for inservice inspection of Class 1, Class 2, Class 3, Class MC, and Class CC components (including their supports) are located in §50.55a(g).

(1) Inservice testing requirements for older plants (pre-1971 CPs). For a boiling or pressurized water-cooled nuclear power facility whose construction permit was issued prior to January 1, 1971, pumps and valves must meet the test requirements of paragraphs (f)(4) and (5) of this section to the extent practical. Pumps and valves that are part of the reactor coolant pressure boundary must meet the requirements applicable to components that are classified as ASME Code Class 1. Other pumps and valves that perform a function to shut down the reactor or maintain the reactor in a safe shutdown condition. mitigate the consequences of an accident, or provide overpressure protection for safety-related systems (in meeting the requirements of the 1986 Edition, or later, of the BPV or OM Code) must meet the test requirements applicable to components that are classified as ASME Code Class 2 or Class 3.

(2) Design and accessibility requirements for performing inservice testing in plants with CPs issued between 1971 and 1974. For a boiling or pressurized watercooled nuclear power facility whose construction permit was issued on or after January 1, 1971, but before July 1, 1974, pumps and valves that are classified as ASME Code Class 1 and Class 2 must be designed and provided with access to enable the performance of inservice tests for operational readiness set forth in editions and addenda of Section XI of the ASME BPV incorporated by reference in paragraph (a)(1)(ii) of this section (or the optional

ASME Code Cases listed in NRC Regulatory Guide 1.147, Revision 17, or Regulatory Guide 1.192, Revision 1, that are incorporated by reference in paragraphs (a)(3)(ii) and (iii) of this section, respectively) in effect 6 months before the date of issuance of the construction permit. The pumps and valves may meet the inservice test requirements set forth in subsequent editions of this Code and addenda that are incorporated by reference in paragraph (a)(1)(ii) of this section (or the optional ASME Code Cases listed in NRC Regulatory Guide 1.147, Revision 17; or Regulatory Guide 1.192, Revision 1, that are incorporated by reference in paragraphs (a)(3)(ii) and (iii) of this section, respectively), subject to the applicable conditions listed therein.

(3) Design and accessibility requirements for performing inservice testing in plants with CPs issued after 1974. For a boiling or pressurized water-cooled nuclear power facility whose construction permit under this part or design approval, design certification, combined license, or manufacturing license under part 52 of this chapter was issued on or after July 1, 1974:

(i)–(ii) [Reserved]

(iii) IST design and accessibility requirements: Class 1 pumps and valves. (A) Class 1 pumps and valves: First provision. In facilities whose construction permit was issued before November 22, 1999, pumps and valves that are classified as ASME Code Class 1 must be designed and provided with access to enable the performance of inservice testing of the pumps and valves for assessing operational readiness set forth in the editions and addenda of Section XI of the ASME BPV Code incorporated by reference in paragraph (a)(1)(ii) of this section (or the optional ASME Code Cases listed in NRC Regulatory Guide 1.147, Revision 17, or Regulatory Guide 1.192, Revision 1, that are incorporated by reference in paragraphs (a)(3)(ii) and (iii) of this section, respectively) applied to the construction of the particular pump or valve or the summer 1973 Addenda, whichever is later.

(B) Class 1 pumps and values: Second provision. In facilities whose construction permit under this part, or design certification, design approval, combined license, or manufacturing license

10 CFR Ch. I (1-1-16 Edition)

under part 52 of this chapter, issued on or after November 22, 1999, pumps and valves that are classified as ASME Code Class 1 must be designed and provided with access to enable the performance of inservice testing of the pumps and valves for assessing operational readiness set forth in editions and addenda of the ASME OM Code (or the optional ASME Code Cases listed in NRC Regulatory Guide 1.192, Revision 1, that are incorporated by reference in paragraph (a)(3)(iii) of this section), incorporated by reference in paragraph (a)(1)(iv) of this section at the time the construction permit, combined license, manufacturing license, design certification, or design approval is issued.

(iv) IST design and accessibility requirements: Class 2 and 3 pumps and valves. (A) Class 2 and 3 pumps and valves: First provision. In facilities whose construction permit was issued before November 22, 1999, pumps and valves that are classified as ASME Code Class 2 and Class 3 must be designed and be provided with access to enable the performance of inservice testing of the pumps and valves for assessing operational readiness set forth in the editions and addenda of Section XI of the ASME BPV Code incorporated by reference in paragraph (a)(1)(ii) of this section (or the optional ASME Code Cases listed in NRC Regulatory Guide 1.147, Revision 17, that are incorporated by reference in paragraph (a)(3)(ii) of this section) applied to the construction of the particular pump or valve or the Summer 1973 Addenda, whichever is later.

(B) Class 2 and 3 pumps and valves: Second provision. In facilities whose construction permit under this part, or design certification, design approval, combined license, or manufacturing license under part 52 of this chapter, issued on or after November 22, 1999, pumps and valves that are classified as ASME Code Class 2 and 3 must be designed and provided with access to enable the performance of inservice testing of the pumps and valves for assessing operational readiness set forth in editions and addenda of the ASME OM Code (or the optional ASME OM Code Cases listed in NRC Regulatory Guide 1.192, Revision 1, that are incorporated by reference in paragraph (a)(3)(iii) of

this section), incorporated by reference in paragraph (a)(1)(iv) of this section at the time the construction permit, combined license, or design certification is issued.

(v) IST design and accessibility requirements: Meeting later IST requirements. All pumps and valves may meet the test requirements set forth in subsequent editions of codes and addenda or portions thereof that are incorporated by reference in paragraph (a) of this section, subject to the conditions listed in paragraph (b) of this section.

(4) Inservice testing standards requirement for operating plants. Throughout the service life of a boiling or pressurized water-cooled nuclear power facility, pumps and valves that are classified as ASME Code Class 1, Class 2, and Class 3 must meet the inservice test requirements (except design and access provisions) set forth in the ASME OM Code and addenda that become effective subsequent to editions and addenda specified in paragraphs (f)(2) and (3) of this section and that are incorporated by reference in paragraph (a)(1)(iv) of this section, to the extent practical within the limitations of design, geometry, and materials of construction of the components.

(i) Applicable IST Code: Initial 120month interval. Inservice tests to verify operational readiness of pumps and valves, whose function is required for safety, conducted during the initial 120-month interval must comply with the requirements in the latest edition and addenda of the OM Code incorporated by reference in paragraph (a)(1)(iv) of this section on the date 12 months before the date of issuance of the operating license under this part, or 12 months before the date scheduled for initial loading of fuel under a combined license under part 52 of this chapter (or the optional ASME Code Cases listed in NRC Regulatory Guide 1.192, Revision 1, that is incorporated by reference in paragraph (a)(3)(iii) of this section, subject to the conditions listed in paragraph (b) of this section).

(ii) Applicable IST Code: Successive 120month intervals. Inservice tests to verify operational readiness of pumps and valves, whose function is required for safety, conducted during successive 120-month intervals must comply with the requirements of the latest edition and addenda of the OM Code incorporated by reference in paragraph (a)(1)(iv) of this section 12 months before the start of the 120-month interval (or the optional ASME Code Cases listed in NRC Regulatory Guide 1.147, Revision 17, or Regulatory Guide 1.192, Revision 1, that are incorporated by reference in paragraphs (a)(3)(ii) and (iii) of this section, respectively), subject to the conditions listed in paragraph (b) of this section.

(iii) [Reserved]

(iv) Applicable IST Code: Use of later Code editions and addenda. Inservice tests of pumps and valves may meet the requirements set forth in subsequent editions and addenda that are incorporated by reference in paragraph (a)(1)(iv) of this section, subject to the conditions listed in paragraph (b) of this section, and subject to NRC approval. Portions of editions or addenda may be used, provided that all related requirements of the respective editions or addenda are met.

(5) Requirements for updating IST programs—(i) IST program update: Applicable IST Code editions and addenda. The inservice test program for a boiling or pressurized water-cooled nuclear power facility must be revised by the licensee, as necessary, to meet the requirements of paragraph (f)(4) of this section.

(ii) IST program update: Conflicting IST Code requirements with technical specifications. If a revised inservice test program for a facility conflicts with the technical specifications for the facility, the licensee must apply to the Commission for amendment of the technical specifications to conform the technical specifications to the revised program. The licensee must submit this application, as specified in §50.4, at least 6 months before the start of the period during which the provisions become applicable, as determined by paragraph (f)(4) of this section.

(iii) IST program update: Notification of impractical IST Code requirements. If the licensee has determined that conformance with certain Code requirements is impractical for its facility, the licensee must notify the Commission and submit, as specified in §50.4, information to support the determination.

(iv) IST program update: Schedule for completing impracticality determinations. Where a pump or valve test requirement by the Code or addenda is determined to be impractical by the licensee and is not included in the revised inservice test program (as permitted by paragraph (f)(4) of this section), the basis for this determination must be submitted for NRC review and approval not later than 12 months after the expiration of the initial 120-month interval of operation from the start of facility commercial operation and each subsequent 120-month interval of operation during which the test is determined to be impractical.

(6) Actions by the Commission for evaluating impractical and augmented IST Code requirements—(i) Impractical IST requirements: Granting of relief. The Commission will evaluate determinations under paragraph (f)(5) of this section that code requirements are impractical. The Commission may grant relief and may impose such alternative requirements as it determines are authorized by law, will not endanger life or property or the common defense and security, and are otherwise in the public interest, giving due consideration to the burden upon the licensee that could result if the requirements were imposed on the facility.

(ii) Augmented IST requirements. The Commission may require the licensee to follow an augmented inservice test program for pumps and valves for which the Commission deems that added assurance of operational readiness is necessary.

(g) Inservice inspection requirements. Systems and components of boiling and pressurized water-cooled nuclear power reactors must meet the requirements of the ASME BPV Code as specified in this paragraph. Each operating license for a boiling or pressurized watercooled nuclear facility is subject to the following conditions. Each combined license for a boiling or pressurized water-cooled nuclear facility is subject to the following conditions, but the conditions in paragraphs (g)(4) through (6) of this section must be met only after the Commission makes the finding under §52.103(g) of this chapter. Re-

10 CFR Ch. I (1-1-16 Edition)

quirements for inservice testing of Class 1, Class 2, and Class 3 pumps and valves are located in §50.55a(f).

(1) Inservice inspection requirements for older plants (pre-1971 CPs). For a boiling or pressurized water-cooled nuclear power facility whose construction permit was issued before January 1, 1971. components (including supports) must meet the requirements of paragraphs (g)(4) and (g)(5) of this section to the extent practical. Components that are part of the reactor coolant pressure boundary and their supports must meet the requirements applicable to components that are classified as ASME Code Class 1. Other safety-related pressure vessels, piping, pumps and valves, and their supports must meet the requirements applicable to components that are classified as ASME Code Class 2 or Class 3.

(2) Design and accessibility requirements for performing inservice inspection in plants with CPs issued between 1971 and 1974. For a boiling or pressurized water-cooled nuclear power facility whose construction permit was issued on or after January 1, 1971, but before July 1, 1974, components (including supports) that are classified as ASME Code Class 1 and Class 2 must be designed and be provided with access to enable the performance of inservice examination of such components (including supports) and must meet the preservice examination requirements set forth in editions and addenda of Section III or Section XI of the ASME BPV Code incorporated by reference in paragraph (a)(1) of this section (or the optional ASME Code Cases listed in NRC Regulatory Guide 1.147, Revision 17, that are incorporated by reference in paragraph (a)(3)(ii) of this section) in effect 6 months before the date of issuance of the construction permit. The components (including supports) may meet the requirements set forth in subsequent editions and addenda of this Code that are incorporated by reference in paragraph (a) of this section (or the optional ASME Code Cases listed in NRC Regulatory Guide 1.147, Revision 17, that are incorporated by reference in paragraph (a)(3)(ii) of this section), subject to the applicable limitations and modifications.

(3) Design and accessibility requirements for performing inservice inspection in plants with CPs issued after 1974. For a boiling or pressurized water-cooled nuclear power facility, whose construction permit under this part, or design certification, design approval, combined license, or manufacturing license under part 52 of this chapter, was issued on or after July 1, 1974, the following are required:

(i) ISI design and accessibility requirements: Class 1 components and supports. Components (including supports) that are classified as ASME Code Class 1 must be designed and be provided with access to enable the performance of inservice examination of these components and must meet the preservice examination requirements set forth in the editions and addenda of Section III or Section XI of the ASME BPV Code incorporated by reference in paragraph (a)(1) of this section (or the optional ASME Code Cases listed in NRC Regulatory Guide 1.147, Revision 17, that are incorporated by reference in paragraph (a)(3)(ii) of this section) applied to the construction of the particular component.

(ii) ISI design and accessibility requirements: Class 2 and 3 components and supports. Components that are classified as ASME Code Class 2 and Class 3 and supports for components that are classified as ASME Code Class 1, Class 2, and Class 3 must be designed and provided with access to enable the performance of inservice examination of these components and must meet the preservice examination requirements set forth in the editions and addenda of Section XI of the ASME BPV Code incorporated by reference in paragraph (a)(1)(ii) of this section (or the optional ASME Code Cases listed in NRC Regulatory Guide 1.147, Revision 17, that are incorporated by reference in paragraph (a)(3)(ii) of this section) applied to the construction of the particular component.

(iii)–(iv) [Reserved]

(v) ISI design and accessibility requirements: Meeting later ISI requirements. All components (including supports) may meet the requirements set forth in subsequent editions of codes and addenda or portions thereof that are incorporated by reference in paragraph (a) of this section, subject to the conditions listed therein.

(4) Inservice inspection standards requirement for operating plants. Throughout the service life of a boiling or pressurized water-cooled nuclear power facility, components (including supports) that are classified as ASME Code Class 1, Class 2, and Class 3 must meet the requirements, except design and access provisions and preservice examination requirements, set forth in Section XI of editions and addenda of the ASME BPV Code (or ASME OM Code for snubber examination and testing) that become effective subsequent to editions specified in paragraphs (g)(2) and (3) of this section and that are incorporated by reference in paragraph (a)(1)(ii) or (iv)for snubber examination and testing of this section, to the extent practical within the limitations of design, geometry, and materials of construction of the components. Components that are classified as Class MC pressure retaining components and their integral attachments, and components that are classified as Class CC pressure retaining components and their integral attachments, must meet the requirements, except design and access provisions and preservice examination requirements, set forth in Section XI of the ASME BPV Code and addenda that are incorporated by reference in paragraph (a)(1)(ii) of this section, subject to the condition listed in paragraph (b)(2)(vi) of this section and the conditions listed in paragraphs (b)(2)(viii) and (ix) of this section, to the extent practical within the limitation of design, geometry, and materials of construction of the components.

(i) Applicable ISI Code: Initial 120month interval. Inservice examination of components and system pressure tests conducted during the initial 120month inspection interval must comply with the requirements in the latest edition and addenda of the Code incorporated by reference in paragraph (a) of this section on the date 12 months before the date of issuance of the operating license under this part, or 12 months before the date scheduled for initial loading of fuel under a combined license under part 52 of this chapter (or the optional ASME Code Cases listed in NRC Regulatory Guide 1.147, Revision 17, when using Section XI, or Regulatory Guide 1.192, Revision 1, when using the OM Code, that are incorporated by reference in paragraphs (a)(3)(ii) and (iii) of this section, respectively), subject to the conditions listed in paragraph (b) of this section.

(ii) Applicable ISI Code: Successive 120month intervals. Inservice examination of components and system pressure tests conducted during successive 120month inspection intervals must comply with the requirements of the latest edition and addenda of the Code incorporated by reference in paragraph (a) of this section 12 months before the start of the 120-month inspection interval (or the optional ASME Code Cases listed in NRC Regulatory Guide 1.147, Revision 17, when using Section XI, or Regulatory Guide 1.192, Revision 1, when using the OM Code, that are incorporated by reference in paragraphs (a)(3)(ii) and (iii) of this section), subject to the conditions listed in paragraph (b) of this section. However, a licensee whose inservice inspection interval commences during the 12 through 18-month period after July 21, 2011, may delay the update of their Appendix VIII program by up to 18 months after July 21, 2011.

(iii) Applicable ISI Code: Optional surface examination requirement. When applying editions and addenda prior to the 2003 Addenda of Section XI of the ASME BPV Code, licensees may, but are not required to, perform the surface examinations of high-pressure safety injection systems specified in Table IWB-2500-1, Examination Category B-J, Item Numbers B9.20, B9.21, and B9.22.

(iv) Applicable ISI Code: Use of subsequent Code editions and addenda. Inservice examination of components and system pressure tests may meet the requirements set forth in subsequent editions and addenda that are incorporated by reference in paragraph (a) of this section, subject to the conditions listed in paragraph (b) of this section, and subject to Commission approval. Portions of editions or addenda may be used, provided that all related requirements of the respective editions or addenda are met.

(v) Applicable ISI Code: Metal and concrete containments. For a boiling or 10 CFR Ch. I (1–1–16 Edition)

pressurized water-cooled nuclear power facility whose construction permit under this part or combined license under part 52 of this chapter was issued after January 1, 1956, the following are required:

(A) Metal and concrete containments: First provision. Metal containment pressure retaining components and their integral attachments must meet the inservice inspection, repair, and replacement requirements applicable to components that are classified as ASME Code Class MC;

(B) Metal and concrete containments: Second provision. Metallic shell and penetration liners that are pressure retaining components and their integral attachments in concrete containments must meet the inservice inspection, repair, and replacement requirements applicable to components that are classified as ASME Code Class MC; and

(C) Metal and concrete containments: Third provision. Concrete containment pressure retaining components and their integral attachments, and the post-tensioning systems of concrete containments, must meet the inservice inspections, repair, and replacement requirements applicable to components that are classified as ASME Code Class CC.

(5) Requirements for updating ISI programs—(i) ISI program update: Applicable ISI Code editions and addenda. The inservice inspection program for a boiling or pressurized water-cooled nuclear power facility must be revised by the licensee, as necessary, to meet the requirements of paragraph (g)(4) of this section.

(ii) ISI program update: Conflicting ISI Code requirements with technical specifications. If a revised inservice inspection program for a facility conflicts with the technical specifications for the facility, the licensee must apply to the Commission for amendment of the technical specifications to conform the technical specifications to the revised program. The licensee must submit this application, as specified in §50.4, at least six months before the start of the period during which the provisions become applicable, as determined by paragraph (g)(4) of this section.

(iii) ISI program update: Notification of impractical ISI Code requirements. If the

licensee has determined that conformance with a Code requirement is impractical for its facility the licensee must notify the NRC and submit, as specified in §50.4, information to support the determinations. Determinations of impracticality in accordance with this section must be based on the demonstrated limitations experienced when attempting to comply with the Code requirements during the inservice inspection interval for which the request is being submitted. Requests for relief made in accordance with this section must be submitted to the NRC no later than 12 months after the expiration of the initial or subsequent 120month inspection interval for which relief is sought.

(iv) ISI program update: Schedule for completing impracticality determinations. Where the licensee determines that an examination required by Code edition or addenda is impractical, the basis for this determination must be submitted for NRC review and approval not later than 12 months after the expiration of the initial or subsequent 120-month inspection interval for which relief is sought.

(6) Actions by the Commission for evaluating impractical and augmented ISI Code requirements-(i) Impractical ISI requirements: Granting of relief. The Commission will evaluate determinations under paragraph (g)(5) of this section that code requirements are impractical. The Commission may grant such relief and may impose such alternative requirements as it determines are authorized by law, will not endanger life or property or the common defense and security, and are otherwise in the public interest giving due consideration to the burden upon the licensee that could result if the requirements were imposed on the facility.

(ii) Augmented ISI program. The Commission may require the licensee to follow an augmented inservice inspection program for systems and components for which the Commission deems that added assurance of structural reliability is necessary.

(A) [Reserved]

(B) Augmented ISI requirements: Submitting containment ISI programs. Licensees do not have to submit to the NRC for approval of their containment inservice inspection programs that were developed to satisfy the requirements of Subsection IWE and Subsection IWL with specified conditions. The program elements and the required documentation must be maintained on site for audit.

(C) Augmented ISI requirements: Implementation of Appendix VIII to Section XI. (1) Appendix VIII and the supplements to Appendix VIII to Section XI, Division 1, 1995 Edition with the 1996 Addenda of the ASME BPV Code must be implemented in accordance with the following schedule: Appendix VIII and Supplements 1, 2, 3, and 8—May 22, 2000; Supplements 4 and 6—November 22, 2001; and Supplement 11—November 22, 2001; and Supplements 5, 7, and 10—November 22, 2002.

(2) Licensees implementing the 1989 Edition and earlier editions and addenda of IWA-2232 of Section XI, Division 1, of the ASME BPV Code must implement the 1995 Edition with the 1996 Addenda of Appendix VIII and the supplements to Appendix VIII of Section XI, Division 1, of the ASME BPV Code.

(D) Augmented ISI requirements: Reactor vessel head inspections-(1) All licensees of pressurized water reactors must augment their inservice inspection program with ASME Code Case N-729-1, subject to the conditions specified in paragraphs (g)(6)(ii)(D)(2) through (6) of this section. Licensees of existing operating reactors as of September 10, 2008, must implement their augmented inservice inspection program by December 31, 2008. Once a licensee implements this requirement, the First Revised NRC Order EA-03-009 no longer applies to that licensee and shall be deemed to be withdrawn.

(2) Note 9 of ASME Code Case N-729-1 must not be implemented.

(3) Instead of the specified "examination method" requirements for volumetric and surface examinations in Note 6 of Table 1 of Code Case N-729-1, the licensee must perform volumetric and/or surface examination of essentially 100 percent of the required volume or equivalent surfaces of the nozzle tube, as identified by Figure 2 of ASME Code Case N-729-1. A demonstrated volumetric or surface leak path assessment through all J-groove welds must be performed. If a surface examination is being substituted for a volumetric examination on a portion of a penetration nozzle that is below the toe of the J-groove weld [Point E on Figure 2 of ASME Code Case N-729-1], the surface examination must be of the inside and outside wetted surface of the penetration nozzle not examined volumetrically.

(4) By September 1, 2009, ultrasonic examinations must be performed using personnel, procedures, and equipment that have been qualified by blind demonstration on representative mockups using a methodology that meets the conditions specified in paragraphs (g)(6)(ii)(D)(4)(i) through (iv), instead of the qualification requirements of Paragraph -2500 of ASME Code Case N-729-1. References herein to Section XI, Appendix VIII, must be to the 2004 Edition with no addenda of the ASME BPV Code.

(i) The specimen set must have an applicable thickness qualification range of + 25 percent to - 40 percent for nominal depth through-wall thickness. The specimen set must include geometric and material conditions that normally require discrimination from primary water stress corrosion cracking (PWSCC) flaws.

(ii) The specimen set must have a minimum of ten (10) flaws that provide an acoustic response similar to PWSCC indications. All flaws must be greater than 10 percent of the nominal pipe wall thickness. A minimum of 20 percent of the total flaws must initiate from the inside surface and 20 percent from the outside surface. At least 20 percent of the flaws must be in the depth ranges of 10-30 percent throughwall thickness and at least 20 percent within a depth range of 31-50 percent through-wall thickness. At least 20 percent and no more than 60 percent of the flaws must be oriented axially.

(*iii*) Procedures must identify the equipment and essential variables and settings used for the qualification, in accordance with Subarticle VIII-2100 of Section XI, Appendix VIII. The procedure must be requalified when an essential variable is changed outside the demonstration range as defined by Subarticle VIII-3130 of Section XI, Appendix VIII, and as allowed by Articles

10 CFR Ch. I (1–1–16 Edition)

VIII-4100, VIII-4200, and VIII-4300 of Section XI, Appendix VIII. Procedure qualification must include the equivalent of at least three personnel performance demonstration test sets. Procedure qualification requires at least one successful personnel performance demonstration.

(iv) Personnel performance demonstration test acceptance criteria must meet the personnel performance demonstration detection test acceptance criteria of Table VIII-S10-1 of Section XI, Appendix VIII, Supplement 10. Examination procedures, equipment, and personnel are qualified for depth sizing and length sizing when the RMS error, as defined by Subarticle VIII-3120 of Section XI, Appendix VIII, of the flaw depth measurements, as compared to the true flaw depths, do not exceed 1/8 inch (3 mm) and the root mean square (RMS) error of the flaw length measurements, as compared to the true flaw lengths, do not exceed 3/8 inch (10 mm), respectively.

(5) If flaws attributed to PWSCC have been identified, whether acceptable or not for continued service under Paragraphs -3130 or -3140 of ASME Code Case N-729-1, the re-inspection interval must be each refueling outage instead of the re-inspection intervals required by Table 1, Note (8), of ASME Code Case N-729-1.

(6) Appendix I of ASME Code Case N-729-1 must not be implemented without prior NRC approval.

(E) Augmented ISI requirements: Reactor coolant pressure boundary visual inspections 10 —(1) All licensees of pressurized water reactors must augment their inservice inspection program by implementing ASME Code Case N-722– 1, subject to the conditions specified in paragraphs (g)(6)(ii)(E)(2) through (4) of this section. The inspection requirements of ASME Code Case N-722-1 do not apply to components with pressure retaining welds fabricated with Alloy 600/82/182 materials that have been mitigated by weld overlay or stress improvement.

(2) If a visual examination determines that leakage is occurring from a specific item listed in Table 1 of ASME Code Case N-722-1 that is not exempted by the ASME Code, Section XI, IWB-1220(b)(1), additional actions must be

performed to characterize the location, orientation, and length of a crack or cracks in Alloy 600 nozzle wrought material and location, orientation, and length of a crack or cracks in Alloy 82/ 182 butt welds. Alternatively, licensees may replace the Alloy 600/82/182 materials in all the components under the item number of the leaking component.

(3) If the actions in paragraph (g)(6)(ii)(E)(2) of this section determine that a flaw is circumferentially oriented and potentially a result of primary water stress corrosion cracking, licensees must perform non-visual NDE inspections of components that fall under that ASME Code Case N-722-1 item number. The number of components inspected must equal or exceed the number of components found to be leaking under that item number. If circumferential cracking is identified in the sample, non-visual NDE must be performed in the remaining components under that item number.

(4) If ultrasonic examinations of butt welds are used to meet the NDE requirements in paragraphs (g)(6)(ii)(E)(2) or (3) of this section, they must be performed using the appropriate supplement of Section XI, Appendix VIII, of the ASME BPV Code.

(F) Augmented ISI requirements: Examination requirements for Class 1 piping and nozzle dissimilar-metal butt welds— (1) Licensees of existing, operating pressurized-water reactors as of July 21, 2011, must implement the requirements of ASME Code Case N-770-1, subject to the conditions specified in paragraphs (g)(6)(ii)(F)(2) through (10) of this section, by the first refueling outage after August 22, 2011.

(2) Full structural weld overlays authorized by the NRC staff may be categorized as Inspection Items C or F, as appropriate. Welds that have been mitigated by the Mechanical Stress Improvement Process ($MSIP^{TM}$) may be categorized as Inspection Items D or E, as appropriate, provided the criteria in Appendix I of the Code Case have been met. For ISI frequencies, all other butt welds that rely on Alloy 82/182 for structural integrity must be categorized as Inspection Items A-1, A-2 or B until the NRC staff has reviewed the mitigation and authorized an alternative Code Case Inspection Item for the mitigated weld, or until an alternative Code Case Inspection Item is used based on conformance with an ASME mitigation Code Case endorsed in Regulatory Guide 1.147 with conditions, if applicable, and incorporated by reference in this section.

(3) Baseline examinations for welds in Table 1, Inspection Items A-1, A-2, and B, must be completed by the end of the next refueling outage after January 20, 2012. Previous examinations of these welds can be credited for baseline examinations if they were performed within the re-inspection period for the weld item in Table 1 using Section XI, Appendix VIII, requirements and met the Code required examination volume of essentially 100 percent. Other previous examinations that do not meet these requirements can be used to meet the baseline examination requirement, provided NRC approval of alternative inspection requirements in accordance with paragraphs (z)(1) or (2) of this section is granted prior to the end of the next refueling outage after January 20, 2012.

(4) The axial examination coverage requirements of Paragraph—2500(c) may not be considered to be satisfied unless essentially 100 percent coverage is achieved.

(5) All hot-leg operating temperature welds in Inspection Items G, H, J, and K must be inspected each inspection interval. A 25 percent sample of Inspection Items G, H, J, and K cold-leg operating temperature welds must be inspected whenever the core barrel is removed (unless it has already been inspected within the past 10 years) or 20 years, whichever is less.

(6) For any mitigated weld whose volumetric examination detects growth of existing flaws in the required examination volume that exceed the previous IWB-3600 flaw evaluations or new flaws, a report summarizing the evaluation, along with inputs, methodologies, assumptions, and causes of the new flaw or flaw growth is to be provided to the NRC prior to the weld being placed in service other than modes 5 or 6.

(7) For Inspection Items G, H, J, and K, when applying the acceptance standards of ASME BPV Code, Section XI,

IWB-3514, for planar flaws contained within the inlay or onlay, the thickness ''t'' in IWB–3514 is the thickness of the inlay or onlay. For planar flaws in the balance of the dissimilar metal weld examination volume, the thickness "t" in IWB-3514 is the combined thickness of the inlay or onlay and the dissimilar metal weld.

(8) Welds mitigated by optimized weld overlays in Inspection Items D and E are not permitted to be placed into a population to be examined on a sample basis and must be examined once each inspection interval.

(9) Replace the first two sentences of Extent and Frequency of Examination for Inspection Item D in Table 1 of Code Case N-770-1 with, "Examine all welds no sooner than the third refueling outage and no later than 10 years following stress improvement application." Replace the first two sentences of Note (11)(b)(2) in Code Case N-770-1 with, "The first examination following weld inlay, onlay, weld overlay, or stress improvement for Inspection Items D through K must be performed as specified.'

(10) General Note (b) to Figure 5(a) of Code Case N-770-1 pertaining to alternative examination volume for optimized weld overlays may not be applied unless NRC approval is authorized under paragraphs (z)(1) or (2) of this section.

(h) Protection and safety systems. Protection systems of nuclear power reactors of all types must meet the requirements specified in this paragraph. Each combined license for a utilization facility is subject to the following conditions.

(1) [Reserved]

(2) Protection systems. For nuclear power plants with construction permits issued after January 1, 1971, but before May 13, 1999, protection systems must meet the requirements in IEEE Std 279–1968, "Proposed IEEE Criteria for Nuclear Power Plant Protection Systems," or the requirements in IEEE Std 279-1971, "Criteria for Protection Systems for Nuclear Power Generating Stations," or the requirements in IEEE Std 603-1991, "Criteria for Safety Systems for Nuclear Power Generating Stations," and the correction sheet dated January 30, 1995. For nuclear

10 CFR Ch. I (1-1-16 Edition)

power plants with construction permits issued before January 1, 1971, protection systems must be consistent with their licensing basis or may meet the requirements of IEEE Std. 603-1991 and the correction sheet dated January 30, 1995

(3) Safety systems. Applications filed on or after May 13, 1999, for construction permits and operating licenses under this part, and for design approvals, design certifications, and combined licenses under part 52 of this chapter, must meet the requirements for safety systems in IEEE Std. 603-1991 and the correction sheet dated January 30, 1995. (i)-(y) [Reserved]

(z) Alternatives to codes and standards requirements. Alternatives to the requirements of paragraphs (b) through (h) of this section or portions thereof may be used when authorized by the Director, Office of Nuclear Reactor Regulation, or Director, Office of New Reactors, as appropriate. A proposed alternative must be submitted and authorized prior to implementation. The applicant or licensee must demonstrate that:

(1) Acceptable level of quality and safety. The proposed alternative would provide an acceptable level of quality and safety; or

(2) Hardship without a compensating increase in quality and safety. Compliance with the specified requirements of this section would result in hardship or unusual difficulty without a compensating increase in the level of quality and safety. Footnotes to §50.55a:

¹USAS and ASME Code addenda issued prior to the winter 1977 Addenda are considered to be "in effect" or "effective" 6 months after their date of issuance and after they are incorporated by reference in paragraph (a) of this section. Addenda to the ASME Code issued after the summer 1977 Addenda are considered to be "in effect" or "effective" after the date of publication of the addenda and after they are incorporated by reference in paragraph (a) of this section.

²⁻³ [Reserved].

⁴For ASME Code editions and addenda issued prior to the winter 1977 Addenda, the Code edition and addenda applicable to the component is governed by the order or contract date for the component, not the contract date for the nuclear energy system. For the winter 1977 Addenda and subsequent

editions and addenda the method for determining the applicable Code editions and addenda is contained in Paragraph NCA 1140 of Section III of the ASME Code.

⁵⁻⁶ [Reserved].

⁷Guidance for quality group classifications of components that are to be included in the safety analysis reports pursuant to \$50.34(a)and \$50.34(b) may be found in Regulatory Guide 1.26, "Quality Group Classifications and Standards for Water-, Steam-, and Radiological-Waste-Containing Components of Nuclear Power Plants," and in Section 3.2.2 of NUREG-0800, "Standard Review Plan for Review of Safety Analysis Reports for Nuclear Power Plants."

^{8–9} [Reserved].

¹⁰ For inspections to be conducted once per interval, the inspections must be performed in accordance with the schedule in Section XI, paragraph IWB-2400, except for plants with inservice inspection programs based on a Section XI edition or addenda prior to the 1994 Addenda. For plants with inservice inspection programs based on a Section XI edition or addenda prior to the 1994 Addenda, the inspection must be performed in accordance with the schedule in Section XI, paragraph IWB-2400, of the 1994 Addenda.

[79 FR 65798, Nov. 5, 2014, as amended at 79 FR 66603, Nov. 10, 2014; 79 FR 73462, Dec. 11, 2014]

§ 50.56 Conversion of construction permit to license; or amendment of license.

Upon completion of the construction or alteration of a facility, in compliance with the terms and conditions of the construction permit and subject to any necessary testing of the facility for health or safety purposes, the Commission will, in the absence of good cause shown to the contrary, issue a license of the class for which the construction permit was issued or an appropriate amendment of the license, as the case may be.

 $[21\ {\rm FR}\ 355,\ {\rm Jan.}\ 19,\ 1956,\ {\rm as}\ {\rm amended}\ {\rm at}\ 35\ {\rm FR}\ 11461,\ {\rm July}\ 17,\ 1970;\ 75\ {\rm FR}\ 73944,\ {\rm Nov.}\ 30,\ 2010]$

§ 50.57 Issuance of operating license.¹

(a)Pursuant to §50.56, an operating license may be issued by the Commission, up to the full term authorized by §50.51, upon finding that:

(1) Construction of the facility has been substantially completed, in conformity with the construction permit and the application as amended, the provisions of the Act, and the rules and regulations of the Commission; and

(2) The facility will operate in conformity with the application as amended, the provisions of the Act, and the rules and regulations of the Commission; and

(3) There is reasonable assurance (i) that the activities authorized by the operating license can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the regulations in this chapter; and

(4) The applicant is technically and financially qualified to engage in the activities authorized by the operating license in accordance with the regulations in this chapter. However, no finding of financial qualification is necessary for an electric utility applicant for an operating license for a utilization facility of the type described in §50.21(b) or §50.22.

(5) The applicable provisions of part 140 of this chapter have been satisfied; and

(6) The issuance of the license will not be inimical to the common defense and security or to the health and safety of the public.

(b) Each operating license will include appropriate provisions with respect to any uncompleted items of construction and such limitations or conditions as are required to assure that operation during the period of the completion of such items will not endanger public health and safety.

(c) An applicant may, in a case where a hearing is held in connection with a pending proceeding under this section make a motion in writing, under this paragraph (c), for an operating license authorizing low-power testing (operation at not more than 1 percent of full power for the purpose of testing the facility), and further operations short of full power operation. Action on such a motion by the presiding officer shall be taken with due regard to the rights of

¹The Commission may issue a provisional operating license pursuant to the regulations in this part in effect on March 30, 1970, for any facility for which a notice of hearing on an application for a provisional operating license or a notice of proposed issuance of a provisional operating license has been published on or before that date.

the parties to the proceedings, including the right of any party to be heard to the extent that his contentions are relevant to the activity to be authorized. Before taking any action on such a motion that any party opposes, the presiding officer shall make findings on the matters specified in paragraph (a) of this section as to which there is a controversy, in the form of an initial decision with respect to the contested activity sought to be authorized. The Director of Nuclear Reactor Regulation will make findings on all other matters specified in paragraph (a) of this section. If no party opposes the motion, the presiding officer will issue an order in accordance with §2.319(p) authorizing the Director of Nuclear Reactor Regulation to make appropriate findings on the matters specified in paragraph (a) of this section and to issue a license for the requested operation.

[35 FR 5318, Mar. 31, 1970, as amended at 35
FR 6644, Apr. 25, 1970; 37 FR 11873, June 15, 1972; 37 FR 15142, July 28, 1972; 49 FR 35753, Sept. 12, 1984; 51 FR 7765, Mar. 6, 1986; 69 FR 2275, Jan. 14, 2004]

§50.58 Hearings and report of the Advisory Committee on Reactor Safeguards.

(a) Each application for a construction permit or an operating license for a facility which is of a type described in 50.21(b) or 50.22, or for a testing facility, shall be referred to the Advisory Committee on Reactor Safeguards for a review and report. An application for an amendment to such a construction permit or operating license may be referred to the Advisory Committee on Reactor Safeguards for review and report. Any report shall be made part of the record of the application and available to the public, except to the extent that security classification prevents disclosure.

(b)(1) The Commission will hold a hearing after at least 30-days' notice and publication once in the FEDERAL REGISTER on each application for a construction permit for a production or utilization facility which is of a type described in §50.21(b) or §50.22, or for a testing facility.

(2) When a construction permit has been issued for such a facility following the holding of a public hearing,

10 CFR Ch. I (1–1–16 Edition)

and an application is made for an operating license or for an amendment to a construction permit or operating license, the Commission may hold a hearing after at least 30-days' notice and publication once in the FEDERAL REGISTER, or, in the absence of a request therefor by any person whose interest may be affected, may issue an operating license or an amendment to a construction permit or operating license without a hearing, upon 30-days' notice and publication once in the FED-ERAL REGISTER of its intent to do so.

(3) If the Commission finds, in an emergency situation, as defined in $\S50.91$, that no significant hazards consideration is presented by an application for an amendment to an operating license, it may dispense with public notice and comment and may issue the amendment. If the Commission finds that exigent circumstances exist, as described in $\S50.91$, it may reduce the period provided for public notice and comment.

(4) Both in an emergency situation and in the case of exigent circumstances, the Commission will provide 30 days notice of opportunity for a hearing, though this notice may be published after issuance of the amendment if the Commission determines that no significant hazards consideration is involved.

(5) The Commission will use the standards in §50.92 to determine whether a significant hazards consideration is presented by an amendment to an operating license for a facility of the type described in §50.21(b) or §50.22, or which is a testing facility, and may make the amendment immediately effective, notwithstanding the pendency before it of a request for a hearing from any person, in advance of the holding and completion of any required hearing, where it has determined that no significant hazards consideration is involved.

(6) No petition or other request for review of or hearing on the staff's significant hazards consideration determination will be entertained by the Commission. The staff's determination

is final, subject only to the Commission's discretion, on its own initiative, to review the determination.

[27 FR 12186, Dec. 8, 1962, as amended at 35
 FR 11461, July 17, 1970; 39 FR 10555, Mar. 21, 1974; 51 FR 7765, Mar. 6, 1986]

§50.59 Changes, tests, and experiments.

(a) Definitions for the purposes of this section:

(1) Change means a modification or addition to, or removal from, the facility or procedures that affects a design function, method of performing or controlling the function, or an evaluation that demonstrates that intended functions will be accomplished.

(2) Departure from a method of evaluation described in the FSAR (as updated) used in establishing the design bases or in the safety analyses means:

(i) Changing any of the elements of the method described in the FSAR (as updated) unless the results of the analysis are conservative or essentially the same; or

(ii) Changing from a method described in the FSAR to another method unless that method has been approved by NRC for the intended application.

(3) Facility as described in the final safety analysis report (as updated) means:

(i) The structures, systems, and components (SSC) that are described in the final safety analysis report (FSAR) (as updated),

(ii) The design and performance requirements for such SSCs described in the FSAR (as updated), and

(iii) The evaluations or methods of evaluation included in the FSAR (as updated) for such SSCs which demonstrate that their intended function(s) will be accomplished.

(4) Final Safety Analysis Report (as updated) means the Final Safety Analysis Report (or Final Hazards Summary Report) submitted in accordance with \$50.34, as amended and supplemented, and as updated per the requirements of \$50.71(e) or \$50.71(f), as applicable.

(5) Procedures as described in the final safety analysis report (as updated) means those procedures that contain information described in the FSAR (as updated) such as how structures, systems, and components are operated and con-

trolled (including assumed operator actions and response times).

(6) Tests or experiments not described in the final safety analysis report (as updated) means any activity where any structure, system, or component is utilized or controlled in a manner which is either:

(i) Outside the reference bounds of the design bases as described in the final safety analysis report (as updated) or

(ii) Inconsistent with the analyses or descriptions in the final safety analysis report (as updated).

(b) This section applies to each holder of an operating license issued under this part or a combined license issued under part 52 of this chapter, including the holder of a license authorizing operation of a nuclear power reactor that has submitted the certification of permanent cessation of operations required under $\S 50.82(a)(1)$ or $\S 50.110$ or a reactor license whose license has been amended to allow possession of nuclear fuel but not operation of the facility.

(c)(1) A licensee may make changes in the facility as described in the final safety analysis report (as updated), make changes in the procedures as described in the final safety analysis report (as updated), and conduct tests or experiments not described in the final safety analysis report (as updated) without obtaining a license amendment pursuant to §50.90 only if:

(i) A change to the technical specifications incorporated in the license is not required, and

(ii) The change, test, or experiment does not meet any of the criteria in paragraph (c)(2) of this section.

(2) A licensee shall obtain a license amendment pursuant to §50.90 prior to implementing a proposed change, test, or experiment if the change, test, or experiment would:

(i) Result in more than a minimal increase in the frequency of occurrence of an accident previously evaluated in the final safety analysis report (as updated);

(ii) Result in more than a minimal increase in the likelihood of occurrence of a malfunction of a structure, system, or component (SSC) important to safety previously evaluated in the final safety analysis report (as updated); (iii) Result in more than a minimal increase in the consequences of an accident previously evaluated in the final safety analysis report (as updated);

(iv) Result in more than a minimal increase in the consequences of a malfunction of an SSC important to safety previously evaluated in the final safety analysis report (as updated);

(v) Create a possibility for an accident of a different type than any previously evaluated in the final safety analysis report (as updated);

(vi) Create a possibility for a malfunction of an SSC important to safety with a different result than any previously evaluated in the final safety analysis report (as updated);

(vii) Result in a design basis limit for a fission product barrier as described in the FSAR (as updated) being exceeded or altered; or

(viii) Result in a departure from a method of evaluation described in the FSAR (as updated) used in establishing the design bases or in the safety analyses.

(3) In implementing this paragraph, the FSAR (as updated) is considered to include FSAR changes resulting from evaluations performed pursuant to this section and analyses performed pursuant to §50.90 since submittal of the last update of the final safety analysis report pursuant to §50.71 of this part.

(4) The provisions in this section do not apply to changes to the facility or procedures when the applicable regulations establish more specific criteria for accomplishing such changes.

(d)(1) The licensee shall maintain records of changes in the facility, of changes in procedures, and of tests and experiments made pursuant to paragraph (c) of this section. These records must include a written evaluation which provides the bases for the determination that the change, test, or experiment does not require a license amendment pursuant to paragraph (c)(2) of this section.

(2) The licensee shall submit, as specified in §50.4 or §52.3 of this chapter, as applicable, a report containing a brief description of any changes, tests, and experiments, including a summary of the evaluation of each. A report must be submitted at intervals not to exceed 24 months. For combined licenses, the 10 CFR Ch. I (1–1–16 Edition)

report must be submitted at intervals not to exceed 6 months during the period from the date of application for a combined license to the date the Commission makes its findings under 10 CFR 52.103(g).

(3) The records of changes in the facility must be maintained until the termination of an operating license issued under this part, a combined license issued under part 52 of this chapter, or the termination of a license issued under 10 CFR part 54, whichever is later. Records of changes in procedures and records of tests and experiments must be maintained for a period of 5 years.

[64 FR 53613, Oct. 4, 1999, as amended at 66 FR 64738, Dec. 14, 2001; 72 FR 49500, Aug. 28, 2007]

§50.60 Acceptance criteria for fracture prevention measures for lightwater nuclear power reactors for normal operation.

(a) Except as provided in paragraph (b) of this section, all light-water nuclear power reactors, other than reactor facilities for which the certifications required under $\S50.82(a)(1)$ have been submitted, must meet the fracture toughness and material surveillance program requirements for the reactor coolant pressure boundary set forth in appendices G and H to this part.

(b) Proposed alternatives to the described requirements in Appendices G and H of this part or portions thereof may be used when an exemption is granted by the Commission under §50.12.

[48 FR 24009, May 27, 1983, as amended at 50 FR 50777, Dec. 12, 1985; 61 FR 39300, July 29, 1996]

§50.61 Fracture toughness requirements for protection against pressurized thermal shock events.

(a) *Definitions*. For the purposes of this section:

(1) ASME Code means the American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section III, Division I, "Rules for the Construction of Nuclear Power Plant Components," edition and addenda and any limitations and modifications thereof as specified in §50.55a.

(2) Pressurized Thermal Shock Event means an event or transient in pressurized water reactors (PWRs) causing severe overcooling (thermal shock) concurrent with or followed by significant pressure in the reactor vessel.

(3) Reactor Vessel Beltline means the region of the reactor vessel (shell material including welds, heat affected zones and plates or forgings) that directly surrounds the effective height of the active core and adjacent regions of the reactor vessel that are predicted to experience sufficient neutron radiation damage to be considered in the selection of the most limiting material with regard to radiation damage.

(4) RT_{NDT} means the reference temperature for a reactor vessel material, under any conditions. For the reactor vessel beltline materials, RT_{NDT} must account for the effects of neutron radiation.

(5) $RT_{NDT(U)}$ means the reference temperature for a reactor vessel material in the pre-service or unirradiated condition, evaluated according to the procedures in the ASME Code, Paragraph NB-2331 or other methods approved by the Director, Office of Nuclear Reactor Regulation or Director, Office of New Reactors, as appropriate.

(6) EOL Fluence means the best-estimate neutron fluence projected for a specific vessel beltline material at the clad-base-metal interface on the inside surface of the vessel at the location where the material receives the highest fluence on the expiration date of the operating license.

(7) RT_{PTS} means the reference temperature, RT_{NDT} , evaluated for the EOL Fluence for each of the vessel beltline materials, using the procedures of paragraph (c) of this section.

(8) PTS Screening Criterion means the value of RT_{PTS} for the vessel beltline material above which the plant cannot continue to operate without justification.

(b) Requirements. (1) For each pressurized water nuclear power reactor for which an operating license has been issued under this part or a combined license issued under Part 52 of this chapter, other than a nuclear power reactor facility for which the certification required under $\S50.82(a)(1)$ has been submitted, the licensee shall have projected values of RTPTS or RTMAX-X, accepted by the NRC, for each reactor vessel beltline material. For pressurized water nuclear power reactors for which a construction permit was issued under this part before February 3, 2010 and whose reactor vessel was designed and fabricated to the 1998 Edition or earlier of the ASME Code, the projected values must be in accordance with this section or §50.61a. For pressurized water nuclear power reactors for which a construction permit is issued under this part after February 3, 2010 and whose reactor vessel is designed and fabricated to an ASME Code after the 1998 Edition, or for which a combined license is issued under Part 52, the projected values must be in accordance with this section. When determining compliance with this section, the assessment of $\mathrm{RT}_{\mathrm{PTS}}$ must use the calculation procedures described in paragraph (c)(1) and perform the evaluations described in paragraphs (c)(2)and (c)(3) of this section. The assessment must specify the bases for the projected value of $\mathrm{RT}_{\mathrm{PTS}}$ for each vessel beltline material, including the assumptions regarding core loading patterns, and must specify the copper and nickel contents and the fluence value used in the calculation for each beltline material. This assessment must be updated whenever there is a significant² change in projected values of RT_{PTS} , or upon request for a change in the expiration date for operation of the facility.

(2) The pressurized thermal shock (PTS) screening criterion is 270 °F for plates, forgings, and axial weld materials, and 300 °F for circumferential weld materials. For the purpose of comparison with this criterion, the value of RT_{PTS} for the reactor vessel must be evaluated according to the procedures of paragraph (c) of this section, for each weld and plate, or forging, in the reactor vessel beltline.

 $^{^{2}}$ Changes to RT_{PTS} values are considered significant if either the previous value or the current value, or both values, exceed the screening criterion before the expiration of the operating license or the combined license under Part 52 of this chapter, including any renewed term, if applicable for the plant.

 $\mathrm{RT}_{\mathrm{PTS}}$ must be determined for each vessel beltline material using the EOL fluence for that material.

(3) For each pressurized water nuclear power reactor for which the value of RT_{PTS} for any material in the beltline is projected to exceed the PTS screening criterion using the EOL fluence, the licensee shall implement those flux reduction programs that are reasonably practicable to avoid exceeding the PTS screening criterion set forth in paragraph (b)(2) of this section. The schedule for implementation of flux reduction measures may take into account the schedule for submittal and anticipated approval by the Director, Office of Nuclear Reactor Regulation, of detailed plant-specific analyses, submitted to demonstrate acceptable risk with RT_{PTS} above the screening limit due to plant modifications, new information or new analysis techniques.

(4) For each pressurized water nuclear power reactor for which the analysis required by paragraph (b)(3) of this section indicates that no reasonably practicable flux reduction program will prevent RT_{PTS} from exceeding the PTS screening criterion using the EOL fluence, the licensee shall submit a safety analysis to determine what, if any, modifications to equipment, systems, and operation are necessary to prevent potential failure of the reactor vessel as a result of postulated PTS events if continued operation beyond the screening criterion is allowed. In the analysis, the licensee may determine the properties of the reactor vessel materials based on available information, research results, and plant surveillance data, and may use probabilistic fracture mechanics techniques. This analysis must be submitted at least three years before RT_{PTS} is projected to exceed the PTS screening criterion.

(5) After consideration of the licensee's analyses, including effects of proposed corrective actions, if any, submitted in accordance with paragraphs (b)(3) and (b)(4) of this section, the Director, Office of Nuclear Reactor Regulation, may, on a case-by-case basis, approve operation of the facility with RT_{PTS} in excess of the PTS screening criterion. The Director, Office of Nuclear Reactor Regulation, will consider 10 CFR Ch. I (1–1–16 Edition)

factors significantly affecting the potential for failure of the reactor vessel in reaching a decision.

(6) If the Director, Office of Nuclear Reactor Regulation, concludes, pursuant to paragraph (b)(5) of this section, that operation of the facility with RT_{PTS} in excess of the PTS screening criterion cannot be approved on the basis of the licensee's analyses submitted in accordance with paragraphs (b)(3) and (b)(4) of this section, the licensee shall request and receive approval by the Director, Office of Nuclear Reactor Regulation, prior to any operation beyond the criterion. The request must be based upon modifications to equipment, systems, and operation of the facility in addition to those previously proposed in the submitted analyses that would reduce the potential for failure of the reactor vessel due to PTS events, or upon further analyses based upon new information or improved methodology.

(7) If the limiting RT_{PTS} value of the plant is projected to exceed the screening criteria in paragraph (b)(2), or the criteria in paragraphs (b)(3) through (b)(6) of this section cannot be satisfied, the reactor vessel beltline may be given a thermal annealing treatment to recover the fracture toughness of the material, subject to the requirements of §50.66. The reactor vessel may continue to be operated only for that service period within which the predicted fracture toughness of the vessel beltline materials satisfy the requirements of paragraphs (b)(2) through (b)(6) of this section, with RT_{PTS} accounting for the effects of annealing and subsequent irradiation.

(c) Calculation of RT_{PTS} . RT_{PTS} must be calculated for each vessel beltline material using a fluence value, f, which is the EOL fluence for the material. RT_{PTS} must be evaluated using the same procedures used to calculate RT_{NDT} , as indicated in paragraph (c)(1) of this section, and as provided in paragraphs (c)(2) and (c)(3) of this section.

(1) Equation 1 must be used to calculate values of RT_{NDT} for each weld and plate, or forging, in the reactor vessel beltline.

Equation 1: $RT_{NDT} = RT_{NDT(U)} + M + \Delta RT_{NDT}$

(i) If a measured value of $\mathrm{RT}_{\mathrm{NDT}(U)}$ is not available, a generic mean value for the class³ of material may be used if there are sufficient test results to establish a mean and a standard deviation for the class.

(ii) For generic values of weld metal, the following generic mean values must be used unless justification for different values is provided: 0 °F for welds made with Linde 80 flux, and -56°F for welds made with Linde 0091, 1092 and 124 and ARCOS B-5 weld fluxes.

(iii) M means the margin to be added to account for uncertainties in the values of $\mathrm{RT}_{\mathrm{NDT}(\mathrm{U})}$, copper and nickel contents, fluence and the calculational procedures. M is evaluated from Equation 2.

Ν

Equation 2:

$$\mathbf{I} = 2\sqrt{\sigma_{\rm U}^2 + \sigma_{\Delta}^2}$$

(A) In Equation 2, σ_U is the standard deviation for $RT_{NDT(U)}$. If a measured value of $RT_{NDT(U)}$ is used, then σ_U is determined from the precision of the test method. If a measured value of $RT_{NDT(U)}$ is not available and a generic mean value for that class of materials is used, then σ_U is the standard deviation obtained from the set of data used to establish the mean. If a generic mean value given in paragraph (c)(1)(i)(B) of this section for welds is used, then σ_U is 17 °F.

(B) In Equation 2, σ_{Δ} is the standard deviation for ΔRT_{NDT} . The value of σ_{Δ} to be used is 28 °F for welds and 17 °F for base metal; the value of σ_{Δ} need not exceed one-half of ΔRT_{NDT} .

(iv) ΔRT_{NDT} is the mean value of the transition temperature shift, or change in RT_{NDT} , due to irradiation, and must be calculated using Equation 3.

Equation 3: ΔRT_{NDT} = (CF)f^(0.28-0.10 log f)

(A) CF (°F) is the chemistry factor, which is a function of copper and nickel content. CF is given in table 1 for welds and in table 2 for base metal (plates and forgings). Linear interpolation is permitted. In tables 1 and 2, "Wt - % copper" and "Wt - % nickel" are the best-estimate values for the

material, which will normally be the mean of the measured values for a plate or forging. For a weld, the best estimate values will normally be the mean of the measured values for a weld deposit made using the same weld wire heat number as the critical vessel weld. If these values are not available, the upper limiting values given in the material specifications to which the vessel material was fabricated may be used. If not available, conservative estimates (mean plus one standard deviation) based on generic data⁴ may be used if justification is provided. If none of these alternatives are available, 0.35% copper and 1.0% nickel must be assumed.

(B) f is the best estimate neutron fluence, in units of 10^{19} n/cm² (E greater than 1 MeV), at the clad-base-metal interface on the inside surface of the vessel at the location where the material in question receives the highest fluence for the period of service in question. As specified in this paragraph, the EOL fluence for the vessel beltline material is used in calculating KRT_{PTS}.

(v) Equation 4 must be used for determining RT_{PTS} using equation 3 with EOL fluence values for determining ΔRT_{PTS} .

Equation 4: $RT_{PTS} = RT_{NDT(U)} + M + \Delta RT_{PTS}$

(2) To verify that RT_{NDT} for each vessel beltline material is a bounding value for the specific reactor vessel, licensees shall consider plant-specific information that could affect the level of embrittlement. This information includes but is not limited to the reactor vessel operating temperature and any related surveillance program⁵ results.

§50.61

 $^{^{3}}$ The class of material for estimating $RT_{\rm NDT(U)}$ is generally determined for welds by the type of welding flux (Linde 80, or other), and for base metal by the material specification.

⁴Data from reactor vessels fabricated to the same material specification in the same shop as the vessel in question and in the same time period is an example of "generic data."

 $^{^5}$ Surveillance program results means any data that demonstrates the embrittlement trends for the limiting beltline material, including but not limited to data from test reactors or from surveillance programs at other plants with or without surveillance program integrated per 10 CFR part 50, appendix H.

§50.61

10 CFR Ch. I (1–1–16 Edition)

(i) Results from the plant-specific surveillance program must be integrated into the RT_{NDT} estimate if the plant-specific surveillance data has been deemed credible as judged by the following criteria:

(A) The materials in the surveillance capsules must be those which are the controlling materials with regard to radiation embrittlement.

(B) Scatter in the plots of Charpy energy versus temperature for the irradiated and unirradiated conditions must be small enough to permit the determination of the 30-foot-pound temperature unambiguously.

(C) Where there are two or more sets of surveillance data from one reactor, the scatter of ΔRT_{NDT} values must be less than 28 °F for welds and 17 °F for base metal. Even if the range in the

capsule fluences is large (two or more orders of magnitude), the scatter may not exceed twice those values.

(D) The irradiation temperature of the Charpy specimens in the capsule must equal the vessel wall temperature at the cladding/base metal interface within ± 25 °F.

(E) The surveillance data for the correlation monitor material in the capsule, if present, must fall within the scatter band of the data base for the material.

(ii)(A) Surveillance data deemed credible according to the criteria of paragraph (c)(2)(i) of this section must be used to determine a material-specific value of CF for use in Equation 3. A material-specific value of CF is determined from Equation 5.

Equation 5:
$$CF = \frac{\sum_{i=1}^{n} \left[A_i \times f_i^{(0.28-0.10 \log f_i)}\right]}{\sum_{i=1}^{n} \left[f_i^{(0.56-0.20 \log f_i)}\right]}$$

(B) In Equation 5, "n" is the number of surveillance data points, "A_i" is the measured value of ΔRT_{NDT} and "fi" is the fluence for each surveillance data point. If there is clear evidence that the copper and nickel content of the surveillance weld differs from the vessel weld, *i.e.*, differs from the average for the weld wire heat number associated with the vessel weld and the surveillance weld, the measured values of ΔRT_{NDT} must be adjusted for differences in copper and nickel content by multiplying them by the ratio of the chemistry factor for the vessel material to that for the surveillance weld.

(iii) For cases in which the results from a credible plant-specific surveillance program are used, the value of σ_{Δ} to be used is 14 °F for welds and 8.5 °F for base metal; the value of σ_{Δ} need not exceed one-half of ΔRT_{NDT} .

(iv) The use of results from the plantspecific surveillance program may result in an RT_{NDT} that is higher or lower than those determined in paragraph (c)(1). (3) Any information that is believed to improve the accuracy of the $\mathrm{RT}_{\mathrm{PTS}}$ value significantly must be reported to the Director, Office of Nuclear Reactor Regulation or Director, Office of New Reactors, as appropriate. Any value of $\mathrm{RT}_{\mathrm{PTS}}$ that has been modified using the procedures of paragraph (c)(2) of this section is subject to the approval of the Director, Office of Nuclear Reactor Regulation or Director, Office of New Reactors, as appropriate, when used as provided in this section.

TABLE 1—CHEMISTRY FACTOR FOR WELD METALS, °F

Copper,	Nickel, wt-%							
wt-%	0	0.20	0.40	0.60	0.80	1.00	1.20	
0	20	20	20	20	20	20	20	
0.01	20	20	20	20	20	20	20	
0.02	21	26	27	27	27	27	27	
0.03	22	35	41	41	41	41	41	
0.04	24	43	54	54	54	54	54	
0.05	26	49	67	68	68	68	68	
0.06	29	52	77	82	82	82	82	
0.07	32	55	85	95	95	95	95	
0.08	36	58	90	106	108	108	108	
0.09	40	61	94	115	122	122	122	

TABLE 1—CHEMISTRY FACTOR FOR WELD METALS, °F—Continued

Copper,	Nickel, wt-%						
wt-%	0	0.20	0.40	0.60	0.80	1.00	1.20
0.10	44	65	97	122	133	135	135
0.11	49	68	101	130	144	148	148
0.12	52	72	103	135	153	161	161
0.13	58	76	106	139	162	172	176
0.14	61	79	109	142	168	182	188
0.15	66	84	112	146	175	191	200
0.16	70	88	115	149	178	199	211
0.17	75	92	119	151	184	207	221
0.18	79	95	122	154	187	214	230
0.19	83	100	126	157	191	220	238
0.20	88	104	129	160	194	223	245
0.21	92	108	133	164	197	229	252
0.22	97	112	137	167	200	232	257
0.23	101	117	140	169	203	236	263
0.24	105	121	144	173	206	239	268
0.25	110	126	148	176	209	243	272
0.26	113	130	151	180	212	246	276
0.27	119	134	155	184	216	249	280
0.28	122	138	160	187	218	251	284
0.29	128	142	164	191	222	254	287
0.30	131	146	167	194	225	257	290
0.31	136	151	172	198	228	260	293
0.32	140	155	175	202	231	263	296
0.33	144	160	180	205	234	266	299
0.34	149	164	184	209	238	269	302
0.35	153	168	187	212	241	272	305
0.36	158	172	191	216	245	275	308
0.37	162	177	196	220	248	278	311
0.38	166	182	200	223	250	281	314
0.39	171	185	203	227	254	285	317
0.40	175	189	207	231	257	288	320
	1				1		

TABLE 2—CHEMISTRY FACTOR FOR BASE METALS, °F

			Nic	kel, wt-	0/		
Copper,				Kei, wi-	70		
wt-%	0	0.20	0.40	0.60	0.80	1.00	1.20
0	20	20	20	20	20	20	20
0.01	20	20	20	20	20	20	20
0.02	20	20	20	20	20	20	20
0.03	20	20	20	20	20	20	20
0.04	22	26	26	26	26	26	26
0.05	25	31	31	31	31	31	31
0.06	28	37	37	37	37	37	37
0.07	31	43	44	44	44	44	44
0.08	34	48	51	51	51	51	51
0.09	37	53	58	58	58	58	58
0.10	41	58	65	65	67	67	67
0.11	45	62	72	74	77	77	77
0.12	49	67	79	83	86	86	86
0.13	53	71	85	91	96	96	96
0.14	57	75	91	100	105	106	106
0.15	61	80	99	110	115	117	117
0.16	65	84	104	118	123	125	125
0.17	69	88	110	127	132	135	135
0.18	73	92	115	134	141	144	144
0.19	78	97	120	142	150	154	154
0.20	82	102	125	149	159	164	165
0.21	86	107	129	155	167	172	174
0.22	91	112	134	161	176	181	184
0.23	95	117	138	167	184	190	194
0.24	100	121	143	172	191	199	204
0.25	104	126	148	176	199	208	214
0.26	109	130	151	180	205	216	221
0.27	114	134	155	184	211	225	230
0.28	119	138	160	187	216	233	239

-

§50.61a

TABLE 2—CHEMISTRY FACTOR FOR BASE METALS, °F—Continued

	Nickel, wt-%							
Copper,	Nokol, Wt-70							
wt-%	0	0.20	0.40	0.60	0.80	1.00	1.20	
0.29	124	142	164	191	221	241	248	
0.30	129	146	167	194	225	249	257	
0.31	134	151	172	198	228	255	266	
0.32	139	155	175	202	231	260	274	
0.33	144	160	180	205	234	264	282	
0.34	149	164	184	209	238	268	290	
0.35	153	168	187	212	241	272	298	
0.36	158	173	191	216	245	275	303	
0.37	162	177	196	220	248	278	308	
0.38	166	182	200	223	250	281	313	
0.39	171	185	203	227	254	285	317	
0.40	175	189	207	231	257	288	320	

[60 FR 65468, Dec. 19, 1995, as amended at 61
FR 39300, July 29, 1996; 72 FR 49500, Aug. 28, 2007; 73 FR 5722, Jan. 31, 2008; 75 FR 23, Jan. 4, 2010]

§50.61a Alternate fracture toughness requirements for protection against pressurized thermal shock events.

(a) *Definitions*. Terms in this section have the same meaning as those presented in 10 CFR 50.61(a), with the exception of the term "ASME Code."

(1) ASME Code means the American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section III, Division I, "Rules for the Construction of Nuclear Power Plant Components," and Section XI, Division I, "Rules for Inservice Inspection of Nuclear Power Plant Components," edition and addenda and any limitations and modifications thereof as specified in §50.55a.

(2) RT_{MAX-AW} means the material property which characterizes the reactor vessel's resistance to fracture initiating from flaws found along axial weld fusion lines. RT_{MAX-AW} is determined under the provisions of paragraph (f) of this section and has units of °F.

(3) RT_{MAX-PL} means the material property which characterizes the reactor vessel's resistance to fracture initiating from flaws found in plates in regions that are not associated with welds found in plates. RT_{MAX-PL} is determined under the provisions of paragraph (f) of this section and has units of °F.

(4) RT_{MAX-FO} means the material property which characterizes the reactor vessel's resistance to fracture initiating from flaws in forgings that are not associated with welds found in forgings. RT_{MAX-FO} is determined under

10 CFR Ch. I (1-1-16 Edition)

the provisions of paragraph (f) of this section and has units of $^{\circ}F$.

(5) RT_{MAX-CW} means the material property which characterizes the reactor vessel's resistance to fracture initiating from flaws found along the circumferential weld fusion lines. RT_{MAX-CW} is determined under the provisions of paragraph (f) of this section and has units of °F.

(6) RT_{MAX-X} means any or all of the material properties RT_{MAX-AW} , RT_{MAX-PL} , RT_{MAX-FO} , RT_{MAX-CW} , or sum of RT_{MAX-AW} and RT_{MAX-PL} , for a particular reactor vessel.

(7) φt means fast neutron fluence for neutrons with energies greater than 1.0 MeV. φt is utilized under the provisions of paragraph (g) of this section and has units of n/cm².

(8) ϕ means average neutron flux for neutrons with energies greater than 1.0 MeV. ϕ is utilized under the provisions of paragraph (g) of this section and has units of n/cm²/sec.

(9) ΔT_{30} means the shift in the Charpy V-notch transition temperature at the 30 ft-lb energy level produced by irradiation. The ΔT_{30} value is utilized under the provisions of paragraph (g) of this section and has units of °F.

(10) Surveillance data means any data that demonstrates the embrittlement trends for the beltline materials, including, but not limited to, surveillance programs at other plants with or without a surveillance program integrated under 10 CFR part 50, appendix H.

(11) $T_{\rm C}$ means cold leg temperature under normal full power operating conditions, as a time-weighted average from the start of full power operation through the end of licensed operation. $T_{\rm C}$ has units of °F.

(12) *CRP* means the copper rich precipitate term in the embrittlement model from this section. The CRP term is defined in paragraph (g) of this section.

(13) *MD* means the matrix damage term in the embrittlement model for this section. The MD term is defined in paragraph (g) of this section.

(b) Applicability. The requirements of this section apply to each holder of an operating license for a pressurized water nuclear power reactor whose construction permit was issued before February 3, 2010 and whose reactor vessel was designed and fabricated to the ASME Boiler and Pressure Vessel Code, 1998 Edition or earlier. The requirements of this section may be implemented as an alternative to the requirements of 10 CFR 50.61.

(c) Request for approval. Before the implementation of this section, each licensee shall submit a request for approval in the form of an application for a license amendment in accordance with §50.90 together with the documentation required by paragraphs (c)(1), (c)(2), and (c)(3) of this section for review and approval by the Director of the Office of Nuclear Reactor Regulation (Director). The application must be submitted for review and approval by the Director at least three years before the limiting RT_{PTS} value calculated under 10 CFR 50.61 is projected to exceed the PTS screening criteria in 10 CFR 50.61 for plants licensed under this part.

(1) Each licensee shall have projected values of RT_{MAX-X} for each reactor vessel beltline material for the EOL fluence of the material. The assessment of RT_{MAX-X} values must use the calculation procedures given in paragraphs (f) and (g) of this section. The assessment must specify the bases for the projected value of RT_{MAX-X} for each reactor vessel beltline material, including the assumptions regarding future plant operation (e.g., core loading patterns, projected capacity factors); the copper (Cu), phosphorus (P), manganese (Mn), and nickel (Ni) contents; the reactor cold leg temperature (T_C) ; and the neutron flux and fluence values used in the calculation for each beltline material. Assessments performed under paragraphs (f)(6) and (f)(7) of this section, shall be submitted by the licensee to the Director in its license amendment application to utilize §50.61a.

(2) Each licensee shall perform an examination and an assessment of flaws in the reactor vessel beltline as required by paragraph (e) of this section. The licensee shall verify that the requirements of paragraphs (e), (e)(1), (e)(2), and (e)(3) of this section have been met. The licensee must submit to the Director, in its application to use \$50.61a, the adjustments made to the

§50.61a

volumetric test data to account for NDE-related uncertainties as described in paragraph (e)(1) of this section, all information required by paragraph (e)(1)(iii) of this section, and, if applicable, analyses performed under paragraphs (e)(4), (e)(5) and (e)(6) of this section.

(3) Each licensee shall compare the projected RT_{MAX-X} values for plates, forgings, axial welds, and circumferential welds to the PTS screening criteria in Table 1 of this section, for the purpose of evaluating a reactor vessel's susceptibility to fracture due to a PTS event. If any of the projected RT_{MAX-X} values are greater than the PTS screening criteria in Table 1 of this section, then the licensee may propose the compensatory actions or plant-specific analyses as required in paragraphs (d)(3) through (d)(7) of this section, as applicable, to justify operation beyond the PTS screening criteria in Table 1 of this section.

(d) Subsequent requirements. Licensees who have been approved to use 10 CFR 50.61a under the requirements of paragraph (c) of this section shall comply with the requirements of this paragraph.

(1) Whenever there is a significant change in projected values of RT_{MAX-X} , so that the previous value, the current value, or both values, exceed the screening criteria before the expiration of the plant operating license; or upon the licensee's request for a change in the expiration date for operation of the facility; a re-assessment of RT_{MAX-X} values documented consistent with the requirements of paragraph (c)(1) and (c)(3) of this section must be submitted in the form of a license amendment for review and approval by the Director. If the surveillance data used to perform the re-assessment of RT_{MAX-X} values meet the requirements of paragraph (f)(6)(v) of this section, the licensee shall submit the data and the results of the analysis of the data to the Director for review and approval within one year after the capsule is withdrawn from the vessel. If the surveillance data meet the requirements of paragraph (f)(6)(vi) of this section, the licensee shall submit the data, the results of the analysis of the data, and proposed ΔT_{30} and $RT_{MAX\!-\!X}$ values considering the surveillance data in the form of a license amendment to the Director for review and approval within two years after the capsule is withdrawn from the vessel. If the Director does not approve the assessment of RT_{MAX-X} values, then the licensee shall perform the actions required in paragraphs (d)(3) through (d)(7) of this section, as necessary, before operation beyond the PTS screening criteria in Table 1 of this section.

(2) The licensee shall verify that the requirements of paragraphs (e), (e)(1), (e)(2), and (e)(3) of this section have been met. The licensee must submit, within 120 days after completing a volumetric examination of reactor vessel beltline materials as required by ASME Code, Section XI, the adjustments made to the volumetric test data to account for NDE-related uncertainties as described in paragraph (e)(1)of this section and all information required by paragraph (e)(1)(iii) of this section in the form of a license amendment for review and approval by the Director. If a licensee is required to implement paragraphs (e)(4), (e)(5), and (e)(6) of this section, the information required in these paragraphs must be submitted in the form of a license amendment for review and approval by the Director within one year after completing a volumetric examination of reactor vessel materials as required by ASME Code, Section XI.

(3) If the value of $\mathrm{RT}_{\mathrm{MAX-X}}$ is projected to exceed the PTS screening criteria, then the licensee shall implement those flux reduction programs that are reasonably practicable to avoid exceeding the PTS screening criteria. The schedule for implementation of flux reduction measures may take into account the schedule for review and anticipated approval by the Director of detailed plant-specific analyses which demonstrate acceptable risk with RT_{MAX-X} values above the PTS screening criteria due to plant modifications, new information, or new analysis techniques.

(4) If the analysis required by paragraph (d)(3) of this section indicates that no reasonably practicable flux reduction program will prevent the RT_{MAX-X} value for one or more reactor

vessel beltline materials from exceeding the PTS screening criteria, then the licensee shall perform a safety analysis to determine what, if any, modifications to equipment, systems, and operation are necessary to prevent the potential for an unacceptably high probability of failure of the reactor vessel as a result of postulated PTS events. In the analysis, the licensee may determine the properties of the reactor vessel materials based on available information, research results and plant surveillance data, and may use probabilistic fracture mechanics techniques. This analysis and the description of the modifications must be submitted to the Director in the form of a license amendment at least three years before $\operatorname{RT}_{MAX-X}$ is projected to exceed the PTS screening criteria.

(5) After consideration of the licensee's analyses, including effects of proposed corrective actions, if any, submitted under paragraphs (d)(3) and (d)(4) of this section, the Director may, on a case-by-case basis, approve operation of the facility with RT_{MAX-X} values in excess of the PTS screening criteria. The Director will consider factors significantly affecting the potential for failure of the reactor vessel in reaching a decision. The Director shall impose the modifications to equipment, systems and operations described to meet paragraph (d)(4) of this section

(6) If the Director concludes, under paragraph (d)(5) of this section, that operation of the facility with RT_{MAX-X} values in excess of the PTS screening criteria cannot be approved on the basis of the licensee's analyses submitted under paragraphs (d)(3) and (d)(4) of this section, then the licensee shall request a license amendment, and receive approval by the Director, before any operation beyond the PTS screening criteria. The request must be based on modifications to equipment, systems, and operation of the facility in addition to those previously proposed in the submitted analyses that would reduce the potential for failure of the reactor vessel due to PTS events, or on further analyses based on new information or improved methodology. The licensee must show that the proposed alternatives provide reason10 CFR Ch. I (1–1–16 Edition)

able assurance of adequate protection of the public health and safety.

(7) If the limiting RT_{MAX-X} value of the facility is projected to exceed the PTS screening criteria and the requirements of paragraphs (d)(3) through (d)(6) of this section cannot be satisfied, the reactor vessel beltline may be given a thermal annealing treatment under the requirements of §50.66 to recover the fracture toughness of the material. The reactor vessel may be used only for that service period within which the predicted fracture toughness of the reactor vessel beltline materials satisfy the requirements of paragraphs (d)(1) through (d)(6) of this section, with RT_{MAX-X} values accounting for the effects of annealing and subsequent irradiation.

(e) Examination and flaw assessment requirements. The volumetric examination results evaluated under paragraphs (e)(1), (e)(2), and (e)(3) of this section must be acquired using procedures, equipment and personnel that have been qualified under the ASME Code, Section XI, Appendix VIII, Supplement 4 and Supplement 6, as specified in 10 CFR 50.55a(b)(2)(xv).

(1) The licensee shall verify that the flaw density and size distributions within the volume described in ASME Code, Section XI,¹ Figures IWB-2500-1 and IWB-2500-2 and limited to a depth from the clad-to-base metal interface of 1-inch or 10 percent of the vessel thickness, whichever is greater, do not exceed the limits in Tables 2 and 3 of this section based on the test results from the volumetric examination. The values in Tables 2 and 3 represent actual flaw sizes. Test results from the volumetric examination may be adjusted to account for the effects of NDE-related uncertainties. The methodology to account for NDE-related uncertainties must be based on statistical data from the qualification tests and any other tests that measure the difference between the actual flaw size and the NDE detected flaw size. Licensees who adjust their test data to account for NDE-related uncertainties to

¹For forgings susceptible to underclad cracking the determination of the flaw density for that forging from the licensee's inspection shall exclude those indications identified as underclad cracks.

verify conformance with the values in Tables 2 and 3 shall prepare and submit the methodology used to estimate the NDE uncertainty, the statistical data used to adjust the test data and an explanation of how the data was analyzed for review and approval by the Director in accordance with paragraphs (c)(2)and (d)(2) of this section. The verification of the flaw density and size distributions shall be performed lineby-line for Tables 2 and 3. If the flaw density and size distribution exceeds the limitations specified in Tables 2 and 3 of this section, the licensee shall perform the analyses required by paragraph (e)(4) of this section. If analyses are required in accordance with paragraph (e)(4) of this section, the licensee must address the effects on throughwall crack frequency (TWCF) in accordance with paragraph (e)(5) of this section and must prepare and submit a neutron fluence map in accordance with the requirements of paragraph (e)(6) of this section.

(i) The licensee shall determine the allowable number of weld flaws in the reactor vessel beltline by multiplying the values in Table 2 of this section by the total length of the reactor vessel beltline welds that were volumetrically inspected and dividing by 1000 inches of weld length.

(ii) The licensee shall determine the allowable number of plate or forging flaws in their reactor vessel beltline by multiplying the values in Table 3 of this section by the total surface area of the reactor vessel beltline plates or forgings that were volumetrically inspected and dividing by 1000 square inches.

(iii) For each flaw detected in the inspection volume described in paragraph (e)(1) with a through-wall extent equal to or greater than 0.075 inches, the licensee shall document the dimensions of the flaw, including through-wall extent and length, whether the flaw is axial or circumferential in orientation and its location within the reactor vessel, including its azimuthal and axial positions and its depth embedded from the clad-to-base metal interface.

(2) The licensee shall identify, as part of the examination required by paragraph (c)(2) of this section and any subsequent ASME Code, Section XI ultrasonic examination of the beltline welds, any flaws within the inspection volume described in paragraph (e)(1) of this section that are equal to or greater than 0.075 inches in through-wall depth, axially-oriented, and located at the clad-to-base metal interface. The licensee shall verify that these flaws do not open to the vessel inside surface using surface or visual examination technique capable of detecting and characterizing service induced cracking of the reactor vessel cladding.

(3) The licensee shall verify, as part of the examination required by paragraph (c)(2) of this section and any subsequent ASME Code, Section XI ultrasonic examination of the beltline welds, that all flaws between the cladto-base metal interface and threeeights of the reactor vessel thickness from the interior surface are within the allowable values in ASME Code, Section XI, Table IWB-3510-1.

(4) The licensee shall perform analyses to demonstrate that the reactor vessel will have a TWCF of less than 1 $\times 10^{-6}$ per reactor year if the ASME Code, Section XI volumetric examination required by paragraph (c)(2) or (d)(2) of this section indicates any of the following:

(i) The flaw density and size in the inspection volume described in paragraph (e)(1) exceed the limits in Tables 2 or 3 of this section;

(ii) There are axial flaws that penetrate through the clad into the low alloy steel reactor vessel shell, at a depth equal to or greater than 0.075 inches in through-wall extent from the clad-to-base metal interface; or

(iii) Any flaws between the clad-tobase metal interface and threeeighths² of the vessel thickness exceed the size allowable in ASME Code, Section XI, Table IWB-3510-1.

(5) The analyses required by paragraph (e)(4) of this section must address the effects on TWCF of the known sizes and locations of all flaws detected by the ASME Code, Section XI, Appendix VIII, Supplement 4 and

²Because flaws greater than three-eights of the vessel wall thickness from the inside surface do not contribute to TWCF, flaws greater than three-eights of the vessel wall thickness from the inside surface need not be analyzed for their contribution to PTS.

Supplement 6 ultrasonic examination out to three-eights of the vessel thickness from the inner surface, and may also take into account other reactor vessel-specific information, including fracture toughness information.

(6) For all flaw assessments performed in accordance with paragraph (e)(4) of this section, the licensee shall prepare and submit a neutron fluence map, projected to the date of license expiration, for the reactor vessel beltline clad-to-base metal interface and indexed in a manner that allows the determination of the neutron fluence at the location of the detected flaws.

(f) Calculation of RT_{MAX-X} values. Each licensee shall calculate RT_{MAX-X} values for each reactor vessel beltline material using ϕt . The neutron flux (ϕ [t]), must be calculated using a methodology that has been benchmarked to experimental measurements and with quantified uncertainties and possible biases.³

(1) The values of RT_{MAX-AW} , RT_{MAX-PL} , RT_{MAX-FO} , and RT_{MAX-CW} must be determined using Equations 1 through 4 of this section. When calculating RT_{MAX-AW} using Equation 1, RT_{MAX-AW} is the maximum value of $(RT_{NDT(U)} + \Delta T_{30})$ for the weld and for the adjoining plates. When calculating RT_{MAX-CW} using Equation 4, RT_{MAX-CW} is the maximum value of $(RT_{NDT(U)} + \Delta T_{30})$ for the circumferential weld and for the adjoining plates or forgings.

(2) The values of ΔT_{30} must be determined using Equations 5, 6 and 7 of this section, unless the conditions specified in paragraph (f)(6)(v) of this section are not met, for each axial weld, plate, forging, and circumferential weld. The ΔT_{30} value for each axial weld calculated as specified by Equation 1 of this section must be calculated for the maximum fluence ($\phi t_{AXIAL-WELD}$) occurring along a particular axial weld at the clad-to-base metal interface. The ΔT_{30} value for each plate calculated as specified by Equation 1 of this section must also be calculated using the same value of $\phi t_{AXIAL-WELD}$ used for the axial weld. The ΔT_{30} values in Equation 1 shall be calculated for the weld itself

10 CFR Ch. I (1-1-16 Edition)

and each adjoining plate. The ΔT_{30} value for each plate or forging calculated as specified by Equations 2 and 3 of this section must be calculated for the maximum fluence (ϕt_{MAX}) occurring at the clad-to-base metal interface over the entire area of each plate or forging. In Equation 4, the fluence $(\phi t_{WELD-CIRC})$ value used for calculating the plate, forging, and circumferential weld ΔT_{30} value is the maximum fluence occurring for each material along the circumferential weld at the clad-to-base metal interface. The ΔT_{30} values in Equation 4 shall be calculated for the circumferential weld and for the adjoining plates or forgings. If the conditions specified in paragraph (f)(6)(v) of this section are not met, licensees must propose ΔT_{30} and RT_{MAX-X} values in accordance with paragraph (f)(6)(vi) of this section.

(3) The values of Cu, Mn, P, and Ni in Equations 6 and 7 of this section must represent the best estimate values for the material. For a plate or forging, the best estimate value is normally the mean of the measured values for that plate or forging. For a weld, the best estimate value is normally the mean of the measured values for a weld deposit made using the same weld wire heat number as the critical vessel weld. If these values are not available, either the upper limiting values given in the material specifications to which the vessel material was fabricated, or conservative estimates (i.e., mean plus one standard deviation) based on generic data⁴ as shown in Table 4 of this section for P and Mn, must be used.

(4) The values of $RT_{NDT(U)}$ must be evaluated according to the procedures in the ASME Code, Section III, paragraph NB-2331. If any other method is used for this evaluation, the licensee shall submit the proposed method for review and approval by the Director along with the calculation of RT_{MAX-X} values required in paragraph (c)(1) of this section.

(i) If a measured value of $RT_{NDT(U)}$ is not available, a generic mean value of

³Regulatory Guide 1.190 dated March 2001, establishes acceptable methods for determining neutron flux.

⁴Data from reactor vessels fabricated to the same material specification in the same shop as the vessel in question and in the same time is an example of "generic data."

 $RT_{NDT(U)}$ for the class ⁵ of material must be used if there are sufficient test results to establish a mean.

(ii) The following generic mean values of $RT_{NDT(U)}$ must be used unless justification for different values is provided: 0 °F for welds made with Linde 80 weld flux; and -56 °F for welds made with Linde 0091, 1092, and 124 and ARCOS B-5 weld fluxes.

(5) The value of T_C in Equation 6 of this section must represent the timeweighted average of the reactor cold leg temperature under normal operating full power conditions from the beginning of full power operation through the end of licensed operation.

(6) The licensee shall verify that an appropriate RT_{MAX-X} value has been calculated for each reactor vessel beltline material by considering plant-specific information that could affect the use of the model (*i.e.*, Equations 5, 6 and 7) of this section for the determination of a material's ΔT_{30} value.

(i) The licensee shall evaluate the results from a plant-specific or integrated surveillance program if the surveillance data satisfy the criteria described in paragraphs (f)(6)(i)(A) and (f)(6)(i)(B) of this section:

(A) The surveillance material must be a heat-specific match for one or more of the materials for which RT_{MAX-X} is being calculated. The 30foot-pound transition temperature must be determined as specified by the requirements of 10 CFR part 50, Appendix H.

(B) If three or more surveillance data points measured at three or more different neutron fluences exist for a specific material, the licensee shall determine if the surveillance data show a significantly different trend than the embrittlement model predicts. This must be achieved by evaluating the surveillance data for consistency with the embrittlement model by following the procedures specified by paragraphs (f)(6)(ii), (f)(6)(ii), and (f)(6)(iv) of thissection. If fewer than three surveillance data points exist for a specificmaterial, then the embrittlement model must be used without performing the consistency check.

(ii) The licensee shall estimate the mean deviation from the embrittlement model for the specific data set (i.e., a group of surveillance data points representative of a given material). The mean deviation from the embrittlement model for a given data set must be calculated using Equations 8 and 9 of this section. The mean deviation for the data set must be compared to the maximum heat-average residual given in Table 5 or derived using Equation 10 of this section. The maximum heat-average residual is based on the material group into which the surveillance material falls and the number of surveillance data points. For surveillance data sets with greater than 8 data points, the maximum credible heat-average residual must be calculated using Equation 10 of this section. The value of σ used in Equation 10 of this section must be obtained from Table 5 of this section.

(iii) The licensee shall estimate the slope of the embrittlement model residuals (estimated using Equation 8) plotted as a function of the base 10 logarithm of neutron fluence for the specific data set. The licensee shall estimate the T-statistic for this slope (T_{SURV}) using Equation 11 and compare this value to the maximum permissible T-statistic (T_{MAX}) in Table 6. For surveillance data sets with greater than 15 data points, the T_{MAX} value must be calculated using Student's T distribution with a significance level (α) of 1 percent for a one-tailed test.

(iv) The licensee shall estimate the two largest positive deviations (*i.e.*, outliers) from the embrittlement model for the specific data set using Equations 8 and 12. The licensee shall compare the largest normalized residual (r^*) to the appropriate allowable value from the third column in Table 7 and the second largest normalized residual to the appropriate allowable value from the second column in Table 7.

(v) The ΔT_{30} value must be determined using Equations 5, 6, and 7 of this section if all three of the following criteria are satisfied:

(A) The mean deviation from the embrittlement model for the data set is

 $^{^5 \}mathrm{The}$ class of material for estimating $\mathrm{RT}_{\mathrm{NDT}(U)}$ must be determined by the type of welding flux (Linde 80, or other) for welds or by the material specification for base metal.

§50.61a

equal to or less than the value in Table 5 or the value derived using Equation 10 of this section;

(B) The T-statistic for the slope (T_{SURV}) estimated using Equation 11 is equal to or less than the Maximum permissible T-statistic (T_{MAX}) in Table 6; and

(C) The largest normalized residual value is equal to or less than the appropriate allowable value from the third column in Table 7 and the second largest normalized residual value is equal to or less than the appropriate allowable value from the second column in Table 7. If any of these criteria is not satisfied, the licensee must propose ΔT_{30} and RT_{MAX-X} values in accordance with paragraph (f)(6)(vi) of this section.

(vi) If any of the criteria described in paragraph (f)(6)(v) of this section are not satisfied, the licensee shall review the data base for that heat in detail, including all parameters used in Equa-

10 CFR Ch. I (1–1–16 Edition)

tions 5, 6, and 7 of this section and the data used to determine the baseline Charpy V-notch curve for the material in an unirradiated condition. The licensee shall submit an evaluation of the surveillance data to the NRC and shall propose ΔT_{30} and RT_{MAX-X} values, considering their plant-specific surveillance data, to be used for evaluation relative to the acceptance criteria of this rule. These evaluations must be submitted for review and approval by the Director in the form of a license amendment in accordance with the requirements of paragraphs (c)(1) and (d)(1) of this section.

(7) The licensee shall report any information that significantly influences the RT_{MAX-X} value to the Director in accordance with the requirements of paragraphs (c)(1) and (d)(1) of this section.

(g) Equations and variables used in this section.

 $Equation 1: RT_{MAX - AW} = MAX \left\{ \left[RT_{NDT(U) - plate} + \Delta T_{30 - plate} \right], \left[RT_{NDT(U) - axial weld} + \Delta T_{30 - axial weld} \right] \right\}$

Equation 2: $RT_{MAX - PL} = RT_{NDT(U) - plate} + \Delta T_{30 - plate}$

Equation 3: $RT_{MAX - FO} = RT_{NDT(U) - forging} + \Delta T_{30 - forging}$

 $\begin{array}{l} \mbox{Equation 4: } RT_{MAX \ - \ CW} = MAX \left\{ \begin{bmatrix} RT_{NDT(U) \ - \ plate} + \Delta T_{30 \ - \ plate} \end{bmatrix}, \left[RT_{NDT(U) \ - \ circweld} + \Delta T_{30 \ - \ circweld} \end{bmatrix}, \\ \left\lceil RT_{NDT(U) \ - \ forging} + \Delta T_{30 \ - \ forging} \end{bmatrix} \right\}$

Equation 5: $\Delta T_{30} = MD + CRP$

Equation 6: MD = A × (1 - 0.001718 × T_C) × (1 + 6.13 × P × Mn^{2.471}) × $\phi t_e^{0.5}$

Equation 7: CRP = B × $(1 + 3.77 \times Ni^{1.191})$ × f (Cu_e, P) × g(Cu_e, Ni, ϕt_e)

Where:

P [wt-&%] = phosphorus content Mn [wt-%] = manganese content Ni [wt-%] = nickel content

Cu [wt-%] = copper content

 $A = 1.140 \times 10^{-7}$ for forgings

 $A = 1.561 \times 10^{-7}$ for plates

 $A = 1.301 \times 10^{-7}$ for welds

B = 102.3 for forgings

B = 102.5 for plates in non-Combustion Engineering manufactured vessels B = 135.2 for plates in Combustion Engineering vessels

B = 155.0 for welds

 $\varphi t_e = \varphi t \text{ for } \varphi \ge 4.39 \times 10^{10} \text{ n/cm}^2/\text{sec}$

 $\phi t_e = \phi t \times (4.39 \times 10^{10} / \phi)^{0.2595} \mbox{ for } \phi <\!\!4.39 \times 10^{10} \ n/cm^2/sec$

Where:

- φ [n/cm²/sec] = average neutron flux
- t [sec] = time that the reactor has been in full power operation

 $\phi t [n/cm^2] = \phi \times t$

 $f(\mathrm{Cu}_{\mathrm{e}},\mathrm{P})=0$ for Cu ${\leq}0.072$ $f(Cu_e,P)$ = $[Cu_e\!-\!0.072]^{0.668}$ for Cu >0.072 and $P \leq 0.008$ $f(Cu_e, P) = [Cu_e - 0.072 + 1.359 \times$ $(P-0.008)]^{0.668}$ for Cu >0.072 and P >0.008 Where: $Cu_e = 0$ for $Cu \leq 0.072$

 $Cu_e = MIN$ (Cu, maximum Cu_e) for Cu >0.072 maximum $Cu_e = 0.243$ for Linde 80 welds maximum Cu_e = 0.301 for all other materials

- $g(Cu_e,Ni,\phi t_e) = 0.5 + (0.5 \times tanh)$ $\{[\log_{10}(\varphi t_e) + (1.1390 \times Cu_e) - (0.448 \times Cu_e) - (0$ Ni)-18.120]/0.629}
- Equation 8: Residual (r) = measured ΔT_{30} - predicted ΔT_{30} (by Equations 5, 6 and 7)

Equation 9: Mean deviation for a data set of n data points = $(1/n) \times \sum_{i=1}^{n} r_i$

Equation 10: Maximum credible heataverage residual = $2.33\sigma/n^{0.5}$

Where:

n = number of surveillance data points (sample size) in the specific data set

 σ = standard deviation of the residuals about the model for a relevant material group given in Table 5.

Equation 11:
$$T_{SURV} = \frac{m}{se(m)}$$

Where:

m is the slope of a plot of all of the r values (estimated using Equation 8) versus the base 10 logarithm of the neutron fluence

for each r value. The slope shall be estimated using the method of least squares. se(m) is the least squares estimate of the standard-error associated with the estimated slope value m.

Equation 12:
$$r^* = \frac{r}{\sigma}$$

Where:

 ${\it r}$ is defined using Equation 8 and σ is given in Table 5

Product form and RT _{MAX-X}	$\begin{array}{c} RT_{\mathrm{MAX-X}} \text{ limits [}^\circF] \text{ for different vessel wall thicknesses }^6 \\ (T_{\mathrm{WALL}}) \end{array}$				
values	$T_{\rm WALL} \leq 9.5$ in.	9.5 in. <t<sub>WALL ≤10.5 in.</t<sub>	10.5 in. <t<sub>WALL ≤11.5 in.</t<sub>		
Axial Weld—RT _{MAX-AW}	269 356	230 305	222 293		
Forging without underclad cracks—RT _{MAX-FO} ⁷	356	305	293		
Axial Weld and Plate-RT _{MAX-AW} + RT _{MAX-PL}	538	476	445		
Circumferential Weld—RT _{MAX-CW} ⁸	312	277	269		
Forging with underclad cracks—RT _{MAX-FO} ⁹	246	241	239		

TABLE 1—PTS SCREENING CRITERIA

⁶ Wall thickness is the beltline wall thickness including the clad thickness. ⁷ Forgings without underclad cracks apply to forgings for which no underclad cracks have been detected and that were fab-ricated in accordance with Regulatory Guide 1.43. ⁸ RT_{PTS} limits contribute 1 × 10⁻⁸ per reactor year to the reactor vessel TWCF. ⁹ Forgings with underclad cracks apply to forgings that have detected underclad cracking or were not fabricated in accordance with Regulatory Guide 1.43.

§50.61a

§50.61a

10 CFR Ch. I (1-1-16 Edition)

TABLE 2—ALLOWABLE NUMBE	R OF FLAWS	S IN WELDS
-------------------------	------------	------------

Through-wall ex	Maximum number of flaws per 1,000- inches of weld length in the inspection		
TWE _{MIN}	TWE _{MAX}	volume that are greater than or equal to TWE_{MIN} and less than TWE_{MAX}	
0	0.075	No Limit.	
0.075	0.475	166.70.	
0.125	0.475	90.80.	
0.175	0.475	22.82.	
0.225	0.475	8.66.	
0.275	0.475	4.01.	
0.325	0.475	3.01.	
0.375	0.475	1.49.	
0.425	0.475	1.00.	
0.475	Infinite	0.00.	

TABLE 3—ALLOWABLE NUMBER OF FLAWS IN PLATES AND FORGINGS

Through-wall ex	Maximum number of flaws per 1,000 square-inches of inside surface area in	
TWE _{MIN} TWE _{MAX}		the inspection volume that are greater than or equal to TWE _{MIN} and less than TWE _{MAX} . This flaw density does not in- clude underclad cracks in forgings
0	0.075	No Limit. 8.05. 3.15. 0.85. 0.29. 0.08. 0.01. 0.00.

TABLE 4-CONSERVATIVE ESTIMATES FOR CHEMICAL ELEMENT WEIGHT PERCENTAGES

Materials	Р	Mn
Plates	0.014	1.45
Forgings	0.016	1.11
Welds	0.019	1.63

Table 5—Maximum Heat-Average Residual [$^\circ\text{F}$] for Relevant Material Groups by Number of Available Data Points (Significance Level = 1%)

Material group	σ[°F]		Nun	nber of availa	able data poi	nts	
Material group	Ο[F]	3	4	5	6	7	8
Welds, for Cu >0.072	26.4	35.5	30.8	27.5	25.1	23.2	21.7
Plates, for Cu >0.072	21.2	28.5	24.7	22.1	20.2	18.7	17.5
Forgings, for Cu >0.072	19.6	26.4	22.8	20.4	18.6	17.3	16.1
Weld, Plate or Forging, for Cu ≤0.072	18.6	25.0	21.7	19.4	17.7	16.4	15.3

TABLE 6—T_{\rm MAX} VALUES FOR THE SLOPE DEVIATION TEST (SIGNIFICANCE LEVEL = 1%)

Number of available data points (n)	T _{MAX}
3	31.82
4	6.96
5	4.54
6	3.75
7	3.36
8	3.14
9	3.00
10	2.90
11	2.82
12	2.76
13	2.72
14	2.68
15	2.65

§50.62

TABLE 7—THRESHOLD VALUES FOR THE OUTLIER DEVIATION TEST (SIG	IFICANCE LEVEL = 1%)
--	----------------------

Number of available data points (n)	Second largest allowable nor- malized resid- ual value (r*)	Largest allow- able normal- ized residual value (r*)
3	1.73 1.84 1.93 2.00 2.05 2.11 2.11 2.19 2.23 2.26 2.29	2.71 2.81 2.88 2.93 3.02 3.06 3.09 3.12 3.14 3.17 3.19 3.21

 $[75\ {\rm FR}$ 23, Jan. 4, 2010, as amended at 75 FR 5495, Feb. 3, 2010; 75 FR 10411, Mar. 8, 2010; 75 FR 72653, Nov. 26, 2010]

§50.62 Requirements for reduction of risk from anticipated transients without scram (ATWS) events for light-water-cooled nuclear power plants.

(a) Applicability. The requirements of this section apply to all commercial light-water-cooled nuclear power plants, other than nuclear power reactor facilities for which the certifications required under §50.82(a)(1) have been submitted.

(b) Definition. For purposes of this section, Anticipated Transient Without Scram (ATWS) means an anticipated operational occurrence as defined in appendix A of this part followed by the failure of the reactor trip portion of the protection system specified in General Design Criterion 20 of appendix A of this part.

(c) *Requirements*. (1) Each pressurized water reactor must have equipment from sensor output to final actuation device, that is diverse from the reactor trip system, to automatically initiate the auxiliary (or emergency) feedwater system and initiate a turbine trip under conditions indicative of an ATWS. This equipment must be designed to perform its function in a reliable manner and be independent (from sensor output to the final actuation device) from the existing reactor trip system.

(2) Each pressurized water reactor manufactured by Combustion Engineering or by Babcock and Wilcox must have a diverse scram system from the sensor output to interruption of power to the control rods. This scram system must be designed to perform its function in a reliable manner and be independent from the existing reactor trip system (from sensor output to interruption of power to the control rods).

(3) Each boiling water reactor must have an alternate rod injection (ARI) system that is diverse (from the reactor trip system) from sensor output to the final actuation device. The ARI system must have redundant scram air header exhaust valves. The ARI must be designed to perform its function in a reliable manner and be independent (from the existing reactor trip system) from sensor output to the final actuation device.

(4) Each boiling water reactor must have a standby liquid control system (SLCS) with the capability of injecting into the reactor pressure vessel a borated water solution at such a flow rate, level of boron concentration and boron-10 isotope enrichment, and accounting for reactor pressure vessel volume, that the resulting reactivity control is at least equivalent to that resulting from injection of 86 gallons per minute of 13 weight percent sodium pentaborate decahydrate solution at the natural boron-10 isotope abundance into a 251-inch inside diameter reactor pressure vessel for a given core design. The SLCS and its injection location must be designed to perform its function in a reliable manner. The SLCS initiation must be automatic and must

be designed to perform its function in a reliable manner for plants granted a construction permit after July 26, 1984, and for plants granted a construction permit prior to July 26, 1984, that have already been designed and built to include this feature.

(5) Each boiling water reactor must have equipment to trip the reactor coolant recirculating pumps automatically under conditions indicative of an ATWS. This equipment must be designed to perform its function in a reliable manner.

(6) Information sufficient to demonstrate to the Commission the adequacy of items in paragraphs (c)(1)through (c)(5) of this section shall be submitted to the Commission as specified in §50.4.

(d) Implementation. For each lightwater-cooled nuclear power plant operating license issued before September 27, 2007, by 180 days after the issuance of the QA guidance for non-safety related components, each licensee shall develop and submit to the Commission, as specified in §50.4, a proposed schedule for meeting the requirements of paragraphs (c)(1) through (c)(5) of this section. Each shall include an explanation of the schedule along with a justification if the schedule calls for final implementation later than the second refueling outage after July 26, 1984, or the date of issuance of a license authorizing operation above 5 percent of full power. A final schedule shall then be mutually agreed upon by the Commission and licensee. For each lightwater-cooled nuclear power plant operating license application submitted after September 27, 2007, the applicant shall submit information in its final safety analysis report demonstrating how it will comply with paragraphs (c)(1) through (c)(5) of this section.

[49 FR 26044, June 26, 1984; 49 FR 27736, July
6, 1984, as amended at 51 FR 40310, Nov. 6,
1986; 54 FR 13362, Apr. 3, 1989; 61 FR 39301,
July 29, 1996; 72 FR 49500, Aug. 28, 2007]

§50.63 Loss of all alternating current power.

(a) *Requirements*. (1) Each light-watercooled nuclear power plant licensed to operate under this part, each lightwater-cooled nuclear power plant licensed under subpart C of 10 CFR part 10 CFR Ch. I (1-1-16 Edition)

52 after the Commission makes the finding under §52.103(g) of this chapter, and each design for a light-watercooled nuclear power plant approved under a standard design approval, standard design certification, and manufacturing license under part 52 of this chapter must be able to withstand for a specified duration and recover from a station blackout as defined in §50.2. The specified station blackout duration shall be based on the following factors:

(i) The redundancy of the onsite emergency ac power sources;

(ii) The reliability of the onsite emergency ac power sources;

(iii) The expected frequency of loss of offsite power; and

(iv) The probable time needed to restore offsite power.

(2) The reactor core and associated coolant, control, and protection systems, including station batteries and any other necessary support systems, must provide sufficient capacity and capability to ensure that the core is cooled and appropriate containment integrity is maintained in the event of a station blackout for the specified duration. The capability for coping with a station blackout of specified duration shall be determined by an appropriate coping analysis. Licensees are expected to have the baseline assumptions, analyses, and related information used in their coping evaluations available for NRC review.

(b) Limitation of scope. Paragraph (c) of this section does not apply to those plants licensed to operate prior to July 21, 1988, if the capability to withstand station blackout was specifically addressed in the operating license proceeding and was explicitly approved by the NRC.

(c) Implementation—(1) Information Submittal. For each light-water-cooled nuclear power plant licensed to operate on or before July 21, 1988, the licensee shall submit the information defined below to the Director of the Office of Nuclear Reactor Regulation by April 17, 1989. For each light-water-cooled nuclear power plant licensed to operate

after July 21, 1988, but before September 27, 2007, the licensee shall submit the information defined in this section to the Director of the Office of Nuclear Reactor Regulation, by 270 days after the date of license issuance. For each light-water-cooled nuclear power plant operating license application submitted after September 27, 2007, the applicant shall submit the information defined below in its final safety analysis report.

(i) A proposed station blackout duration to be used in determining compliance with paragraph (a) of this section, including a justification for the selection based on the four factors identified in paragraph (a) of this section;

(ii) A description of the procedures that will be implemented for station blackout events for the duration determined in paragraph (c)(1)(i) of this section and for recovery therefrom; and

(iii) A list of modifications to equipment and associated procedures, if any, necessary to meet the requirements of paragraph (a) of this section, for the specified station blackout duration determined in paragraph (c)(1)(i) of this section, and a proposed schedule for implementing the stated modifications.

(2) Alternate ac source: The alternate ac power source(s), as defined in §50.2, will constitute acceptable capability to withstand station blackout provided an analysis is performed which demonstrates that the plant has this capability from onset of the station blackout until the alternate ac source(s) and required shutdown equipment are started and lined up to operate. The time required for startup and alignment of the alternate ac power source(s) and this equipment shall be demonstrated by test. Alternate ac source(s) serving a multiple unit site where onsite emergency ac sources are not shared between units must have, as a minimum, the capacity and capability for coping with a station blackout in any of the units. At sites where onsite emergency ac sources are shared between units, the alternate ac source(s) must have the capacity and capability as required to ensure that all units can be brought to and maintained in safe shutdown (non-DBA) as defined in §50.2. If the alternate ac

source(s) meets the above requirements and can be demonstrated by test to be available to power the shutdown buses within 10 minutes of the onset of station blackout, then no coping analysis is required.

(3) Regulatory Assessment: After consideration of the information submitted in accordance with paragraph (c)(1) of this section, the Director, Office of Nuclear Reactor Regulation, will notify the licensee of the Director's conclusions regarding the adequacy of the proposed specified station blackout duration, the proposed equipment modifications and procedures, and the proposed schedule for implementing the procedures and modifications for compliance with paragraph (a) this section.

(4) Implementation Schedule: For each light-water-cooled nuclear power plant licensed to operate on or before June 21, 1988, the licensee shall, within 30 days of the notification provided in accordance with paragraph (c)(3) of this section, submit to the Director of the Office of Nuclear Reactor Regulation a schedule commitment for implementing any equipment and associated procedure modifications necessary to meet the requirements of paragraph (a) of this section. This submittal must include an explanation of the schedule and a justification if the schedule does not provide for completion of the modifications within two years of the notification provided in accordance with paragraph (c)(3) of this section. A final schedule for implementing modifications necessary to comply with the requirements of paragraph (a) of this section will be established by the NRC staff in consultation and coordination with the affected licensee.

[53 FR 23215, June 21, 1988, as amended at 63 FR 50480, Sept. 22, 1998; 72 FR 49501, Aug. 28, 2007]

§ 50.64 Limitations on the use of highly enriched uranium (HEU) in domestic non-power reactors.

(a) *Applicability*. The requirements of this section apply to all non-power reactors.

(b) *Requirements*. (1) The Commission will not issue a construction permit after March 27, 1986 for a non-power reactor where the applicant proposes to use highly enriched uranium (HEU) fuel, unless the applicant demonstrates that the proposed reactor will have a unique purpose as defined in §50.2.

(2) Unless the Commission has determined, based on a request submitted in accordance with paragraph (c)(1) of this section, that the non-power reactor has a unique purpose, each licensee authorized to possess and use HEU fuel in connection with the reactor's operation shall:

(i) Not initiate acquisition of additional HEU fuel, if low enriched uranium (LEU) fuel acceptable to the Commission for that reactor is available when it proposes that acquisition; and

(ii) Replace all HEU fuel in its possession with available LEU fuel acceptable to the Commission for that reactor, in accordance with a schedule determined pursuant to paragraph (c)(2) of this section.

(3) If not required by paragraphs (b) (1) and (2) of this section to use LEU fuel, the applicant or licensee must use HEU fuel of enrichment as close to 20% as is available and acceptable to the Commisson.

(c) Implementation. (1) Any request by a licensee for a determination that a non-power reactor has a unique purpose as defined in §50.2 should be submitted with supporting documentation to the Director of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, Washington, DC 20555, by September 29, 1986.

(2) (i) By March 27, 1987 and at 12month intervals thereafter, each licensee of a non-power reactor authorized to possess and use HEU fuel shall develop and submit to the Director of the Office of Nuclear Reactor Regulation a written proposal for meeting the requirements of paragraph (b) (2) or (3) of this section. The licensee shall include in the proposal a certification that Federal Government funding for conversion is available through the Department of Energy (DOE) or other appropriate Federal Agency. The licensee shall also include in the proposal a schedule for conversion, based upon availability of replacement fuel acceptable to the Commisson for that reactor and upon consideration of other factors such as the availability of shipping

10 CFR Ch. I (1–1–16 Edition)

casks, implementation of arrangements for the available financial support, and reactor usage.

(ii) If Federal Government funding for conversion cannot be certified, the proposal's contents may be limited to a statement of this fact. If a statement of non-availability of Federal Government funding for conversion is submitted by a licensee, then it shall be required to resubmit a proposal for meeting the requirements of paragraph (b) (2) or (3) of this section at 12-month intervals.

(iii) The proposal shall include, to the extent required to effect the conversion, all necessary changes in the license, facility, or procedures. Supporting safety analyses should be provided so as to meet the schedule established for conversion. As long as Federal Government funding for conversion is not available, the resubmittal may be a reiteration of the original proposal. The Director of the Office of Nuclear Reactor Regulation shall review the proposal and confirm the status of Federal Government funding for conversion and, if a schedule for conversion has been submitted by the licensee, will then determine a final schedule.

(3) After review of the safety analysis required by paragraph (c)(2), the Director of the Office of Nuclear Reactor Regulation will issue an appropriate enforcement order directing both the conversion and, to the extent consistent with protection of the public health and safety, any necessary changes to the license, facility, or procedures.

[51 FR 6519, Feb. 25, 1986]

§ 50.65 Requirements for monitoring the effectiveness of maintenance at nuclear power plants.

The requirements of this section are applicable during all conditions of plant operation, including normal shutdown operations.

(a)(1) Each holder of an operating license for a nuclear power plant under this part and each holder of a combined license under part 52 of this chapter after the Commission makes the finding under \$52.103(g) of this chapter,

shall monitor the performance or condition of structures, systems, or components, against licensee-established goals, in a manner sufficient to provide reasonable assurance that these structures, systems, and components, as defined in paragraph (b) of this section, are capable of fulfilling their intended functions. These goals shall be established commensurate with safety and. where practical, take into account industry-wide operating experience. When the performance or condition of a structure, system, or component does not meet established goals, appropriate corrective action shall be taken. For a nuclear power plant for which the licensee has submitted the certifications specified in §50.82(a)(1) or 52.110(a)(1) of this chapter, as applicable, this section shall only apply to the extent that the licensee shall monitor the performance or condition of all structures, systems, or components associated with the storage, control, and maintenance of spent fuel in a safe condition, in a manner sufficient to provide reasonable assurance that these structures, systems, and components are capable of fulfilling their intended functions.

(2) Monitoring as specified in paragraph (a)(1) of this section is not required where it has been demonstrated that the performance or condition of a structure, system, or component is being effectively controlled through the performance of appropriate preventive maintenance, such that the structure, system, or component remains capable of performing its intended function.

(3) Performance and condition monitoring activities and associated goals and preventive maintenance activities shall be evaluated at least every refueling cycle provided the interval between evaluations does not exceed 24 months. The evaluations shall take into account, where practical, industry-wide experience. Adjustments operating shall be made where necessary to ensure that the objective of preventing failures of structures, systems, and components through maintenance is appropriately balanced against the objective of minimizing unavailability of structures, systems, and components due to monitoring or preventive maintenance.

(4) Before performing maintenance activities (including but not limited to surveillance, post-maintenance testing, and corrective and preventive maintenance), the licensee shall assess and manage the increase in risk that may result from the proposed maintenance activities. The scope of the assessment may be limited to structures, systems, and components that a risk-informed evaluation process has shown to be significant to public health and safety.

(b) The scope of the monitoring program specified in paragraph (a)(1) of this section shall include safety related and nonsafety related structures, systems, and components, as follows:

(1) Safety-related structures, systems and components that are relied upon to remain functional during and following design basis events to ensure the integrity of the reactor coolant pressure boundary, the capability to shut down the reactor and maintain it in a safe shutdown condition, or the capability to prevent or mitigate the consequences of accidents that could result in potential offsite exposure comparable to the guidelines in \$50.34(a)(1), \$50.67(b)(2), or \$100.11 of this chapter, as applicable.

(2) Nonsafety related structures, systems, or components:

(i) That are relied upon to mitigate accidents or transients or are used in plant emergency operating procedures (EOPs); or

(ii) Whose failure could prevent safety-related structures, systems, and components from fulfilling their safety-related function; or

(iii) Whose failure could cause a reactor scram or actuation of a safety-related system.

(c) The requirements of this section shall be implemented by each licensee no later than July 10, 1996.

[56 FR 31324, July 10, 1991, as amended at 58
FR 33996, June 23, 1993; 61 FR 39301, July 29,
1996; 61 FR 65173, Dec. 11, 1996; 62 FR 47271,
Sept. 8, 1997; 62 FR 59276, Nov. 3, 1997; 64 FR
38557, July 19, 1999; 64 FR 72001, Dec. 23, 1999;
72 FR 49501, Aug. 28, 2007]

EFFECTIVE DATE NOTE: See 64 FR 38551, July 19, 1999, for effectiveness of 50.65 (a)(3) and (a)(4).

§ 50.66 Requirements for thermal annealing of the reactor pressure vessel.

(a) For those light water nuclear power reactors where neutron radiation has reduced the fracture toughness of the reactor vessel materials, a thermal annealing may be applied to the reactor vessel to recover the fracture toughness of the material. The use of a thermal annealing treatment is subject to the requirements in this section. A report describing the licensee's plan for conducting the thermal annealing must be submitted in accordance with §50.4 at least three years prior to the date at which the limiting fracture toughness criteria in §50.61 or appendix G to part 50 would be exceeded. Within three years of the submittal of the Thermal Annealing Report and at least thirty days prior to the start of the thermal annealing, the NRC will review the Thermal Annealing Report and make available the results of its evaluation at the NRC Web site, http:// www.nrc.gov. The licensee may begin the thermal anneal after:

(1) Submitting the Thermal Annealing Report required by paragraph (b) of this section;

(2) The NRC makes available the results of its evaluation of the Thermal Annealing Report at the NRC Web site, *http://www.nrc.gov*; and

(3) The requirements of paragraph (f)(1) of this section have been satisfied.

(b) Thermal Annealing Report. The Thermal Annealing Report must include: a Thermal Annealing Operating Plan; a Requalification Inspection and Test Program; a Fracture Toughness Recovery and Reembrittlement Trend Assurance Program; and an Identification of Changes Requiring a License Amendment.

(1) Thermal Annealing Operating Plan. The thermal annealing operating plan must include:

(i) A detailed description of the pressure vessel and all structures and components that are expected to experience significant thermal or stress effects during the thermal annealing operation;

(ii) An evaluation of the effects of mechanical and thermal stresses and temperatures on the vessel, contain10 CFR Ch. I (1–1–16 Edition)

ment, biological shield, attached piping and appurtenances, and adjacent equipment and components to demonstrate that operability of the reactor will not be detrimentally affected. This evaluation must include:

(A) Detailed thermal and structural analyses to establish the time and temperature profile of the annealing operation. These analyses must include heatup and cooldown rates, and must demonstrate that localized temperatures, thermal stress gradients, and subsequent residual stresses will not result in unacceptable dimensional changes or distortions in the vessel, attached piping and appurtenances, and that the thermal annealing cycle will not result in unacceptable degradation of the fatigue life of these components.

(B) The effects of localized high temperatures on degradation of the concrete adjacent to the vessel and changes in thermal and mechanical properties, if any, of the reactor vessel insulation, and on detrimental effects, if any, on containment and the biological shield. If the design temperature limitations for the adjacent concrete structure are to be exceeded during the thermal annealing operation, an acceptable maximum temperature for the annealing operation using appropriate test data.

(iii) The methods, including heat source, instrumentation and procedures proposed for performing the thermal annealing. This shall include any special precautions necessary to minimize occupational exposure, in accordance with the As Low As Reasonably Achievable (ALARA) principle and the provisions of §20.1206.

(iv) The proposed thermal annealing operating parameters, including bounding conditions for temperatures and times, and heatup and cooldown schedules.

(A) The thermal annealing time and temperature parameters selected must be based on projecting sufficient recovery of fracture toughness, using the procedures of paragraph (e) of this section, to satisfy the requirements of \$50.60 and \$50.61 for the proposed period of operation addressed in the application.

(B) The time and temperature parameters evaluated as part of the thermal annealing operating plan, and supported by the evaluation results of paragraph (b)(1)(ii) of this section, represent the bounding times and temperatures for the thermal annealing operation. If these bounding conditions for times and temperatures are violated during the thermal annealing operation, then the annealing operation is considered not in accordance with the Thermal Annealing Operating Plan, as required by paragraph (c)(1) of this section, and the licensee must comply with paragraph (c)(2) of this section.

(2) Regualification Inspection and Test Program. The inspection and test program to regualify the annealed reactor vessel must include the detailed monitoring, inspections, and tests proposed to demonstrate that the limitations on temperatures, times and temperature profiles, and stresses evaluated for the proposed thermal annealing conditions of paragraph (b)(1)(iv) of this section have not been exceeded, and to determine the thermal annealing time and temperature to be used in quantifying the fracture toughness recovery. The regualification inspection and test program must demonstrate that the thermal annealing operation has not degraded the reactor vessel, attached piping or appurtenances, or the adjacent concrete structures to a degree that could affect the safe operation of the reactor.

(3) Fracture Toughness Recovery and Reembrittlement Trend Assurance Program. The percent recovery of RT_{NDT} and Charpy upper-shelf energy due to the thermal annealing treatment must be determined based on the time and temperature of the actual vessel thermal anneal. The recovery of RT_{NDT} and Charpy upper-shelf energy provide the basis for establishing the post-anneal RT_{NDT} and Charpy upper-shelf energy for each vessel material. Changes in the RT_{NDT} and Charpy upper-shelf energy with subsequent plant operation must be determined using the post-anneal values of these parameters in conjunction with the projected reembrittlement trend determined in accordance with paragraph (b)(3)(ii) of this section. Recovery and reembrittlement evaluations shall include:

(i) Recovery Evaluations. (A) The percent recovery of both RT_{NDT} and Charpy upper-shelf energy must be determined by one of the procedures described in paragraph (e) of this section, using the proposed lower bound thermal annealing time and temperature conditions described in the operating plan.

(B) If the percent recovery is determined from testing surveillance specimens or from testing materials removed from the reactor vessel, then it shall be demonstrated that the proposed thermal annealing parameters used in the test program are equal to or bounded by those used in the vessel annealing operation.

(C) If generic computational methods are used, appropriate justification must be submitted as a part of the application.

(ii) Reembrittlement Evaluations. (A) The projected post-anneal reembrittlement of RT_{NDT} must be calculated using the procedures in §50.61(c), or must be determined using the same basis as that used for the pre-anneal operating period. The projected change due to post-anneal reembrittlement for Charpy upper-shelf energy must be determined using the same basis as that used for the pre-anneal operating period.

(B) The post-anneal reembrittlement trend of both RT_{NDT} and Charpy uppershelf energy must be estimated, and must be monitored using a surveillance program defined in the Thermal Annealing Report and which conforms to the intent of appendix H of this part, "Reactor Vessel Material Surveillance Program Requirements."

(4) Identification of Changes Requiring a License Amendment. Any changes to the facility as described in the final safety analysis report (as updated) which requires a license amendment pursuant to \$50.59(c)(2) of this part, and any changes to the Technical Specifications, which are necessary to either conduct the thermal annealing or to operate the nuclear power reactor following the annealing must be identified. The section shall demonstrate that the Commission's requirements continue to be complied with, and that there is reasonable assurance of adequate protection to the public health and safety following the changes.

(c) Completion or Termination of Thermal Annealing. (1) If the thermal annealing was completed in accordance with the Thermal Annealing Operating Plan and the Requalification Inspection and Test Program, the licensee shall so confirm in writing to the Director, Office of Nuclear Reactor Regulation. The licensee may restart its reactor after the requirements of paragraph (f)(2) of this section have been met.

(2) If the thermal annealing was completed but the annealing was not performed in accordance with the Thermal Annealing Operating Plan and the Requalification Inspection and Test Program, the licensee shall submit a summary of lack of compliance with the Thermal Annealing Operating Plan and the Regualification Inspection and Test Program and a justification for subsequent operation to the Director, Office of Nuclear Reactor Regulation. Any changes to the facility as described in the final safety analysis report (as updated) which are attributable to the noncompliances and which require a license amendment §50.59(c)(2) pursuant to andany changes to the Technical Specifications shall also be identified.

(i) If no changes requiring a license amendment pursuant to \$50.59(c)(2) or changes to Technical Specifications are identified, the licensee may restart its reactor after the requirements of paragraph (f)(2) of this section have been met.

(ii) If any changes requiring a license amendment pursuant to \$50.59(c)(2) or changes to the Technical Specifications are identified, the licensee may not restart its reactor until approval is obtained from the Director, Office of Nuclear Reactor Regulation and the requirements of paragraph (f)(2) of this section have been met.

(3) If the thermal annealing was terminated prior to completion, the licensee shall immediately notify the NRC of the premature termination of the thermal anneal.

(i) If the partial annealing was otherwise performed in accordance with the Thermal Annealing Operating Plan and

10 CFR Ch. I (1–1–16 Edition)

relevant portions of the Requalification Inspection and Test Program, and the licensee does not elect to take credit for any recovery, the licensee need not submit the Thermal Annealing Results Report required by paragraph (d) of this section but instead shall confirm in writing to the Director, Office of Nuclear Reactor Regulation that the partial annealing was otherwise performed in accordance with the Thermal Annealing Operating Plan and relevant portions of the Requalification Inspection and Test Program. The licensee may restart its reactor after the requirements of paragraph (f)(2) of this section have been met.

(ii) If the partial annealing was otherwise performed in accordance with the Thermal Annealing Operating Plan and relevant portions of the Regualification Inspection and Test Program, and the licensee elects to take full or partial credit for the partial annealing, the licensee shall confirm in writing to the Director. Office of Nuclear Reactor Regulation that the partial annealing was otherwise performed in compliance with the Thermal Annealing Operating Plan and relevant portions of the Requalification Inspection and Test Program. The licensee may restart its reactor after the requirements of paragraph (f)(2) of this section have been met.

(iii) If the partial annealing was not performed in accordance with the Thermal Annealing Operating Plan and the Requalification Inspection and Test Program, the licensee shall submit a summary of lack of compliance with the Thermal Annealing Operating Plan and the Regualification Inspection and Test Program and a justification for subsequent operation to the Director, Office of Nuclear Reactor Regulation. Any changes to the facility as described in the final safety analysis report (as updated) which are attributable to the noncompliances and which require a license amendment pursuant to §50.59(c)(2) and any changes to the technical specifications which are required as a result of the noncompliances, shall also be identified.

(A) If no changes requiring a license amendment pursuant to 50.59(c)(2) or

changes to Technical Specifications are identified, the licensee may restart its reactor after the requirements of paragraph (f)(2) of this section have been met.

(B) If any changes requiring a license amendment pursuant to \$50.59(c)(2) or changes to Technical Specifications are identified, the licensee may not restart its reactor until approval is obtained from the Director, Office of Nuclear Reactor Regulation and the requirements of paragraph (f)(2) of this section have been met.

(d) Thermal Annealing Results Report. Every licensee that either completes a thermal annealing, or that terminates an annealing but elects to take full or partial credit for the annealing, shall provide the following information within three months of completing the thermal anneal, unless an extension is authorized by the Director, Office of Nuclear Reactor Regulation:

(1) The time and temperature profiles of the actual thermal annealing;

(2) The post-anneal RT_{NDT} and Charpy upper-shelf energy values of the reactor vessel materials for use in subsequent reactor operation;

(3) The projected post-anneal reembrittlement trends for both $\mathrm{RT}_{\mathrm{NDT}}$ and Charpy upper-shelf energy; and

(4) The projected values of $\mathrm{RT}_{\mathrm{PTS}}$ and Charpy upper-shelf energy at the end of the proposed period of operation addressed in the Thermal Annealing Report.

(e) Procedures for Determining the Recovery of Fracture Toughness. The procedures of this paragraph must be used to determine the percent recovery of ΔRT_{NDT} , R_t , and percent recovery of Charpy upper-shelf energy, R_u . In all cases, R_t and R_u may not exceed 100.

(1) For those reactors with surveillance programs which have developed credible surveillance data as defined in §50.61, percent recovery due to thermal annealing (R_t and R_u) must be evaluated by testing surveillance specimens that have been withdrawn from the surveillance program and that have been annealed under the same time and temperature conditions as those given the beltline material.

(2) Alternatively, the percent recovery due to thermal annealing (R_t and R_u) may be determined from the results

of a verification test program employing materials removed from the beltline region of the reactor vessel⁶ and that have been annealed under the same time and temperature conditions as those given the beltline material.

(3) Generic computational methods may be used to determine recovery if adequate justification is provided.

(f) Public information and participation. (1) Upon receipt of a Thermal Annealing Report, and a minimum of 30 days before the licensee starts thermal annealing, the Commission shall:

(i) Notify and solicit comments from local and State governments in the vicinity of the site where the thermal annealing will take place and any Indian Nation or other indigenous people that have treaty or statutory rights that could be affected by the thermal annealing,

(ii) Publish a notice of a public meeting in the FEDERAL REGISTER and in a forum, such as local newspapers, which is readily accessible to individuals in the vicinity of the site, to solicit comments from the public, and

(iii) Hold a public meeting on the licensee's Thermal Annealing Report.

(2) Within 15 days after the NRC's receipt of the licensee submissions required by paragraphs (c)(1), (c)(2) and (c)(3)(i) through (iii) of this section, the NRC staff shall make available at the NRC Web site, http://www.nrc.gov, a summary of its inspection of the licensee's thermal annealing, and the Commission shall hold a public meeting:

(i) For the licensee to explain to NRC and the public the results of the reactor pressure vessel annealing,

(ii) for the NRC to discuss its inspection of the reactor vessel annealing, and

(iii) for the NRC to receive public comments on the annealing.

(3) Within 45 days of NRC's receipt of the licensee submissions required by paragraphs (c)(1), (c)(2) and (c)(3)(i) through (iii) of this section, the NRC

⁶For those cases where materials are removed from the beltline of the pressure vessel, the stress limits of the applicable portions of the ASME Code Section III must be satisfied, including consideration of fatigue and corrosion, regardless of the Code of record for the vessel design.

staff shall complete full documentation of its inspection of the licensee's annealing process and make available this documentation at the NRC Web site, *http://www.nrc.gov*.

[60 FR 65472, Dec. 19, 1995, as amended at 64 FR 48952, Sept. 9, 1999; 64 FR 53613, Oct. 4, 1999]

EFFECTIVE DATE NOTE: See 64 FR 53582, Oct. 4, 1999, for effectiveness of 50.66 (b) introductory text, paragraphs (b)(4), (c)(2), and (c)(3)(iii).

§50.67 Accident source term.

(a) Applicability. The requirements of this section apply to all holders of operating licenses issued prior to January 10, 1997, and holders of renewed licenses under part 54 of this chapter whose initial operating license was issued prior to January 10, 1997, who seek to revise the current accident source term used in their design basis radiological analyses.

(b) Requirements. (1) A licensee who seeks to revise its current accident source term in design basis radiological consequence analyses shall apply for a license amendment under \$50.90. The application shall contain an evaluation of the consequences of applicable design basis accidents¹ previously analyzed in the safety analysis report.

(2) The NRC may issue the amendment only if the applicant's analysis demonstrates with reasonable assurance that:

(i) An individual located at any point on the boundary of the exclusion area for any 2-hour period following the onset of the postulated fission product release, would not receive a radiation dose in excess of 0.25 Sv $(25 \text{ rem})^2$ total effective dose equivalent (TEDE).

10 CFR Ch. I (1–1–16 Edition)

(ii) An individual located at any point on the outer boundary of the low population zone, who is exposed to the radioactive cloud resulting from the postulated fission product release (during the entire period of its passage), would not receive a radiation dose in excess of 0.25 Sv (25 rem) total effective dose equivalent (TEDE).

(iii) Adequate radiation protection is provided to permit access to and occupancy of the control room under accident conditions without personnel receiving radiation exposures in excess of 0.05 Sv (5 rem) total effective dose equivalent (TEDE) for the duration of the accident.

[64 FR 72001, Dec. 23, 1999]

§ 50.68 Criticality accident requirements.

(a) Each holder of a construction permit or operating license for a nuclear power reactor issued under this part or a combined license for a nuclear power reactor issued under part 52 of this chapter, shall comply with either 10 CFR 70.24 of this chapter or the requirements in paragraph (b) of this section.

(b) Each licensee shall comply with the following requirements in lieu of maintaining a monitoring system capable of detecting a criticality as described in 10 CFR 70.24:

(1) Plant procedures shall prohibit the handling and storage at any one time of more fuel assemblies than have been determined to be safely subcritical under the most adverse moderation conditions feasible by unborated water.

(2) The estimated ratio of neutron production to neutron absorption and leakage (k-effective) of the fresh fuel in the fresh fuel storage racks shall be calculated assuming the racks are loaded with fuel of the maximum fuel assembly reactivity and flooded with unborated water and must not exceed

¹The fission product release assumed for these calculations should be based upon a major accident, hypothesized for purposes of design analyses or postulated from considerations of possible accidental events, that would result in potential hazards not exceeded by those from any accident considered credible. Such accidents have generally been assumed to result in substantial meltdown of the core with subsequent release of appreciable quantities of fission products.

 $^{^{2}2}$ The use of 0.25 Sv (25 rem) TEDE is not intended to imply that this value constitutes an acceptable limit for emergency doses to

the public under accident conditions. Rather, this 0.25 Sv (25 rem) TEDE value has been stated in this section as a reference value, which can be used in the evaluation of proposed design basis changes with respect to potential reactor accidents of exceedingly low probability of occurrence and low risk of public exposure to radiation.

0.95, at a 95 percent probability, 95 percent confidence level. This evaluation need not be performed if administrative controls and/or design features prevent such flooding or if fresh fuel storage racks are not used.

(3) If optimum moderation of fresh fuel in the fresh fuel storage racks occurs when the racks are assumed to be loaded with fuel of the maximum fuel assembly reactivity and filled with low-density hydrogenous fluid, the keffective corresponding to this optimum moderation must not exceed 0.98, at a 95 percent probability, 95 percent confidence level. This evaluation need not be performed if administrative controls and/or design features prevent such moderation or if fresh fuel storage racks are not used.

(4) If no credit for soluble boron is taken, the k-effective of the spent fuel storage racks loaded with fuel of the maximum fuel assembly reactivity must not exceed 0.95, at a 95 percent probability, 95 percent confidence level, if flooded with unborated water. If credit is taken for soluble boron, the k-effective of the spent fuel storage racks loaded with fuel of the maximum fuel assembly reactivity must not exceed 0.95, at a 95 percent probability, 95 percent confidence level, if flooded with borated water, and the k-effective must remain below 1.0 (subcritical), at a 95 percent probability, 95 percent confidence level, if flooded with unborated water.

(5) The quantity of SNM, other than nuclear fuel stored onsite, is less than the quantity necessary for a critical mass.

(6) Radiation monitors are provided in storage and associated handling areas when fuel is present to detect excessive radiation levels and to initiate appropriate safety actions.

(7) The maximum nominal U-235 enrichment of the fresh fuel assemblies is limited to five (5.0) percent by weight.

(8) The FSAR is amended no later than the next update which \$50.71(e) of this part requires, indicating that the licensee has chosen to comply with \$50.68(b).

(c) While a spent fuel transportation package approved under Part 71 of this chapter or spent fuel storage cask approved under Part 72 of this chapter is in the spent fuel pool:

(1) The requirements in §50.68(b) do not apply to the fuel located within that package or cask; and

(2) The requirements in Part 71 or 72 of this chapter, as applicable, and the requirements of the Certificate of Compliance for that package or cask, apply to the fuel within that package or cask.

 $[63\ {\rm FR}\ 63130,\ {\rm Nov.}\ 12,\ 1998,\ {\rm as}\ {\rm amended}\ {\rm at}\ 71\ {\rm FR}\ 66652,\ {\rm Nov.}\ 16,\ 2006]$

§50.69 Risk-informed categorization and treatment of structures, systems and components for nuclear power reactors.

(a) Definitions.

Risk-Informed Safety Class (RISC)-1 structures, systems, and components (SSCs) means safety-related SSCs that perform safety significant functions.

Risk-Informed Safety Class (RISC)-2 structures, systems and components (SSCs) means nonsafety-related SSCs that perform safety significant functions.

Risk-Informed Safety Class (RISC)-3 structures, systems and components (SSCs) means safety-related SSCs that perform low safety significant functions.

Risk-Informed Safety Class (RISC)-4 structures, systems and components (SSCs) means nonsafety-related SSCs that perform low safety significant functions.

Safety significant function means a function whose degradation or loss could result in a significant adverse effect on defense-in-depth, safety margin, or risk.

(b) Applicability and scope of risk-informed treatment of SSCs and submittal/ approval process. (1) A holder of a license to operate a light water reactor (LWR) nuclear power plant under this part; a holder of a renewed LWR license under part 54 of this chapter; an applicant for a construction permit or operating license under this part; or an applicant for a design approval, a combined license, or manufacturing license under part 52 of this chapter; may voluntarily comply with the requirements in this section as an alternative to compliance with the following requirements for RISC-3 and RISC-4 SSCs:

(i) 10 CFR part 21.

(ii) The portion of 10 CFR 50.46a(b) that imposes requirements to conform to Appendix B to 10 CFR part 50.

(iii) 10 CFR 50.49.

(iv) 10 CFR 50.55(e).

(v) The inservice testing requirements in 10 CFR 50.55a(f); the inservice inspection, and repair and replacement (with the exception of fracture toughness), requirements for ASME Class 2 and Class 3 SSCs in 10 CFR 50.55a(g); and the electrical component quality and qualification requirements in Section 4.3 and 4.4 of IEEE 279, and Sections 5.3 and 5.4 of IEEE 603-1991, as incorporated by reference in 10 CFR 50.55a(h).

(vi) 10 CFR 50.65, except for paragraph (a)(4).

(vii) 10 CFR 50.72.

(viii) 10 CFR 50.73.

(ix) Appendix B to 10 CFR part 50.

(x) The Type B and Type C leakage testing requirements in both Options A and B of Appendix J to 10 CFR part 50, for penetrations and valves meeting the following criteria:

(A) Containment penetrations that are either 1-inch nominal size or less, or continuously pressurized.

(B) Containment isolation valves that meet one or more of the following criteria:

(1) The valve is required to be open under accident conditions to prevent or mitigate core damage events;

(2) The valve is normally closed and in a physically closed, water-filled system;

(3) The valve is in a physically closed system whose piping pressure rating exceeds the containment design pressure rating and is not connected to the reactor coolant pressure boundary; or

(4) The valve is 1-inch nominal size or less.

(xi) Appendix A to part 100, Sections VI(a)(1) and VI(a)(2), to the extent that these regulations require qualification testing and specific engineering methods to demonstrate that SSCs are designed to withstand the Safe Shutdown Earthquake and Operating Basis Earthquake.

(2) A licensee voluntarily choosing to implement this section shall submit an application for license amendment 10 CFR Ch. I (1–1–16 Edition)

under §50.90 that contains the following information:

(i) A description of the process for categorization of RISC-1, RISC-2, RISC-3 and RISC-4 SSCs.

(ii) A description of the measures taken to assure that the quality and level of detail of the systematic processes that evaluate the plant for internal and external events during normal operation, low power, and shutdown (including the plant-specific probabilistic risk assessment (PRA), margins-type approaches, or other systematic evaluation techniques used to evaluate severe accident vulnerabilities) are adequate for the categorization of SSCs.

(iii) Results of the PRA review process conducted to meet 50.69(c)(1)(i).

(iv) A description of, and basis for acceptability of, the evaluations to be conducted to satisfy §50.69(c)(1)(iv). The evaluations must include the effects of common cause interaction susceptibility, and the potential impacts from known degradation mechanisms for both active and passive functions, and address internally and externally initiated events and plant operating modes (e.g., full power and shutdown conditions).

(3) The Commission will approve a licensee's implementation of this section if it determines that the process for categorization of RISC-1, RISC-2, RISC-3, and RISC-4 SSCs satisfies the requirements of §50.69(c) by issuing a license amendment approving the licensee's use of this section.

(4) An applicant choosing to implement this section shall include the information in §50.69(b)(2) as part of application. The Commission will approve an applicant's implementation of this section if it determines that the process for categorization of RISC-1, RISC-2, RISC-3, and RISC-4 SSCs satisfies the requirements of §50.69(c).

(c) SSC Categorization Process. (1) SSCs must be categorized as RISC-1, RISC-2, RISC-3, or RISC-4 SSCs using a categorization process that determines if an SSC performs one or more safety significant functions and identifies those functions. The process must:

(i) Consider results and insights from the plant-specific PRA. This PRA must at a minimum model severe accident

scenarios resulting from internal initiating events occurring at full power operation. The PRA must be of sufficient quality and level of detail to support the categorization process, and must be subjected to a peer review process assessed against a standard or set of acceptance criteria that is endorsed by the NRC.

(ii) Determine SSC functional importance using an integrated, systematic process for addressing initiating events (internal and external), SSCs, and plant operating modes, including those not modeled in the plant-specific PRA. The functions to be identified and considered include design bases functions and functions credited for mitigation and prevention of severe accidents. All aspects of the integrated, systematic process used to characterize SSC importance must reasonably reflect the current plant configuration and operating practices, and applicable plant and industry operational experience.

(iii) Maintain defense-in-depth.

(iv) Include evaluations that provide reasonable confidence that for SSCs categorized as RISC-3, sufficient safety margins are maintained and that any potential increases in core damage frequency (CDF) and large early release frequency (LERF) resulting from changes in treatment permitted by implementation of §§ 50.69(b)(1) and (d)(2) are small.

 $\left(v\right)$ Be performed for entire systems and structures, not for selected components within a system or structure.

(2) The SSCs must be categorized by an Integrated Decision-Making Panel (IDP) staffed with expert, plant-knowledgeable members whose expertise includes, at a minimum, PRA, safety analysis, plant operation, design engineering, and system engineering.

(d) Alternative treatment requirements— (1) RISC-1 and RISC 2 SSCs. The licensee or applicant shall ensure that RISC-1 and RISC-2 SSCs perform their functions consistent with the categorization process assumptions by evaluating treatment being applied to these SSCs to ensure that it supports the key assumptions in the categorization process that relate to their assumed performance.

(2) RISC-3 SSCs. The licensee or applicant shall ensure, with reasonable con-

fidence, that RISC-3 SSCs remain capable of performing their safety-related functions under design basis conditions, including seismic conditions and environmental conditions and effects throughout their service life. The treatment of RISC-3 SSCs must be consistent with the categorization process. Inspection and testing, and corrective action shall be provided for RISC-3 SSCs.

(i) Inspection and testing. Periodic inspection and testing activities must be conducted to determine that RISC-3 SSCs will remain capable of performing their safety-related functions under design basis conditions; and

(ii) Corrective action. Conditions that would prevent a RISC-3 SSC from performing its safety-related functions under design basis conditions must be corrected in a timely manner. For significant conditions adverse to quality, measures must be taken to provide reasonable confidence that the cause of the condition is determined and corrective action taken to preclude repetition.

(e) Feedback and process adjustment— (1) RISC-1, RISC-2, RISC-3 and RISC-4 SSCs. The licensee shall review changes to the plant, operational practices, applicable plant and industry operational experience, and, as appropriate, update the PRA and SSC categorization and treatment processes. The licensee shall perform this review in a timely manner but no longer than once every two refueling outages.

(2) *RISC-1 and RISC-2 SSCs.* The licensee shall monitor the performance of RISC-1 and RISC-2 SSCs. The licensee shall make adjustments as necessary to either the categorization or treatment processes so that the categorization process and results are maintained valid.

(3) RISC-3 SSCs. The licensee shall consider data collected in $\S50.69(d)(2)(i)$ for RISC-3 SSCs to determine if there are any adverse changes in performance such that the SSC unreliability values approach or exceed the values used in the evaluations conducted to satisfy $\S50.69(c)(1)(iv)$. The licensee shall make adjustments as necessary to the categorization or treatment processes so that the categorization process and results are maintained valid.

(f) Program documentation, change control and records. (1) The licensee or applicant shall document the basis for its categorization of any SSC under paragraph (c) of this section before removing any requirements under §50.69(b)(1) for those SSCs.

(2) Following implementation of this section, licensees and applicants shall update their final safety analysis report (FSAR) to reflect which systems have been categorized, in accordance with §50.71(e).

(3) When a licensee first implements this section for a SSC, changes to the FSAR for the implementation of the changes in accordance with §50.69(d) need not include a supporting §50.59 evaluation of the changes directly related to implementation. Thereafter, changes to the programs and procedures for implementation of §50.69(d), as described in the FSAR, may be made if the requirements of this section and §50.59 continue to be met.

(4) When a licensee first implements this section for a SSC, changes to the quality assurance plan for the implementation of the changes in accordance with \$50.69(d) need not include a supporting \$50.54(a) review of the changes directly related to implementation. Thereafter, changes to the programs and procedures for implementation of \$50.69(d), as described in the quality assurance plan may be made if the requirements of this section and \$50.54(a) continue to be met.

(g) *Reporting.* The licensee shall submit a licensee event report under §50.73(b) for any event or condition that prevented, or would have prevented, a RISC-1 or RISC-2 SSC from performing a safety significant function.

[69 FR 68047, Nov. 22, 2004]

INSPECTIONS, RECORDS, REPORTS, NOTIFICATIONS

§50.70 Inspections.

(a) Each applicant for or holder of a license, including a construction permit or an early site permit, shall permit inspection, by duly authorized representatives of the Commission, of his records, premises, activities, and of li10 CFR Ch. I (1–1–16 Edition)

censed materials in possession or use, related to the license or construction permit or early site permit as may be necessary to effectuate the purposes of the Act, as amended, including Section 105 of the Act, and the Energy Reorganization Act of 1974, as amended.

(b)(1) Each licensee and each holder of a construction permit shall, upon request by the Director, Office of Nuclear Reactor Regulation or Director, Office of New Reactors, as appropriate, provide rent-free office space for the exclusive use of the Commission inspection personnel. Heat, air conditioning, light, electrical outlets, and janitorial services shall be furnished by each licensee and each holder of a construction permit. The office shall be convenient to and have full access to the facility and shall provide the inspector both visual and acoustic privacy.

(2) For a site with a single power reactor or fuel facility licensed under part 50 or part 52 of this chapter, or a facility issued a manufacturing license under part 52, the space provided shall be adequate to accommodate a fulltime inspector, a part-time secretary and transient NRC personnel and will be generally commensurate with other office facilities at the site. A space of 250 square feet either within the site's office complex or in an office trailer or other onsite space is suggested as a guide. For sites containing multiple power reactor units or fuel facilities, additional space may be requested to accommodate additional full-time inspector(s). The office space that is provided shall be subject to the approval of the Director, Office of New Reactors, or the Director, Office of Nuclear Reactor Regulation. All furniture, supplies and communication equipment will be furnished by the Commission.

(3) The licensee or construction permit holder shall afford any NRC resident inspector assigned to that site, or other NRC inspectors identified by the Regional Administrator as likely to inspect the facility, immediate unfettered access, equivalent to access provided regular plant employees, following proper identification and compliance with applicable access control measures for security, radiological protection and personal safety.