[From the U.S. Government Printing Office, www.gpo.gov]
by Robert J. Livingston CENTER FOR AQUATIC RESEARCH AND RESOURCE MANAGEMENT FLORIDA STATE UNIVERSITY DEPARTMENT OF BIOLOGICAL SCIENCE 136B CONRADI TALLAHASSEE, FL 32306 for NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION THROUGH DEPARTMENT OF ENVIRONMENTAL REGULATION OFFICE OF COASTAL ZONE MANAGEMENT 2600 BLAIR STONE ROAD TALLAHASSEE, FL 32301 ATTN: JAMES W. STOUTAMIRE Ids for this project were provided by the Department of Environmental ulation, Office of Coastal Management, using funds available through the SH onal Oceanic and Atmospheric Administration under the Coastal Zone 3 6'5 agement Act of 1972, as amended. F6 L58 1991 APPLICATION OF SCIENTIFIC DATA TO THE MANAGEMENT OF THE APALACHICOLA OYSTER RESOURCE by Robert J. Livingston CENTER FOR AQUATIC RESEARCH AND RESOURCE MANAGEMENT FLORIDA STATE UNIVERSITY DEPARTMENT OF BIOLOGICAL SCIENCE 136B CONRADI TALLAHASSEE, FL 32306 U.S. DEPARTMENT OF COMMERCE NOAA for COASTAL SERVICES CENTER 2234 SOUTH HOBSON AVENUE CHARLESTON, SC 29405-2413 NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION THROUGH DEPARTMENT OF ENVIRONMENTAL REGULATION OFFICE OF COASTAL ZONE MANAGEMENT 2600 BLAIR STONE ROAD TALLAHASSEE, FL 32301 ATTN: JAMES W. STOUTAMIRE Property of CSC Library ABSTRACT A study was carried out to determine the relationships of habitat variables and productivity indices with oyster production in the Apalachicola Bay system. The data indicate that the reefs in the eastern portion of the estuary were by far the most productive in terms of larval abundance, oyster numbers per unit area, overall oyster abundance, oyster biomass per unit area, and total oyster biomass. These areas were found to have less variation in salinity in addition to relatively high levels of Chlorophyll a and Total Organic Carbon. The various oyster indicators and the mean size of the oysters were inversely related to NH3. The data indicate that the complex combination of river flow, salinity, and water currents, together with physiographic features of the bay, determine the oyster distribution and productivity of the Apalachicola system. There was evidence that oyster disease factors, such as P. marinum, could also play an important role in the inhibition of oyster productivity and that such disease could be strongly dependent on the salinity relationships in the bay. Although salinity is an important feature in the control of the Apalachicola oyster populations (either directly or indirectly), the data indicate that it is not necessarily a straight- forward relationship. The absolute level of salinity, within specific boundaries, could be less important than dynamic changes in such salinity conditions. The statistical analyses indicated that mean oyster numbers were defined best by salinity deviations, temperature, and turbidity whereas the total oyster numbers (which includes both the density and extent of the individual oyster bars) were in some way associated with salinity deviation, chlorophyll a, and Total Organic Carbon. The primary commercial reefs in the bay are in the eastern sections. These reefs are associated with indicators of productivity which means that a combination of different variables have created the conditions for an uneven distribution of oysters in the estuary. The combination of low variation of salinity and relatively high productivity (even after the existing oyster have filtered the water), together with high levels of spatfall and relatively lower infestations of Perkinsus marinum appear to contribute to the high oyster productivity in eastern portions of the system. In areas such as East Hole and Cat Point, the lack of differences between the open and closed spat baskets would indicate that low predation on oyster spat could also be a factor in why such areas are so productive. This particular combination of factors could also be related to the geographic position of the oysters in the Cat Point region with no direct influence of river flow (e.g., lower turbidity), distance from the influx of predators (West Pass, Sikes Cut, Indian Pass), and the possible influence of prevailing currents (Livingston, 1984) that could add to the concentrations of chlorophyll a and organic carbon that are needed by the feeding oysters. Both in terms of numbers and biomass of oysters, Cat Point, East Hole, and Platform are by far the most productive bars in the bay system. Further analyses will be carried out with the information generated in this study and the results of previous studies of the Apalachicola River-estuary will be integrated with such findings to determine the relationship of the various factors that contribute to oyster production in the Apalachicola estuary. PERSONNEL AND ACKNOWLEDGEMENTS The Center for Aquatic Research and Resource Management was established to conduct research in the environmental sciences with particular attention to the development of techniques, evaluation, planning, and analysis for administrative agencies, private industry, educational institutions, and other groups concerned with or interested in the environment. The Center's activities include original research, the development of environmental impact statements, and the publication of symposia, books, or individual scientific papers on a range of topics. Principal investigator: Robert J. Livingston Administration: Stephanie Dillon Della Giblon Data organization and analysis: Jane Jimeian Glenn C. Woodsum Loretta E. Wolfe Senior scientists: Sean E. McGlynn Gary L. Ray Jeffrey G. Holmquist Jutta S. Gegenbach Field collections/laboratory processing: Todd Bevis Michael Chasar Robert L. Howell, IV Laboratory assistants: Octavio Salcedo Matthew V. Phillips Garth F. Winson, IV Nathan Cramer Monica Ross Keith Burnsed George Menendez Ilse Salcedo Christopher Wills Tiffany Ledson We would also acknowledge the following people for providing assistance in this study: Mr. C. Futch and Mr. M. Berrigan of the Florida Department of Natural Resources for their help in organizing the project; Mr. W. Miley and Mr. C. Bailey of the Apalachicola National Estuarine Reserve for their help in the field; Dr. S.M. Ray, for his help in setting up the screening methods for Perkinsus; Mr. J. W. Stoutamire of the Department of Environmental Regulation for administration of the grant; and the staff of the Department of Biological Science (FSU). 2 CONTENTS ABSTRACT PERSONNEL AND ACKNOWLEDGEMENTS 2 BACKGROUND 4 Introduction Objectives METHODS 8 RESULTS 12 Meteorological conditions Physical/chemical conditions in the bay Water temperature Salinity Other variables Nutrients and productivity factors Nutrients (nitrogen and phosphorus) Carbon and chlorophyll a OYSTER ANALYSES 15 Oyster larvae Overall changes in oyster numbers Spatfall comparisons Infestation with Perkinsus marinum Fishing pressure SUMMARY STATISTICAL ANALYSIS 18 HABITAT MAPS 19 REFERENCES 20 APPENDICES 26 Appendix A: Growth histograms of oyster populations in the Apalachicola system. TABLES FIGURES 3 APPLICATION OF SCIENTIFIC DATA TO THE MANAGEMENT OF THE APALACHICOLA OYSTER RESOURCE BACKGROUND Introduction The Apalachicola oyster industry provides over 90% of Florida's oyster catch (Andree, 1983; Livingston, 1983; Livingston and Joyce, 1977). by 1981, the value of the oyster landings approximated $6.5 million, which, with appropriate multipliers, approximates a total sales impact exceeding $11 million for the Apalachicola region (Prochaska and Mulkey, 1983). The oyster industry in the Apalachicola estuary provides almost half of the total income for Franklin County. currently, about 40% of the entire bay system is suitable for oyster growth and 95% of the Apalachicola Bay can support sanitary shellfish production at various times of the year (Whitfield and Beaumariage, 1977). This represents the highest percentage of oyster-growing acreage of all of Florida's estuaries. However, the near destruction of the oyster industry by Hurricane Elena and the subsequent problems with drought, overfishing, pollution and salinity encroachment, have made a thorough investigation of factors controlling oyster productivity a necessity for the adequate management and enhancement of this vital Florida resource. The Apalachicola oyster industry depends on a unique set of physical- chemical and geographical features, which have been well documented (Whitfield and Beaumariage, 1977; Livingston, 1983). There is a considerable data base concerning various aspects of the life history of the American oyster, Crassostrea virginica. Since Galtsoff (1964) published his comprehensive review of this species, numerous studies have been carried out (see Joyce, 1972, for a comprehensive review of the oyster literature up to the early 1970's; more recent reviews have been made by the Louisiana Wildlife and Fisheries Commission [1976], Shumway and Koehn [1982], Sellers and Stanley [1984], Stanley and Sellers, [1986a,b] and Burrel [19861). It is well known that specific environmental factors influence oyster production (Bahr and Lanier, 1981; Cake, 1983; Chatry et al., 1984). such factors include temperature, salinity, substrate, food, water circulation, disease, competition, predation and pollution. A detailed discussion of such factors if given by the Louisiana Wildlife and Fisheries Commission (1976). Various studies have been carried out on the Apalachicola oyster beds. Oysters represent an important part of the biota of the Apalachicola estuary. such factors as temperature, rainfall/river flow (and hence salinity), productivity (allochthonous and autochthonous), bottom type, and predation define the life history of oysters in the Apalachicola estuary (Livingston, 1984). Ingle and Dawson (1951, 1952) noted that temperature is rarely limiting and that the spawning season is one of the longest in the U.S. (April through November). The free-swimming larval stage persists for two weeks. Ingle and Dawson (1952) found that oyster growth in Apalachicola Bay is the most rapid in the U.S. 4 and is continuous throughout the year because of the relatively high year-round temperatures. The reproductive cycle of the Apalachicola Bay oysters has been documented by Hayes and Menzel (1981) and Olquin-Espinoza (1987). It is well-known that successful oyster development depends on an appropriate substrate, such as oyster shells, which can be planted throughout the estuary as cultch to enhance growth. Oyster bar associations include various organisms that prey on oysters (Menzel et al. 1958, 1966). These include boring sponges, polychaete worms, gastropod mollusks (such as Thais haemastoma and Melongena corona), crustaceans (Menippe mercenaria), and fishes (Pogonias cromis). Salinity is the most important limiting factor for oyster populations, but it has been hypothesized that such influence is indirect in that low salinity limits predation by excluding important species such as Thais and Menippe. during periods of high salinity, oyster predation is enhanced and can be considerable. Experiments have shown that oysters over 50 mm in length are rare in unprotected areas of high salinity relative to oysters shielded from predation by baskets.at similar salinities (Menzel et al. 1966). Oyster bars represent a relatively significant habitat in the estuary, accounting for about 7% of the overall aquatic area (Livingston, 1984). The main concentrations of oysters (Crassostrea virginica) lie in St. Vincent Sound and western portions of St. George Sound (Figure 1). Oyster bars, themselves, provide habitat and food for a variety of organisms. The oyster-associated community includes sponges (Cliona vastifica), bryozoans (Membranipora sp.), flatworms (Stylochus frontalis), annelids (Neanthes succinea, Polydora websteri), various arthropod crustaceans (Callinectes sapidus, Menippe mercenaria, Neopanope spp., Petrolisthes armatus), gastropods (Crepidula plana, Melongena corona, Thais haemastoma), and pelecypods (Brachidontes exustus, Chione cancellata) (Menzel et al. 1966). Fishes include blennies (Hypsoblennius spp.), toadfish (Opsanus beta), and black drum (Pogonias cromis) (Cake, 1983). These organisms use the reef for shelter and/or feeding. Salinity controls oyster bar community organization. when salinities are high, various stenohaline, gulf species are able to move into the oyster-rich areas and.feed on the oysters. Low salinity limits such predation by acting as a barrier to those organisms. Species richness and diversity of the oyster-associated populations vary directly with seasonal increases in salinity. During warmer months, extensive oyster mortality in the Apalachicola estuary has been attributed to infection by the pathogen Perkinsus marinus (formerly called Dermocystidium marinum). Young oysters are unaffected by this disease, although up to 50 percent of adult oysters may be killed annually. The relatively long period of high water temperature in the gulf estuaries contributes to such mortality. Two conferences have highlighted specific management problems associated with the Apalachicola oyster industry. According to papers given at an oyster conference sponsored by the Florida Sea Grant College (Andree, 1983), questions were raised concerning the following: 5 1 What is the relationship of oyster size and fishing pressure? Is over fishing a problem, and, if so, what management techniques would be useful to maximize oyster productivity in the estuary? 2. Which areas of the bay system in terms of substrate and water quality) would yield higher oyster productivity through shell planting? Would increased shell planting enhance oyster productivity in the bay? 3. What is the impact of predators on oyster productivity in the bay, and what is the relationship of fresh water flow, salinity, and predation pressure at different times of the year? 4. What is the relationship of oyster productivity and various factors such as rainfall, salinity, and other environmental parameters? The need was noted for a long-range resource plan for oysters, especially as viewed in concert with other resources in the bay system. According to a subsequent oyster industry workshop (Andree and Miley, 1984), the need for an organized body of scientific information concerning the management of the oyster resource was emphasized by a representative of the newly created Marine Fisheries Commission. Additional questions were raised concerning the timing and extent of oyster harvesting in the Apalachicola system. 6 Ob'ectives The overall goal of this project has been to provide scientific information that will lead to improved management and enhanced productivity for the Apalachicola oyster industry. Specific objectives intended to help attain this goal are as follows: 1 . To use existing data and expanded field surveys to evaluate the influence of key environmental factors such as salinity on the growth and production of Apalachicola oyster beds. Seasonal changes in specific features of the estuarine habitats have been investigated for the purpose of evaluating time-based trends of such features in oyster-producing portions of the estuary. 1 2. To determine diagnostic population features such as recruitment, age distribution, and population growth characteristics for analysis of the impact of fishing pressure on different bars in the estuary. Such work has been designed to deal with questions concerning size relationships and the impact of the harvesting of oysters in various portions of the estuary. 3. To develop habitat profiles and habitat suitability models for identification of optimal areas for oyster planting operations (i.e., dropping of oyster shells for production of new oyster bars). 4. To provide information to appropriate user groups for the management of the major oyster-producing areas of the estuary. The information generated from this project can be added to the existing data base for use in management and enhanced productivity of the Apalachicola oyster resource. 7 METHODS Preparatory studies were carried out using data and computer programs that have been established over the past eighteen years. Our research team includes a number of people who have worked in the Apalachicola system. We have carried out various population studies over the years and have established a broad literature on the subject area. Preparatory work was carded out in 1989 to establish study sites and research priorities. Detailed procedures for the preliminary analyses have been established and used before with other DER funded projects. These steps were conducted prior to the actual start of the project. Objective 1: Analysis of the influence of important environmental factors on oyster bed production. Task 1: Gather monthly field data on seasonal changes in water-quality features. After station locations were established, monthly collections of field data were taken concerning seasonal changes in important water quality features from January, 1990 through December, 1990. Specific scientific methods used over the long-term research'effort in the Apalachicola Bay system have been given in a series of publications (Livingston et al., 1974, 1976, 1977, 1978; Livingston, 1975a, 1976a, b, c, d, 1979a, 1981; Livingston and Duncan, 1979; Livingston and Loucks, 1979; Meeter et al., 1979; White et al., 1979:, and such details will not be reviewed here. A parallel group of publications has outlined various management approaches used in conjunction with the scientific effort (Livingston, 1975b, 1976b-e, 1978, 1979a, b, 1980, 1981, 1982a, b, 1983; Livingston and Joyce, 1977; Livingston and Loucks, 1979; Livingston et al., 1974, 1976,.1977, 1978, 19882;. Livingston et al. (1974) outlined the key features of the tri-river drainage systems. The methods of analysis that related salinity to various biological processes in the Apalachicola estuary is given by Livingston (1 979a). Water samples (surface and bottom) were taken at all fixed stations (Figure 1) with a 1 -liter Kemmerer bottle. Temperature and dissolved oxygen were measured with Y.S.I. dissolved oxygen meters. Salinity was determined with a temperature-compensated refractometer calibrated periodically with standard sea-water. Turbidity was taken with a Hach model 2100-A Turbidimeter. Apparent color was analyzed with an American Public Health Association platinum-cobalt standard test. Light penetration was estimated with a standard Secchi disk, and water depth was routinely monitored at each sapling site. The pH was measured with portable pH meters. The date and time, along with appropriate field notes, were recorded at each sampling station. After a discussion with researchers from the Florida Department of Natural Resources (FDNR), a series of stations were chosen that were 8 representative of the research effort being carried out by the two groups (FDNR, FSU). In December, 1989, a joint field trip was undertaken to establish common Loran sitings for the stations. Stations (see Figure J1 Scorpion Paradise North Spur Little Gulley (Dry Bar) St. Vincent Bar Sweet Goodson Cat Point Bar Platform East Hole The Little Gulley (Fry Bar) station was located with the help of DNR personnel I and represents a major experimental oyster bar for the Florida Department of Natural Resources. We took data at three separate sites in this region of the bay (DB1, D62, and D133). Task 2: Gather/analyze samples for chemical content To collect other samples for water quality analysis, sterile plastic bags we re used. Each collection included at least 100 ml of sample. Sample containers were not filled completely; an air space of at least one-fourth the total volume will be maintained. According to established procedures, samples that were not analyzed immediately were placed on ice or refrigerated (1 -40C) and analyzed within six hours or less. Sterile sample containers were filled below the surface of the water; a sweeping motion was used and the open end of the container was kept in the direction of the sweep. Analyses were performed for ammonia (Standard Methods, 15th edition, Nessler reagent method), nitrate nitrogen (Standard Methods, 14th edition, Brucine method), nitrite nitrogen (Standard Methods, 15th edition, diazotization), and orthophosphate (Standard Methods, 15th edition, ascorbic acid method). A Bausch and Lomb spectronic 2000 spectrophoto meter (double beam, 2 nm slit width) was used for all measurements. Surface and bottom water samples were taken monthly at the above sites from January, 1990 through December, 1990. The following factors were analyzed: temperature salinity dissolved oxygen water color turbidity Secchi ammonia nitrate nitrogen 9 J nitrite nitrogen total nitrogen orthophosphate total phosphate dissolved organic carbon particulate organic carbon total organic carbon chlorophyll a,b,c In addition to the above-mentioned oyster stations, the water quality factors were also sampled at a series of other stations as listed below (Figure 1): 1 -Apalachicola Bay 1 a-West Pass 1 b-Sikes Cut 1c-Apalachicola Bay (island bridge) 2-mouth of Apalachicola River 4-East Bay (south) 5a-East Bay (east) A7-mid-Apalachicola Bay G1 -East Point G3-Green Point east R3-north Scipio Creek Al-Apalachicola boat basin A9-St- George boat basin These stations were used in previous studies in the Apalachicola Estuary and will be used for comparative purposes. Methods for determining oyster population characteristics, along with a description of statistical procedures used to identify relationships between environmental parameters and oyster growth pattens, are given below (see Objective 2) Objective 2: Analysis of diagnostic (oyster) population factors (recruitment, age distribution, population growth characteristics) to evaluate potential effects of fishing pressure. Task 3: Gather/analyze samples for monitoring oyster population features. Based on the above considerations, a series of stations was established to monitor oyster population features in areas that are subject to harvesting in comparison with (control)areas that are not harvested. Random samples were taken monthly with standard oyster tongs (1 6-tooth head, 12-foot handles). The tongs were modified, however, so that the head always opened to a uniform 10 width (i.e., constant area sampled, regardless of eater depth). Initially, 30 samples per station were collected in various locations to determine statistically how many samples were needed for representative collections. Tonging efficiency was estimated periodically by diving and removal of all oysters from a series of randomly placed quadrats of known area and comparison of the relative harvests. All oysters were measured to the nearest 1 mm in length. Recent mortality was evaluated according to degree of shell fouling. A condition index will be developed according to the ratio of ash-free dry weight to total weight (flesh plus shell) (see report of workshop of The International Mussel Watch, 1980, for details concerning the calculation and use of this index) (Appendix F, section 3). Task 4: Gather/analyze oyster larvae data Estimates of relative densities of oyster larvae were obtained from 30-sec tows of an 80-micrometer plankton net at each monthly station from April;, 1990 through September, 1990. Samples were preserved in 10% buffered formalin. Spatfall estimates were made by setting out baskets of sun-bleached oyster shells (90-130 mm) near the edges of the oyster reefs at the various sampling sites over this time period. Recruitment and growth analysis were thus part of the overall sampling effort. Objective 3: Analysis of the impact of disease on oyster bars. Task 5: Gather/analyze disease samples Samples of oysters taken during the several of the monthly analyses at permanent stations (see Objective 2) were taken to analyze the level of infection by the fungus Perkinsus marinum. Five oysters from each of the Oyster Bars were assayed to determine the presence of P. marinum. A portion of the gill was placed in fluid thioglycollate medium with antibiotics to retard bacterial growth. The samples were incubated at room temperature in the dark for one week (Ray, 1952). A portion of the tissue was then placed on a slide, shredded, and stained with Lugol's solution. The appearance of spherical cells (cysts) stained a very dark blue was taken as a positive diagnosis for P. marinum. The characteristic blue color is not due to a reaction of the Iodine with starch, but is probably caused by the presence of a glucoside such as saponarin. The culture medium was Difco's Thioglycollate (40.5g/L) rehydrated with Instant Ocean (36g/L) and tubed in 10 mi aloquots. Streptomycin and penicillin solutions were added before inoculation to give concentrations of 1000 units per mi. Complete sterility of the medium was not necessary. The antibiotics retarded bacterial growth and the anaerobiosis of the medium suppressed the growth of molds and protozoa. The temperature was maintained between 18 and 25 degrees, above 25 degrees bacterial growth got out of control. We obtained the best results with gill tissue; heart and mantle rarely showed more than a light infestation. The size of the P. marinum cells after 72 hours of incubation was 90 microns. Each slide was evaluated as follows (Stewart, 1966): Negative; no P. marinurn cells N 0.0 Very Light; I - 10 cells per preparation VL 0.5 Light; 11 -100 cells per preparation - L 1.0 Light Moderate; 101 -800 cells per preparation LM 2.0 Moderate; about 100-300 cells per 25 X field M 3.0 Moderate Heavy; over 300 cells per field MH .4.0 ,Heavy; approx. 1000 cells per field H 5.0 Objective 4: Development of habitat profiles to establish optimal areas for oyster planting with particular application to the ongoing experimental program by the Florida Department of Natural Resources (FDNR) at Dry Bar reef. Task 6: Evaluate conditions at current experimental site (Dry Bar reef:FDNR) and determine most suitable areas for oyster planting in the Apalachicola estuary. Established water quality and sediment data (Appendix A), together with new field surveys, were combined with analyses of the productivity studies (Objective 2) to determine which areas in the Apalachicola Bay system are most suitable for oyster planting. As part of this effort, the various field tests (e.g., water quality, oyster population features,oyster larvae: see above for details) were carried out at the experimental sites at Dry Bar reef as a cooperative effort with the current experimental program of the FDNR. Objective 5: To provide information for management of the Apalachicola oyster resource. Task 7: Produce written quarterly, interim and final reports RESULTS Meteorological conditigns Rainfall conditions prior to the study period (Figure 2) indicate that the period just prior to the 1990 study time was marked by a sustained drought. The Apalachicola and Columbus, Georgia rainfall during the study (Figure 3) was marked by peak falls in February-March (Georgia) and July and September (Apalachicola). This distribution of rain followed that described by Meeter et al. 12 (1979) with the major winter-spring peak in Georgia and summer-early fall peaks in Florida. Apalachicola River flow (Figures 4 and 5) indicate that the March rainfall resulted in a major river flow peak. The maximum flow during March was the highest such event in the 20 year period of record. The mean flow in March, in excess of 2000 m3 sec-1, was the highest over the 20 year period since 1970. The winter flows were generally higher than those that characterized the spring- fall period. From May through October, there were relatively low flows despite the rainfall noted in Florida during this period. Such a pattern is typical (Meeter et al., 1979) as explained by Livingston (1984). The winter river flows broke a drought that existed during the previous two years. Physical/chemical conditions in the bay The raw data for the various physical-chemical factors in the Apalachicola estuary are given in Table 1. Water temperature Representative analyses of estuarine water temperature are shown in Figure 6. Water temperature peaked during August with slightly higher temperatures in the area around Platform reef compared to the St. Vincent bar. The August temperatures were between 32 and 33 OC. Winter low temperatures were noted during February. Salinity Salinity conditions are represented in Figure 7. In general, the salinity levels reflected river flow patterns with the lowest salinities noted during the period from January through April. There were considerable differences noted among the various oyster reef areas. The lowest salinities were noted around Sweet Goodson, , Cat point, Platform, and East Hole. During the summer months, salinities were generally higher in St. Vincent Sound (Scorpion, Paradise) and lower Apalachicola Bay St. (Vincent). Salinity peaks tended to occur during the early summer and fall months although there were different patterns at the various study sites. Differences between surface and bottom levels of salinity also varied on a site to site basis. Areas such as North Spur and Dry Bar had relatively low salinities during the winter and early spring months. The peak salinities for the period of study occurred in June. There was a general decrease in salinity over the ensuing months with another increase in the fall. The bottom salinities were considerably higher than the surface salinities at Dry Bar and North Spur. The seasonal pattern noted at North Spur and Dry Bar was followed in St. Vincent Sound. In eastern portions of Apalachicola Bay and in St, George Sound, there was a different seasonal pattern with the highest levels usually noted during the fall rather than early summer. Areas such as Sweet Goodson, East Hole, and Cat Point had generally lower salinities than the other oyster bars with salinities usually lower than 20 OC.in these areas. The only time that the salinity went above 250C in 13 these areas was during the fall. This was in direct contrast to North Spur, Dry Bar, St. Vincent, Scorpion, and Paradise which routinely had salinities above 25 OC during the summer months. Plat form bar also had slightly higher salinities than those areas such as Cat Point, East Hole, and Sweet Goodson. The orientation of such areas relative to the river runoff and the effects of higher salinity from Sikes Cut, West Pass, and Indian Pass probably added to such observed differences in salinity (Livingston, 1984; Livingston, unpublished data). Other variables Dissolved oxygen was generally high throughout the bay during all seasons of the year. Dissolved oxygen levels at or below 4 mgI-1 occurred at stations 1c (May), East Point Breakwater (August, September), Scipio Boat Basin (September), St. George Boat Basin (May), Dry Bar 1 (June), and Paradise (August). Most of the above areas are known to have reduced water quality due to storm water runoff and marina conditions (Livingston, unpublished data). The oxygen anomaly data generally supported the hypothesis that such levels of D. 0. were due to anthropogenous activities. We attempted to take sediment data from the oyster areas. However, the substrate was such that such samples could not be taken. A critical habitat assessment of the Apalachicola system (Livingston, 1980) gives maps of the various habitats of the estuary. The oyster bar/sediment maps (Figure 7a) The main concentrations of oysters are located in eastern portions of the bay (Cat Point, East Hole). The surrounding substrate here is composed largely of silty sand and shell fragments. East Bay is characterized by silty sand and sandy shell deposits. There is a gradual gradation from silty sand/shell gravel to sand in areas along St. George Island. The necessity of a hard substrate is demonstrated by the fact that for new oyster bars to be established in the bay, shell cuitching is necessary. Nutrients and productivity factors A detailed list of nutrient/productivity data are given in Table 2. Selected factors that are representative of nutrient conditions and productivity in the bay are given in Figure 8. Nutrients, (nitrogen and phgsphorus) There were station-specific seasonal changes in the nutrient concentrations in the bay. At some stations, nitrogen peaked during winter months (St. Vincent) whereas, at others (Apalachicola boat basin), nitrogen levels peaked during summer months. The highest nitrogen levels were noted in some of the boat basins although relatively high nitrogen levels were noted in areas such as the river mouth (2) and Dry Bar. Such levels are probably related to river flow. 14 Phosphorus levels were highest during winter river peaks at some stations (East Bay\, River mouth) whereas summer peaks were prevalent at many of the oyster reef stations. Carbon and chloroph" Chlorophyll a tended to be highest in the various boat basins and areas characterized by stormwater runoff (St. George boat basin, Intracoastal waterway, North Scipio Boat dock, eastern Apalachicola Bay [1c]). Peak levels in such areas were usually noted during the winter. Winter levels of chlorophyll a were also highest at the Cat Point and Platform bars relative to other areas of the bay that are not directly influenced by human activities. Such seasonally high levels of chlorophyll a at the eastern oyster bars were generally higher than the other oyster producing areas of the bay although there was considerable temporal and spatial variability in this factor over the period of study. The various carbon indicators highest in areas such as the boat basins and, as noted previously in terms of low dissolved oxygen and high chlorophyll a, such regions of the bay were probably affected by human activities. These data are consistent with previous studies of the bay (Livingston, unpublished data). Peak levels of the carbon indicators usually were noted during winter/early spring periods. The various carbon levels were comparable in other portions of the bay. although there were the usual spatial and temporal changes that were distinctive in some portions of the bay. The data for the last three months of sampling (October-December) are still being work on along with other analyses of the nutrient/organic carbon relationships of the bay. The above analysis should be considered preliminary and will be finalized at a later date. The preliminary analysis does indicate that there are some real differences in the water quality of the bay and that such differences are related to human activities and the location of oysters in the bay. OYSTER ANALYSES The regression analysis for the length weight transformations are given in Figure 9. The regression fit was relatively good (r2=0.8531152). All weight data concerning oyster distributions is based on these findings. Oyster larvae The various oyster larvae were categorized according to the following types: equal-eyed, equal-umbone, unequal eyed, unequal umbone, straight- hinged. The data for this analysis are shown in Figure 10. As a general rule, the oyster larvae became abundant in most parts of the bay in May. There was an overwhelmingly increased number of oyster larvae at the eastern stations (Platform, Cat Point, East Hole) relative to other portions of the bay. The lowest numbers of oyster larvae were taken at Dry Bar 3. Low numbers were taken at North Spur, Paradise, Scorpion, Sweet Goodson, and St. Vincent Bar. There 15 were moderate numbers of larvae at Dry Bar 1. There is no doubt of an enhanced recruitment potential in the eastern oyster areas of the Apalachicola system with Platform and Cat Point bars having a relatively massive recruitment potential. Overall chanaes in oyster numbers The data concerning the overall changes in oyster abundance (all stations combined) is given in Figure 11. As indicated, oyster numbers were highest during the winter months with a general decrease from April through May. There was another increase in June and July followed by a major decrease in August. Based on previous analyses, the reduction in the spring could have been related to fishing pressure and the summer increase represents recruitment values in the early summer. The decrease in August could have been related to a combination of high summer temperatures, disease, and predation. By September, there was evidence of renewed recruitment and/or reductions in the above phenomena. This review is hypothetical although it is likely that these factors are important in the determination of oyster production in the bay. The detailed size changes of the oyster populations are given in Appendix A. The oyster tong data are reviewed in detail in Table 3. In terms of density (numbers per seven tong sample), Platform was the highest during most of the year followed by East Hole and Cat Point bar. The Dry Bar experimental sites were the next highest in density followed by Scorpion, Sweet Goodson, North Spur, and Paradise, in that order. In general, the eastern oyster reefs were the most densely populated in the bay. Such increased numbers relative to other areas could be associated with the reduced salinities and high chlorophyll values found in this region relative to other parts of the estuary. In terms of time- related density changes (Figure 12), there was considerable variation from station to stations. The numbers at Platform, East Hole, and Cat Point tended to show a pattern The major increases in June at Platform had a pronounced effect on the overall numbers of oysters in the combined analysis. The bars in the western portion of the bay were depauperate by comparison. In terms of relative density (Figure 13), the three eastern bars were responsible for about 50% of the overall afdw biomass of oyster density in the bay. In this case, the three eastern bars were almost equivalent when compared with each other. The reason for this feature of the data lies in the mean sizes of the oysters (Figure 14). The largest oysters in the bay were taken at East Hole followed by Cat Point and Platform. The sizes of oysters at Dry Bar were the next highest. The sizes in the western portion of the bay were the lowest with those at St. Vincent being extremely small. These data are in some ways associated with the salinities in the bay. This association will be examined in more detail below. The general decreases in June and September would reflect periods of recruitment. 16 Spatfall c i The spatfall data are presented in Figure 15. The data reflect the fact that three replicates at each station were taken in two treatments: baskets that were open to predation (o)'and baskets that were closed to the larger predators (c). During mid-June, 1990, there appeared to be spatfall at Platform, St. Vincent, Dry Bar 1 and 2, and Scorpion. By the end of June, with the exception of Platform, there was a general cessation of oyster larvae settings. a situation that was maintained through the 9 August collections. By late August, there was general recruitment increases at Sweet Goodson, East Hole, Dry Bar 2 and 3, and North Spur. In early September, this recruitment continued at Dry Bar 2 and 3,. scorpion, and North Spur. By late September, there was scattered recruitment at Sweet Goodson, East Hole, Dry Bar 1, and North Spur. There were thus very different recruitment patterns concerning numbers and timing at the various oyster bars in the bay. In terms of overall recruitment (Figure 16), the highest numbers of spat were noted at Cat Point followed by Dry Bar 1 and 2, and Paradise. The issue of possible station-specific predation rates on the spatfall of oysters in the bay was analyzed using a one-way ANOVA model (Table 4). There were significant differences in the numbers of spat found between the open and closed treatments at the following stations: Platform and Dry Bar 1,2,3. There were no significant differences in oyster spat numbers between the open and closed baskets at North Spur, Scorpion, East Hole, and Cat Point. These data would indicate that there is no geographic trend in the predation rates on oyster spat in the areas sampled. These results should be qualified in that there were relatively low numbers of spat taken. In this way, we can only use the data as an indication of spatfall predation. Infestation of Perkinsus marinum The data from the evaluation of infestation levels of Perkinsus marinum are presented in Table 5. The lowest infestation rates were noted at Sweet Goodson. Such rates were moderately low at East Hole, Dry Bar 1, and Cat Point. The highest infestation rates were noted at Paradise, Scorpion, North Spur, and Dry Bar 2 and 3. With the exception of Sweet Goodson and Dry Bar 1, which had relatively low to moderate rates throughout, there were mixed numbers at all remaining stations with some form of moderately heavy levels of infestation noted at least once. Dry Bar 3 was the most uniformly infested of the areas analyzed followed closely by moderately heavy infestations at Dry Bar 2 and Scorpion. The levels of infestation were generally dicotomous with the eastern oyster reefs having generally lower rates than the reefs in the western sections of the bay. Dry Bar 1 was an exception to the above generalization. Fishing pressure During previous studies of the Apalachicola oyster reefs (Livingston, 1985-86; unpublished data), there was a concerted effort to account for the effects of fishing pressure on the most productive bars. After Hurricane Elena 17 (fall, 1985), a reporting system was instituted that allowed an accounting of fishing pressure on the reefs. These data have been forwarded to the FSU team by the Florida Department on Natural Resources. However, the current data have not yet been received. As soon as we get the data, we will combine the two studies in an effort to account for the effects of fishing pressure on the oyster bars in the Apalachicola system. This will be carried out in cooperation with the Florida Department of Natural Resources. There is a need for an experimental effort in this regard which we have not been able to carry out because of logistical problems and the lack or resources. As soon as we are able to finish this part of the study, we will present the findings of both studies in an oyster seminar to be given at the headquarters of the Apalachicola National Estuarine Preserve. SUMMARY STATISTICAL ANALYSIS The seasonal data were analyzed using summary statistics (Table 6). The oyster data were converted to totals by using area per reef as a factor. Such data were based on conversations with personnel from the Florida Department of Natural History and from computerized analyses using digitized data taken from historical reports, field studies, and conversations with oystermen (Livingston, unpublished data). The final data base for this part of the analysis is given in Table 7. This analysis is considered as preliminary and more analysis will be carried out with other statistical models as soon as the data base is completed. There are several trends that are apparent in the summarized data (Table 7). In terms of mean numbers and biomass of oysters, the eastern reefs (Cat Point, Platform, East Hole) are the most productive in the bay. Such production is not necessarily dependent solely on the low salinities. In fact, the main factor that is associated with such reefs is the low standard deviation of salinity relative to the other areas of the bay. These three areas are also distinguished by high numbers of larvae and high levels of chlorophyll a and total organic carbon relative to other areas of the Apalachicola estuary. Statistical analyses (Tables 8 and 9) tend to substantiate these observations. mean oysters, numbers and total oyster numbers were inversely correlated with the standard deviation of salinity. Temperature and turbidity were negatively correlated with mean numbers of oysters. Chlorophyll a and POC were positively correlated with total oyster numbers, mean oyster biomass, and total oyster biomass. There were negative correlations of various oyster variables with NI-13. The mean numbers of oyster larvae showed similar relationships with salinity variability, turbidity, and TOC. There were not overt relationships of spatfall numbers with such variables. The data indicate that the level and type of oyster distribution in the bay is dependant on complex salinity conditions (not simply low salinity) and is associated with specific indicators of primary productivity (Chlorophyll a, TOC). The data indicate that water circulation in the bay, together with the physiographic relationship of the oyster bar distribution to sources of high 18 salinity water (e.g., the passes), could play a decisive role in the oyster distribution in the bay. HABITAT MAPS Habitat maps of those variables that had a statistically significant relationship to key oyster variables (Table 9) are given in Figure 17. These maps are a pictorial view of the data described above. The statistical analyses indicated that mean oyster numbers were defined best by salinity deviations, temperature, and turbidity whereas the total oyster numbers (which includes both the density and extent of the individual oyster bars) were in some way associated with salinity deviation, chlorophyll & and Total Organic Carbon. The primary commercial reefs in the bay are in the eastern sections. These reefs are associated with indicators of productivity which means that a combination of different variables have created the conditions for an uneven distribution of oysters in the estuary.-The combination of low variation of salinity and relatively high productivity (even after the existing oyster have filtered the water), together with high levels of spatfall and relatively lower infestations of Perkinsus marinum appear to contribute to the high oyster productivity in eastern portions of the system. In areas such as East Hole and Cat Point, the lack of differences between the open and closed spat baskets would indicate that low predation on oyster spat could also be a factor in why such areas are so productive. This particular combination of factors could also be related to the geographic position of the oysters in the Cat Point region with no direct influence of river flow (e.g., lower turbidity), distance from the influx of predators (West Pass, Sikes Cut, Indian Pass), and the possible influence of prevailing -currents (Livingston, 1984) that could add to the concentrations of chlorophyll a and organic carbon that are needed by the feeding oysters. Both in terms of numbers and biomass of oysters, Cat Point, East Hole, and Platform are by far the most productive bars in the bay system. Further analyses will be carried out with the information generated in this study and the results of previous studies of the Apalachicola River-estuary will be integrated with such findings to determine the relationship of the various factors that contribute to oyster production in the Apalachicola estuary. Given an appropriate substrate, the above areas should be capable of producing relatively high numbers of high quality oysters. We intend to combine the results of the 1985-86 study with the present study to determine, in more detail, the various dynamic processes that contribute to the high oyster production in the Apalachicola system. This analysis will also include the results of various experiments with predation, determinations of the distribution of major oyster predators, and some natural experiments (based on restrictions placed on oystering after Hurricane Elena) with the influence of fishing pressure on the various oyster reefs. Since oystering was selectively introduced on specific reefs during and after an extensive oyster monitoring program, we will have detailed information on how individual oyster reefs reacted to the activation of oystering after a prolonged moratorium. These data, combined with the habitat analyses presented in this report, should give a relatively complete account of the various factors that contribute to the conditions that make the Apalachicola system such a natural producer of oysters. The management implications of such results are obvious. 19 REFERENCES American Public health Association. 1975. Standard methods for the examination of water and wastewater. 14th ed. APHA. New York. American Public Health Association. 1980. Standard methods for the examination of water and wastewater. 15th. ed. APHA. New York. Andree, S. (ed.) 1983. Apalachicola Oyster Industry: Conference Proceedings. Proceedings of a conference held October 6-7, 1982, in Apalachicola Florida. Sea Grant Project No. A/MAP-1. 85 pp. Andree, S., and W. Miley. 1984. Summary Report, Big Bend Industry Workshop held March 2, 1984. Bahr, L.N. and W.P. Lanier. 1981. the ecology of intertidal oyster reefs of the South Atlantic coast: a community profile. U.S. Fish and Wildlife Service, Office of Biological Services, Washington,D.C. FWS/OBS-82/10.57. 37 pp. Burrell, V.G., Jr. 1986. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (South Atlantic)-- American oyster. U.S. Fish Wildl.Serv.Biol. Rep. 82(11.57). U.S. Army Corps of Engineers TR EL-82-4. 17 pp. Cake, E.W., Jr. 1983. habitat suitability index models: Gulf of Mexico American oyster. U.S. Dept.Int.Fish Wildl. Serv. FWS/OBS-82/10.57. 37 pp. Chatry, M., Dugas, R.J. and K.A. Easley, 1983. Optimum salinity regime for oyster production on Louisiana's State Seedgrounds. Contributions in Marine Science 26:81-94. Galtsoff, P.S. 1964. The American oyster Crassostrea virginica (Gmelin) Fishery Bulletin 64:480 pp. Hayes, P.F., and R.W. Menzel. 1981. The reproductive cycle of early setting Crassostrea virginica (Gmelin) in the northern Gulf of Mexico, and its implications for population recruitment. Biol. Bull. 160:80-88. Ingle, R.M. and C.E. Dawson, Jr. 1951. Variation in salinity and its relation to the Florida Oyster. Salinity Variations in Apalachicola Bay. Proc. Gulf. Carib. Fish. Inst. pp.35-42. Ingle, R.M., and C.E. Dawson, Jr. 1952. Growth of the American Oyster, Crassostrea virginica (Gmelin) in Florida Waters. Bull. Mar. Sci. Gulf and Carib. 2:393-404. 20 International Mussel Watch, The. 1980. Report of a workshop sponsored by the Environmental Studies Board, Commission on Natural Resources, National Research Council. 248 pp. Joyce, E.A., Jr. 1972. A partial bibliography of oysters, with annotations. State of Florida Department of Natural Resources. Special Scientific Report No. 34. 846 pp. Levinton, J.S. 1982. Marine Ecology. Prentice-hall, Inc., New Jersey. 526 pp. Livingston, R. J. 1975a. Long-term fluctuations of epibenthic fish and invertebrate populations in Apalachicola Bay, Florida. Fish. Bull. 74:311 - 321. Livingston, R. J. 1975b. Resource management and estuarine function with application to the Apalachicola drainage system (North Florida, U.S.A.). Office of Water and Hazardous Materials, U.S. Environmental Protection Agency: included in final collection of papers (reviewed and published for submission to the Congress of the United States), Estuarine Pollution Control and Assessment, Vol. 1, 3-17. Livingston, R. J. 1976a. Diurnal and seasonal fluctuations of organisms in a north Florida estuary. Est. Coastal Mar. Sci. 4:373-400. Livingston, R. J. 1976b. Avoidance responses of estuarine organisms to storm water runoff and pulp mill effluents. Invited paper, Proceedings of the Third International Estuarine Research Federation Conference, Galveston, Texas. October, 1975. Estuarine Processes 1. 507-522. Livingston, R. J. 1976c. dynamics of organochlorine pesticides in estuarine systems and their effects on estuarine biota. Invited paper, Proceeding of the Third International Estuarine Research Federation Conference, Galveston, Texas. October, 1975. Estuarine Processes 1., 507-522. Livingston, R. J. 1976d. Time as a factor in environmental sampling populations and communities. Invited paper, Symposium on the Biological Monitoring of Water Ecosystems (ed. J. Ca:irns, Jr.). ASTM STP 607: 212- 234. Livingston, R.J. 1976e. Environmental considerations and the management of barrier islands: St. George Island and the Apalachicola Bay system. In: Barrier Islands and Beaches, Technical Proceedings of the 1976 Barrier Islands Workshop, Annapolis, Maryland, May 17-18, 1976. Livingston, R.J. 1978. The Apalachicola dilemma: wetlands priorities, developmental stress, and management initiatives. Invited paper, National Wetland Protection Symposium, environmental law Institute and the Fish and Wildlife Service, U.S. Department of the Interior. pp.163-167. 21 Livingston, R. J. 1979a. Multiple factor interactions and stress in coastal systems: A review of experimental approaches and field implications. In Marine Pollution: Functional Responses. Ed. F. John Vernberg. Academic Press, Inc. New York. pp. 389-413. Livingston, R. J. 1979b. Research, management and the estuarine sanctuary concept: Where are the ties that bind? Proceedings of the Workshop on the National Estuarine Sanctuary Program, The Georg ia Conservancy and The Coastal Society, October, 1979. pp. 50-53. Livingston, R. J. 1980a. Critical habitat assessment of the Apalachicola estuary and associated coastal areas. Unpublished report. Coastal Plains Regional Commission. Livingston, R. J. 1980b. The Apalachicola experiment: Research and management. Oceanus 23:14-21. Livingston, R. J. 1981. Man's impact on the distribution and abundance of sciaenid fishes. Sixth Annual Marine Recreational Fisheries Symposium, Sciaenides: Territorial Demersal Resources. National Marine Fisheries Service. Houston, Texas. Livingston, R. J. 1982a. Long-term biological variability and stress in coastal systems. Second US/USSR Symposium: Biological Aspects of Pollutant Effects on Marine Organisms. pp.52-66. Livingston, R. J. 1982b. Between the idea and reality: An essay on the problems involved in applying scientific data to resource management problems. Working Papers in Science and Technology Studies, eds. A. Donovan and a. L. Berge. Vol.1, no. 1, pp. 31-59. Livingston, R. J. 1983. Resource Atlas of the Apalachicola Estuary. Florida Sea Grant College. Livingston, R. J. 1984. Ecology of the Apalachicola Bay system (northeast Gulf of Mexico): an estuarine profile. Prepared for National Coastal Ecosystems Team. U. S. Fish and Wildlife Service, FWS/OBS-8205. Livingston, R. J., and J. Duncan. 1979. Short- and long-term effects of forestry operations on quarter quality and epibenthic assemblages of a north Florida estuary. Ecological Processes in Coastal and Marine systems, Ed. R. J. Livingston. Plenum Press, New York. Livingston, R. J., and E. a. Joyce. 1977. Proceedings of the Conference on the Apalachicola Drainage System. Florida Marine Research Publications, Cont. #26. Tallahassee, Florida. 177 pp. 22 Livingston, R. J., and 0. Loucks. 1979. Productivity, trophic interactions, and food web relationships in wetlands and associated systems. Pages 101 -119 in Wetland functions and Values: The State of Our Underst@n_ding, American Water Resources Association. Livingston, R. J., R. L. Iverson, R. H. Estabrook,V. E. Keys, and John Taylor, Jr. 1974. Major features of the Apalachicola Bay system: Physiography, biota, and resource management. Florida Scientist 37: 245-271. Livingston, R. J., G. J. Kobylinski, Frank G. Lewis, 111, and Peter F. Sheridan. 1976. Long-term fluctuations of epibenthic fish and invertebrate populations in Apalachicola Bay, Florida. Fishery Bulletin 74: 311-321. Livingston, R. J., P. S. Sheridan, B. G. McLane, F. G. Lewis, 111, and G. G. Kobylinski. 1977. The biota of the Apalachicola Bay system: functional relationships. Florida Department of Natural Resources Marine Research laboratory, Publication # 26. Livingston, R. J., N. Thompson, and D. Meeter. 1978. Long-term variation of organochlorine residues and assemblages of epibenthic organisms in a shallow north Florida (USA) estuary. Marine Biology 46: 355-372. Livingston, R. J., D. Alderson, N. Friedman, S. Keller, B. Minor, J. H. Hankinson, Jr., S. Mashburn, and D. Marston. 1982. Review of the Distribution of Trace Metals in the Apalachicola-Chipola Drainage System. A detailed analysis carried out for the River Committee of the Apalachee Regional Planning Council by the Environmental Service Center (Florida Defenders of the Environment) and the Florida Public Interest Research Group. Louisiana Wildlife and Fisheries Commission. 1976. Barataria Basin: Salinity Changes and Oyster Distribution. Sea Grant Publication No. LSU-T-76-02. 22 pages. - Mahoney, B. M. S., and G. S. Noyes. 1982. Effects of petroleum on feeding and mortality of the American oyster. Arch. Environm. Contam. Toxicol. 11:527-531. Meeter, D.A., R. J. Livingston, and G. Woodsum. 1979. Short and long-term hydrological cycles of the Apalachicola drainage system with application to Gulf coastal populations. Ecological Processes in Coastal and Marine Systems, Ed. R. J. Livingston. Plenum Press, New York. Menzel, R. W., N. C. Hulings, and R. R. Hathaway. 1958. Causes of depletion of oysters in St. Vincent bay, Apalachicola, Florida. Proceedings of the National Shellfisheries Association 48:66-71. 23 Menzel, R. W., N. C. Hulings, and R. R. Hathway. 1966. Oyster abundance in Apalachicola Bay, Florida, in relation to biotic associations influenced by salinity and other factors. Gulf Research Reports 2:73-96. Nichy, R. E., and R. W. Menzel. 1960. Mortality of intertidal and subtidal oysters in Alligator Harbor, Florida. Proc. Nat. Shellf. Assoc. 51:33-41. Olguin-Espinoza, 1., 1987. The reproductive cycle of the oyster Crassostra virginica (Gmelin) in the Apalachicola Bay, Florida. MS Thesis. Department of Oceanography, Florida State University, Tallahassee, Florida. Pauly D. 1982. A method to estimate the stock- recru itme nt relationship of shrimps. Trans. Amer. Fish. Soc. 111:13-20. Prochaska, F. J., and D. Mulkey. 1983. Apalachicola Bay oyster industry: Some economic considerations. In: Apalachicola Oyster Industry: Conference proceedings. Ed., Scott Andree. Florida Sea Grant Report No. 57, pp. 47- 52. Quick, J. A., Jr. and J.. G. Mackin. 1971. Oyster parasitism by Labyrinthomyxa marina in Florida. Pap. 13, Fl. Dept. Nat. Res. 55 pp. Ray, S. M. 1952. A culture technique for the diagnosis of infections with Dermocystidium marinum Mackin, Owen, and Collier in oysters. Science 116, pp. 360-361. Ray, S. M. 1954. Biological studies on Dermocystidium marinum. Ric. Inst. Pan., Special Issue. 114 pp. Russell-Hunter, W. D. 1970. Aquatic Productivity: An Introduction to Some Basic Aspects of Biological Oceanography and Limnology. The Macmillan Company, London. 306 pp. Sellers, M. A. and J. G. Stanley. 1984. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (North Atlantic)--American oyster. U.S. Fish Wildl. Serv. FWS/OBS-82/11.23. U.S. Army corps of Engineers, TR EL-82-4. 15 pp. Shurnway, S. E., and R. K. Koehn. 1982. Oxygen consumption of the American oyster Crassostra virginica. Mar. Ecol. Prog. Ser. 9:59-68. Stanley, J. G., and M. A. Sellers. 1986a. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (Gulf of Mexico)--American oyster. U.S. Fish Wildi. Serv. Biol. Rep. 82(11.64). U.S. Army Corps of Engineers, TR EL-82-4. 25 pp. Stanley, J. G., and M. A. Sellers. 1986b. Species profiles:- life histories and environmental requirements of coastal fishes and invertebrates (Mid- 24 Atlantic)American oyster. U.S. Fish Wildl. Serv. Biol. Rep. 82(11.65). U.S. Army Corps of Engineers, TR EL-82-4. 25 pp. Stewart, V. 1966. Dermocystidium marinum, parasite of Oysters. Salt Water Fisheries leaflet 5, May 1966. White, D. C., R. J. Livingston, R'J. Bobbie, and J. S. Nickels. 1979. Effects of surface composition, water column chemistry, and time of exposure on the composition of the detrital microflora, and associated macrofauna in Apalachicola Bay, Florida. In, R. J. Livingston, ed., Ecological Processes in Coastal and Marine Systems. Plenum Press, New York. pp. 83-116. Whitfield, W. K., Jr. and D. S. Beaumariage. 1977. Shellfish management in Apalachicola Bay: past, present, future. Proceedings of the conference on the Apalachicola drainage system, edited by R. J. Livingston and E. A. Joyce, Jr. pp. 130-140. Florida DNR Marine Research Publication No. 26. St. Petersburg, Florida. 25 APPENDIX A: Data concerning growth frequency analyses of oystert taken in the Apalachicola estuary during the 1990 sampling period. I SCORPION OYSTER GROWTH 250-111, 250 a llel 200 200 %%% %%% 150 150 -100 100 .............. ........ ..... ......... ............ ...... .... ..... ... .... "o"oo 50 50 .... ..... . . . . . . . . . . . 0 8n 2/13/90 r /90 . ......... SCn -4ffi c /90 s s c /9 C) co s c cn C) C:) J co Cn-69 o 0 C> c) C) L Coo'. C)@-LE I --Lcn 01V ow--LL+ C:) -N cn Co C) a) 40 (mcy) Z C) a a 0 0 a 0 C3 0 0 w rl- W LO 14, m C\l in 00 OM 0(.5 0 LU LU W Cl) CPJ U) 0 .. ....... ....... 151+ 141-150 131-140 . . . . . . . . . . . . . .121-130 111-120 101-110 91-100 81-90 -- - -------- -- -80 71 61-70 01-60 ...... -50 41 31-40 .......... 21-30 11-20 1-10 'o C) 0 0 0 0 CD 0 0 0 M ST. VINCENT OYSTER GROWTH 400 400 350 350 300 300 250 250- 200 2007 150 15 100 100 50 50 0-- so 90 sv vIrIT/ 90 s v sv /90 CD Co v C.0 C) c@ I -" C) S 199 0ow C) OcDo --L I, -@ c-n C) N) @ I L , -" CA) + 0 C:) CAT POINT OYSTER GROWTH 11-1, 1--oo "-% 350 350 300 300- 250 lo", .:-250 -200 200 150 150 100 100 50 50 0 Rn 2/18/90 p /9 c P p b Cpn 0 c) 0 CD C) C) DRYBAR1 OYSTER GROWTH 1-10 140 140 11-1 -120 120" 100 100 780 80 '60 60 40 .0001: ........ 40 . . . . . . . . . . . . . . . o 2 ........... 20 . .......... ... ....................... 0 t5 4qg/90 B n D B cn .,a) DBI n 0 C:) (@ -j co C) (.n (@ t --,. -" a - -" lq@ 8 0 8 -1 D B @i 2666/ CC) PO W 0 C-n C) C)C)cj:@.:&+ C:) Ul C) DRYBAR2 OYSTER GROWTH 200, 200 . . . . . . . . . . . . . 180 'ooo,olo 180 160 160 ..-o 140 140-. 120 120" 100 loo 80 80 60 60 40 40 .... ... 20 20 ..... . ........... 0 B ........... .............. .............. /90 B cn@ r@ L) B 9 @O.@ -.L --4 CC) 0 cn (o DBZ 0 C@ DB2n to N) L Co L, Ln C) -.L N) Oow cn DRYBAR3 OYSTER GROWTH 10 600 )o 60 500 400 400 300 300 200 . . . . . .. . . . 100 EAST HOLE OYSTER GROWTH 500 500 450 450 400 400 350 350 300 300 250 250 200 200 150 150 100 100 50 50--: ............. ... ............ 0- ER19 2/14/90 EH /38/90 E /Z6/9 EH /90 E C:)c4 0 C:);. E C)cn C) EHn- C co @ C, to." -, C> Cl - @ @ -.L -., cn O-L IL I -L C)r%) -A 14 C)C4 a cn 0c) 0 C,4c:, C\JCF) Z;), ao a LO CD Ln (D LO a 0 a a--CY) U') '9T m@TMMN N T- 0 (MEn"q -- C) I a I JI LL I I Z C/)Lf) z Qc> z ct2c:) W 0 (/)00 U) uj 0 ---------- 151+ z 0 .. . ........ 141-150 ..... 131-140 121-130 111-120 101-110 91-100 81-90 71-80 61-70 51-60 41-50 31-40 21-30 11-20 1-10 Co LO CD LO C) LO C) LO 0 U) Cl LO Q* 4t Cf) cf) C\J C\J T-- - PARADISE OYSTER GROWTH oo.- 000000 20 20 -*,o 18 18 16 iK: 16 14 14 12 12 ... . . . . . . . 10 10 -8 8 6 6 4 4 Kc* 2 2 o.: p ;8/90 PA p 4? P,&n /90 p p n p /a/9 o a) PAn o 00"Ico 0 C) 0 4h. -@ ra Lm oc>w @.LL+ c)-P,ul 0c) PLATFORM OYSTER GROWTH 1600 1600 1400-:11-11 -1400 ---1200 1200 : - -*' --looo 100 - 800 800- --600 60CI --400 400 --200 200- . . . . . . . . . . . . . . . PPn 2/14/90 0 .... PL 9 S/90 PL Po 'w p -r,0/9 /90 C) r@,@ co oa.@ --, p tmc@ PLn Cl 0 - CD co @o N) 4h- 0 C> rj 'LL + Cn TABLES Table 1: Physical/chemical field data taken in the Apalachicola estuary from January, 1990-September, 1990. Table 2: Laboratory chemical data taken in the Apalachicola estuary from January, 1990-September, 1990. Table 3: Oyster tong data taken in the Apalachicola estuary from February, 1990-September, 1990. Table 4: ANOVA analysis run with spat data from open and closed basket with data run taken in the Apalachicola estuary from January, 1990-September, 1990. Table 5: P. marinum infestation data with oysters taken on the various Apalachicola reefs in June, 1990. Table 6: Summary statistical data for oyster station data. Table 7: Summary data (mean) concerning the oyster populations and physical -chemical habitat analyses. Table 8: Correlation matrix of variables taken in the oyster analysis of the Apalachicola system. Table 9: Regression results (significance = 0.05 or better) of oyster variables vs habitat features. Label I STATION DATE I INE @tL JULP I H bAL I NI I'Y- I CONLAX f I V I (Y I LI'IPLRA I UR- E 1 1/29/90-5 1610S -0'1 2.7 3800 14.3 2 1 2/28/90-S 1202S -0.1 0.9 1 100 14.1 ------------ ......... . 3 1 3/22/90-S 755S -0.1 2 2400 15.5 --- - --------------- ------- -------- -- ------- 4 1 4/14/90-S 904S -0.1 3 4000 18.25 5 1 5/30/90-5 1330S -0.1 14 23500 26.5 ............I.. ........ ........ --------- ........ ------------------------- 6 1 6/27/90-S 1435S -0.1 12 21900 31 7 7/25/90-5 15205 -0.1 18.4 33000 31.5 8 1 8/23/90-S 7305 -0.1 20 -T6 0 -00 30 - ----------------- ---- ------- -------------- ------------- 9- 1 9/5/90-5 549S -0.1 16 30000 31.5 10 1 1/29/90-B 16 10 B -2 7 10000 13.7 ------------------------------ --------- .............. ----------- 2/28/90-B 1202 B -2.1 2.5 3800 14 1 1 ---------- -- ---------------- -- ------------ ----------- ---- ------------ 12 1 3/22/90-B 755 B -1.4 8 1 1000 16 13 1 411 4/90-B 904 B -2.2 6.25 9000 18 --------------- 14 1 5/30/90-B 1330B -2--- 20 --1-3000 26 15 1 6/27/90-B 1435 B -2.2 12.2 22000 31.1 16 1 7/25/90-B 1520B -2.5 19 33000 31 --------------- ----- 17 1 8/23/90-B 730 B -2.5 21 37000 30 18 1 9/5/90-B 549 B -2.5 17 32000 31 - ---------------------------------------- ----------------------- ------------ ............. 19 ------------------ - ---------------- 20 21 - ------------------------- - 22 23 2@ --------- T -------- --------------- 25 Table 1: Physical/chemical field data taken in the, - ------- -------- 26 Apalachicola estuary from January, 1990-September, 1990. 27 28 29 ----------------------- .............. ....................... - -- --------------- 30 31 -T2 ----------------- 33 :@3 d4 K L m N 0 P Q I DO OXYGEN ANOMA[ STATION DATE TIME DEPTH CODE DEPTH SALINITY-2 CONDUCTIVITY 1 1 1.3 1.1 2 1/29/90-S 1630S 1 0 70 8.8 -1.6 22/28/90-S 1318 5 -0.1 0 60 ................I------- - -------------------------- ----------------- ---------- 3 8.6 -1.4 23/22/90-S 714S -O'l 0 5-51 4 9.3 -0.1 24/14/90-S 830 5 -0.1 0 500 .... ............... 5 7.9 0.4 25/30/90-S 1402S -O'l 3 3500 ------------ I-- ---------- 6 7.7 0.6 26/27/90-S 1501 S -0.1 0.9 1500 --------- ---- - - --- - --- 7 7.6 0.8 27/25/90-S 1540S -0.1 14 7000 8 1.1 28/22/90-S 750 S -0.1 27 27000 9 7.8 0.9 29/5/90-S 605S -0.1 13 25000 10 9 -1.1 2 1/29/90-B 1630 B -2.5 0 72 ------------------- -------------- ----- ---- -------------- - ------------- ---------------------------------------- --------------- 11 8.8 -1.5 2 2/28/90-B 1318 B -2.9 -0 60 12 6.4 -3.2 2 3/22/90-B 7 14 B -2.75 0 -9999 13 9 -0.3 2 4/1 4/90-B 830 B -2.8 6.5 9500 --------------- ------------------------ --------------- ---- ---- ---------------------------- ...... ........... ------- ------------------ 14 6.3 -1.1 2 5/30/90-B 14026 -2.75 22000 15 7.6 0.6 2 6/27/90-B 1501 B -3 6 1 1500 6 7.4 0.6 2 7/25/90-B 1540 B -3 11 16000 17 7 - - ----- 0.2 2 8/2-2/90--B-- 750 B -4.5 - -- - -- ---- 29 -9999 18 7 0.1 2 9/5/90-B 605 B -4 19 34000 -- -------------- 19 20 21 22 23 ------ 2-4-. --- -- ----- --- -------- ---------- -------------------------------- 25 26 27 28 29 7 Labe 2 i- 30 31 32 34 Label TEMPERATURE DO OXYGEN ANOMAL b'i A I ION DAIL TIME DEPTH CODE DEPf'R I ------ 13 10.1 -0.6 4 1/29/--9-0--S 1125S -0.1 0 2 14,1 8.4 -2.1 42/26/90-S 905S ----------- .................... -0.1 0 -------------------- - --- - - ------------------------------ -- 1 15 8,2 -2A 43/22/90-3 1500S 0.1 0 4 17.1 8.6 - 1 .2 44/14/90-S --- - ---- I-8-2.8..3 -0.- 1 3.- .-5 5 25.5 7.8 -0.4 45/30/90-5 8445 -0.1 5 . ............ --------- 6 30,5 7.8 0.2 46/27/90-S 744S -0.1 6.2 7 31 6.2 -0.8 - - - -------- 47/25/90-S 920S -0.1 13 8 30 6.2 -0,4 48/22/90-S 8445 -0.1 8.5 --------------------------- 9 31 8 1 49/5/90-S 815S -0.1 -------- W----8 10 13 10.1 -0.6 4 1/29/90-B I125B -1.7 0 11 14.1 8.3 -Z2 42/26/90 6 -------------9-0-5-B ... -1.8 0- 12 16 8,2 -1.8 4 3/22/90-B 1500B -2 0 13 is 8.4 -0.9 4 4/1 4/90-B 1828 B -2 16 14 26 7.2 -0.5 4 5/30/90-B 844 B - 2.5- 12 15 30 6 -1,4 4 6/27/90-B 744 B -2.5 14.1 16 31 5.8 -1,3 47/25/90-B 920 B -2.4 17.2 17 30 5.5 -1 4 8/22/90-B 844 B -2@5 15 18 31 6.8 0 4 9/5/90-B 8 15 B -2.5 20 19 .......... ------------------- 20 21 22 ----------- 23 24 25 -------- 26 --------------- -- ----------------- ------------ 27 ..... ..... ---------------- 28 29 30 31 32 33 _34 AA AB AC AD AE AF AG AH 1 CONDUCTIVITY TEMPERATURE DO OXYGEN ANOMAL STATION DATE TIME DEPTH CODE DEPTH 1 129 --12.7 9 - 1.8 OIA 1/29/90-3 1500S -0.1 2 57 -12.3 8.2 - 2.7 01 A 2/28/90-5 905S -0.1 3 90 17 7 -2.8 Ol A 3/22/90-5 9005 -0.1 ---------- ----- -- - ----- ------- ------- ----- -------- 4 3500 20 8 -1 OIA 4/14/90-S 10465 -0.1 5 8000 25 7.9 -0.3 01 A 5/30/90-5 1 1545 -0.1 6 11000 28.5 7.2 -0.4 Ol A 6/27/90-S 1 1555 -0.1 ---------- 7 22500 29 6.95 -0.3 OIA 7/25/90-S 12525 -0.1 8 15000 29 6.2 - 1 .2 01A 8/23/90-S looos -0 9 13500 29 5.6 1.9 OIA 9/5/90-5 243S -0, 10. 1 15 12 9 -2 OIA 1/29/90-B 1500 B -2. ---------------- ----------------- -------------------- ................... ---- ---------- 1 1 60 12.4 8.1 -2.8 01 A 2/28/90-6 905 B ---3.1 12 180 16 6.4 - 3.6 01 A 3/22/90-B 9,00 B -2.1 13 22500 19.2 6.8 - 1,7 OIA 4114190-6 1046 B -1.5 --------------- ---- ------------------ -- 14 15000 26.5 6.2 - 1. 4 01 A 5/30/90-B I 154B -2.-5 15 25000 29.8 7 -0. 1 01 A 6/27/90-B I 155B -3 16 30500 30.5 6.3 -0.6 01 A 7/25/90-B 1252 B -3 17 27000 31 5.6 - 1.3 01 A 9/5/90-B 243 B -1.5 18. 30000 29 5.7 -1.3 ------------ ----------------- -- ----------------------------------------- -- ---------------- 19 20 21 22 23 24 25 26 ------------ ---- -------------- 27 -- - --------- 28 29 30 31 70 e 1 1 2 5 1 7 32 33 1 341 Label JSALINITY-IA CONDUCTIVITY TEMPERATURE DO OXYbLN ANOMAL STAHON DATE T I ME @01 P i'H CODE 1 9 1 1800 14.6 12.5 2.7 0 1 B 1/29/90-S 1350S 2 3.1 4400 14.1 9.2 -1.1 01B 2/28/890-S 837S 3 4 6000 15.5 8.6 - 1.3 0 1 B 3/22/90-3 956 S 4 10.2 14000 18.5 8.4 -0.6 0 1 B 4/14/90-5 1 130S ------------- - ----- - 5 18.5 30000 25.5 7.9 0.4 0 1 B 5/30/90-5 1 1 15S ............. ------ v-, - 6 17.1 30000 29 6.8 -0.3 0 1 B 6/27/90-S I 129S 7 20-.-5, 31200- 31 7. 1 0.4 0 1 B 7/25/90-S 1225S 81 ------ 28 48000 30 7.6 1 01B 8/22/90-5 156S 9 20 36000 31.5 8 1.301B 9/5/90-S 1 102S 10 17 20000 14 1 1.8 2.4 0 1 B 1/29/90-B 13508 ---------------------------- 1 1 18 23000 14.9 8.1 - 1 -1 B 2/28/90-B 837 B 12 8.5 12000 16 8.4 -1.1 01B 3/22/90-B 956 B 13 10.5 14100 18.5 8.5 -0.4 0 1 B 4/1 4/90-B 1 130 B --------- ---------------------------- 14 21 34000 26 7.4 0.1 01B 5/30/90-B I 1 15 B 15 18 30500 29.5 6.9 -0.1 01B 6/27/90-B I 129B 16 23 41000 31 6.9 0.3 01 B 7/25/90-B 1225 B 17 22 38000 3) 6.5 -0.2 01 B 8/22/90-B 156 B 18 0 1 B 9/5/90-B 1 102 B I---9- -------- ----- -------- ------------------- ---- 20 21 22 23 24 25 ------------ 26 ------------------------- ----- 271 - ------------ -------- 28 29 30 ----- 3-1--- 32 33 34 AS AT AU AV AW AX AY AZ BA IDEPTH SALINITY-113 CONDUCTIVITY TEMPERATURE DO OXYGEN ANOMAI STATION DATE TIME I - 0.1 6.5 8700 14.3 12.6 2.6 0 1 C 1/29/90-S 1237 2 -0.1 2.8 3600 14 9 1.3 01 C 2/26/90-5 1000 -3 -0.1 3 4000 16 8,6 1 .3 01C 3/22/90-5 1032 4 -0.1 1 1 15000 19 9.-4 0.6 01 C 4/1 4/90-S 1 153 5 -0.1 17,5 29000 25 7.4 -0.2 0 1 C 5/30/90-S 1056 6 -O@ 1 19.2 32500 29.2 7.8 0.8 01 C 6/27/90-S 1051 7 -0.1 21.3 37000 30 6,7 -0.1 oic 7/25/90-5 1 150 8 -0.1 22 38000 3-0 6.6 -0. 2 01 C 8/22/90-5 1 10 9 -0.1 20 27500 29.5 6.3 -0. 6 01 C 9/5/90-S 1021 10 -3.5 24 28000 13.7 9 -0.1 01C 1/29/90-B 123 7 ------------ -------------------- ----- ------------------------------ - " 1 1 -4 24 29000 14.5 8.2 -0, 7 01 C 2/26/90-B 1000 12 -3.4 21 27000 17 5A -3.3 01 C 3/22/90-B 1032 13 -4 22.5 31000 18.9 6.9 - 1.4 01 C 411 4/90-B 1 153 -- --------------------------- --------------- 14 -4.5 31 49000 25 5. 6 - 1.4 01 C 5/30/90-B 1056 15- -4.5 27 44100 29 6 -0.7 01 C 6/27/90-B 1051 16 -1.8 27 45000 30 6.2 -0.4 01 C 7/25/90-B 1 150 17 -4 20 36000 30 5.6 - 1.3 01 C 8/22/90-B 1 10 18 -4 25 33500 30 5.4 - 1.3 01 c 9/5/90-B 1021 9- -------- ------ ----------- ------- ------ 20 21 22 23 24 ------- ------- ------- 25 26 27, I-- -------------- 28 29 30 31 70 e I 1 2 32 33 34 Laoe I JULP I H LUUt UEPIH bAL I NI I Y- i U (-UNUU(-IIVIIY ILI'IPLHAIUHL uu OXYUEN ANONAL 5'1 A I fON DA-Tt- -0.1 5.6 7500 14.2 1 1.8 1. 7 05A 1/29/90-S 2 5 -0.1 7.3 12000 12.4 9 - 1.4 05A 2/26/90-S 3 s -0.1 2 2500 15 7.6 - 2.5 05A -3/22/90-5 4 s -0.1 13 17500 19.5 -8 -0.6 05A 4/14/90-S -0.1 18.5 29000 25.5 6.8 -0.7 05A 5/30/90-S ---- ...... -- ---- ........ 6 3 -O'l 18.5 30000 29.1 5.3 - 1.7 05A 6/27/90-S 7 5 - 0.1 18.2 31000 30 5 - 1.9 05A 7/2590-S 8 5 -0.1 16.8 29900 30 6.5 -0.5 05A 8/22/90-S 9 s -0.1 26 43000 29 5.8 - I 05A 1/29/90-B 10 B -4 16 20000 14.2 8.2 3 25A 2/26/90-B I I B -2.9 10.4 15000 12.4 8.7 1.5 05A 3/22/90-B ------ --- ----- -------- ------- ------- - ---------------- 12 B -3 14 19000 16 7 -2.2 05A 4/1 4/90-B 1-3 B -3.4 18.5 21100 19 7 - IA 05A 5/30/90-B 14 B -4 24.5 38000 25.5 3.8 -3.4 05A 6/27/90-B 15 B -3.5- 20 34000 29 5.7 - 1.3 OSA 7/25/90-B 1-6 B - ------ -3.4 19 29500 30 6 -0.9 17 B -3,5 16,5 29900 30 6,2 -0.8 18 B -3.5 28 43000 29 4-.-6. 19 20 21 22 23, 24 25 26 ---------- 27 28 29 30 31 32 33 -- ----------------- 34 BK BL BM BN BO BP BO BR BS ITIME DEPTH CODE DEPTH SALINITY-5A CONDUCTIVITY TEMPERATURE DO OXYGEN ANOMAI STATION I I 145S -0.1 0 215 14.6 9.3 - I OAl 920S -0.1 0.3 435 12 .... 8-.2 --------- ------------------- --2-.-2 OAI 3 1426S -0.1 0 70 17 7.2 -2.6 OAI ---------- --. 4 1840S -0.1 2000 20 8.1 -1.1 OAl 5 857S -0.1 4 6000 -25 8.2 0 OAI 6 805S -0.1 -2 3200 27.9 7.1 -0.8 OAl 7 935 -- S -0.1 6.8 12000 29.2 7.2 -0.3 OAI 8 909 M -0.5 6 1 1000 29.5 5.6 - 1.9 OAI 9. 1 145 B -0.8 0 228 14.2 9.2 - L2 OAI 10 920 B --- - 1 0.7 520 ...... -------- 12 8.8 -2,1 OAl I 1 1426 B -1.25 0 75 17 7 -2,8 OAl 12 1840 B -1.5 1.5 2100 20 8.1 - ].I OAJ 13 857 B -1.7 4.5 8000 25 7.8 -0.4 OAI ------- -------- -------------------- 14 805 B -1.7 5 9 0 0 0 -------- 29 7 -0.6 OAl 15 935 B -1.7 7 13500 29.5 6.5 -0.9 OAI 16 OAl ----------- OAI 17 18 -------- --- ------- ---- --------------------- ----------- - OAl 19 0Al OAl 20 21 - ------ 22 23 24 --- ----- -- ------ ------ ---------- ------ ------- --- 25 26 27 ---------------------- - ----- --- 28 29 ------------- ---------- ---------------- ------ --- - -------------------- 30 ----------- 7 31 Labe @TIME 2 Laoe I JUA I L I DEPTH CODL ULPI H ISALINIIY-OA] CONDUCIIVII'Y I'EMPERAWRE Do - OXYCEg-RZMA[ 11/29/90-5 lloos -011 0 68 13.2 -------- 8--.41 -2@3 22/28/90-S 1226S -0.1 0 80 15.5 . . ...................... 6.8 -1.3 33/22/90-S ------------------------------ 704S -0.1 0 -- --- -82 15 7.8 -2.5 ----------- ------ ----- 44/14/90-S 8 -23 5 -0.1 0 500 17.5 8.8 -0.9 55/30/90-5 141 1 5 -0.1 2.5 3200 27 ---- 7 - I 5 - 0 1 1.1 1800 31,2 7,6 O'l 6T/27/90-5 - 31 7.8 0.4 77/25/90-S.. 15525 -0.1 3.5 6900 -- 88/23/90-5 1 1 12S -0. 1 4 7000 29 5.7 -1.9 99/5/90-S 615S -0.1 3 4000 31 7.8 0.,4 19 9.5 0.2 io Ti/28/90-5 13405 -0. 1 3 3000 ------------------- ------------ ----- ............. @ -11 1/29/90-B I 100 B -2 0 133 --------------- - ------ 12 - - ---------- 3.4 -7.3 12 2/28/90-B 1226 B -1.3 0 80 14.2 8.4 -2 13 3/22/90-B 704B -1.1 0 80 ---------- ----------- 1--5- 7.6 -2.7 14 4/14/90-B ..............................8.2-3-B................ -1.5 0 500 17.5 7.8 -1,9 15 5/30/90-B 141 1 B -1.9 8 13000 25.5 6 -1,9 31.1 7.6 ol 16 @/27/90-B 15 15 B -1.5 1.1 1800 8 0.8 17 7/25/90-8 15525 -1,75 4.9 6900 32 9000 29 5.3 -2.3 18 8/23/90-B 1 1 12 B -- - -------------------- ----- -9 5 32 ------------------------------ 6.3 -0.6 19 @/5/90-B 6 15 B -2 12 25000 20 11/28/90-6 13406 -1.2 2 2500 20 9.5 0.4 21 .... -- ---------------------------------------- ----------------- ------------- --------------------------------- ------- -- - -------------------------- ---------------------- ---------- 22 23 24 25 ------- 2-6 - -------------------------------- ------------ ----------- ----- ---27 28 29 --------- -------- -------------------------- ---------------- ------------- -------- ----------------------------------------- -- -----3-0- 31 32 l 2 1 3 1 4 33 -------- 1 341 cc CD CE CF CG CH cl ci CK I STATION DATE TIME DEPTH CODE DEPTH SALINITY-OA7 CONDUCTIVITY TEMPERATURE DO I JOA7 1/29/90-S 1420S -0.1 2.8 3500 14.6 1 1.8 2 OA7 2/28/90-S 1337S -0.1 3 4000 15.5 9 ------------------------- ------------------ ...... ---------------------- 3 OA7 90- S 7353 -0.1 1 1200 14.5 8.3 4 OA7 4/14/90-5 8483 -0.1 3.25 5000 1 8@2 9.6 5 OA7 5/30/90-S 1345S -0.1 17 29000 26 8 -- ... --------------- 6 OA7 6/27/90-S I I I 1 5 -0.1 15.1 26500 29.8 7.2 7 OA7 7/25/90-S 1207S -0.1 19 34000 30.5 6.6 8 OA7 8/22/90-S 736S -0.1 19 34000 30 6 9.OA7 9/5/90-5 1036S -0.1 19 33000 29 5.6 10 IOA7 1/29/90-B .1420 B -2.8 21.5 26000 14 ------------------------ 7.3 --------------- --------------- 1 1 OA7 2/28/90-B 13 3 7 B -3.1 14 17000 14 7A 12 OA7 3/22/90-B 735 B -2.4 17.5 20000 16.5 7.6 13 OA7 4/1 4/90-B -8-4-8 B---- -3 -------- --I-9----------- 26000 19 5.9 - 14 IOA7 5/30/90-B 1345 B - .3.5 27..5 44000 26 4.6 15 OA7 6/27/90-B I I I I B -4.2 26 43000 29 6.4 16 OA7 7/25/90-B 1207 B -3.3 25 42000 30 6 17 OA7 8/22/90-B 736 B -4 24 43000 29.5 5.8 18 OA7 9/5/90-B 1036B -3.5 24 32000 29 4.2 ------------ - ------- --- ------ ------------------ -------------------------------- ------- ---------------- 19 20 21 22 23 24 25 26, --- -------- --------- ----- 27 28 29 30, 31 7 STATI OA7 2 0 @A7 32 33 34 Label JOXYUEN ANOMAL STATION DATE I IME DEPTH CODE DEPTH SALINITY-OA9 CONDUCTIVITY TEMPERA-TURE 1 1. 6 OA9 1/29/90 S 1300S -0.1 10 16 2 - I OA9 2/26/90-S 1030S -0.1 7.5 9000 12.2 3 -2 OA9 3/22/90-S I 106S -0.1 4 7000 1-6 4 0.2 OA9 4/14/90-S 1210 S -0.1 19 2700-0 19 . ................ 5 O@5 OA9 5/30/90-S 1044S 17 26500 24 28.2 6 0. 1 OA9 6/27/90-5 S -0.1 18.1 31000 7 -0.3 OA9 7/25/90-5 1 1345 -0.1 18.3 31800 30 8 - 1.4 OA9 8/22/90-S 1210S -0.1 15 28000 29 9 - 1.4 OA9 9/5/90-5 1001 S -0.1 27 42000 29 10 - 1. 9- O-A-9 ------------------ 1/29/90-B 1300 B -1.3 1 1.5 13800 14.8 ---------- -------------- ----------- ........... I I - 2.2 OA9 2/26/90-B 1030 B -1.4 8@2 12900 12.2 12 - 1.3 OA9 3/22/90-B I 106B -1.6 9 1 1000 1 --- 6- 1 3 -2.5 OA9 4/1 4/90-B 1210 B -1.9 19.5 27000 19 14 - 2.4 OA9 5/30/90-B 1044 B -:-21 20 32000 25 15 - 0. 4 OA9 6/27/90-B 949 B -2 19.1 32000 28.2 ................. 15 -0.7 OA9 7/25/90-B 1 134 B -1.9 19 32900 29 17. -0.7 OA9 8/22/90-6 1210 B -1@5 16.2 28000 29 181 - 2.6 OA9 9/5/90-B 1001 B -1.8 26 4 -2-0-0 -0 29 -------------- ---------------------- ---------- --- ---- ---------- --------------------- 19 20 21 22. 23 24 25 26 27 28 29 30 31 32 33 r 3-4 t- -------- I CU 31 Cw Cx CY Cz DA DB DC I DO OXYGEN ANOMAL STATION- DATE TIME DEPTH CODE DEPTH SALINITY-061 CONDUCTIVITY 1 1 1.2 1.8001 1/22/90-S 1530S -0.1 8 18000 2 8,3 -2.1 OGI 2/28/90-S 7305 -0.1 1-7 - ------- -------- 19000 ............ 8@8 i -0-G -I------ 3/22/90-S . ....... 1306S -0.1 6 10000 4 7.4 -1 OGI 4/14/90-S 1945S -0.1 16.2 23500 5 6.5 - 1,3 OGI 5/30/90-S 9405 -0.1 23 35500 6 5.9 - 1.3 OG I 6/27/90-S 10295 --O.l 19.2 32500 7 5.6- - 1.3 OGI 7/25/90-S 10355 -0.1 21 36000 8 5.8 - 1.4 OG 1 8/22/90-S 1020S -0.1 16 30000 9 5.2 - 1.5 OGI 9/5/90-S 855S -0.1 25 41000 10 11.8 2.2 OG I i /22/90-B 1530B -3 10 -9999 -------------------- ----------- - -- ------- --------------- I 1 9 - 1.4 OG I 2/28/90-B 730 B -2 ---------------- -19 23000 12 - ------------- 9 -0.5 OG I 3/22/890-B 1306 B -2 12 16000 13 7.5 -0.9 OG1 4/1 4/90-B 1945 B --------------- -------- ---------------- 1-8@ ------ -------------- 25000 14 4 3 --5 .-0-G -I------- 5/30/90-B 940 B -3.2 23 35500 15 5.4 1.7 001 6/27/90-B 1029 B -2,4 20 33300 16 5.4 -1.606-1 7/25/90-B 103 -5 B ---- ------------- -3 21 36000 8/22/90-B 1020 B -2.75 19 33000 17 5.4 - 1.7 OG1 18 5.2 - 1.6 OG1 9/5/90-6 8556 -3 25 39000 19 20 - 21 ----------------------------------------- ------------ 22 23 24 -- ----------------- -- ----------------- --- 25 26 -------- 271 - I-- --------------- 28 29 ----------------- 30 31 7 Labe DO 3 1 32 33 34 Laoe I I LIIPEHA I UHE DO OXYGEN ANOMAL b I A I ION DATE C IME DEPTH CODE DEPTH SALINITY-003 1 14.5 10.6 0.7 OG3 1/29/90-S 840S -0.1 19 2 13.9 8.5 -1 063 1/22/90-5 0 s -0.1 29 ---------------------- 3 18.5 9 -0.2 OR3 1/29/90-S 1615S -0.1 0 4 21 7.2 - I OR3 2/28/90- 12585 --0.-1 0 5 25 5.6 - 1.8 OR3 3/22/90-S 640S -0.1 0 6 28.5 4.8 -2.3 OR3 ---4/14/90-S 2025S -0.1 0 7 30.2 3.9 -2.9 OR3 5/30/90-S 805S -0.1 2 8 30 4.8 OR 3 6/27/90-S 714S -0.1 1.8 9 29 3.8 - 3 OR3 7/25/90-5 8405 -0.1 3.9 10 14 10.2 0.3 OR3 8/22/90-S 800S -0.1 3 11 14.5 8.5 -0.7 OR3 9/5/90-S 7455 -O'l 4.5 --------------- 1-2 17 .7.2 - 1.9 OR3 10/29/90-3 757S -0.1 5 13 20 6.8 - 1.5 OR3 11/28/90-S 14153 -0.1 2 14 25 5.2 -2.2 OG3 2/26/90-M 725 M -0.3 7.5 ---------- --- 15 28.9 - --- --- 5.1 - 1.9 OG3 3-./22/90-M 1701 M -0.375 17 16 30 4,8 -20G3 4/14/90-M 2153 M -0.2 20.5 17 30 3.8 -3.1 003 -.5/30/90-N 1550 N -0.2 18 18 29 3.7 -3.1 OG3 6/27/90-M 1829 N -0.3 24 ---------- ------- -1 9- OG3 7/25/90-M 1742 M -0.45 27.9 20 OG3 1/29/90-B 840 B -0.7 19 21 OR3 1/22/90-B 1615B -2.5 0 22 OR3 2/28/90-B 1258 B -3 0 23 OR3 3/22/90-B 640 B -2.5 0 ------------- ---- -- ----------- 24 OR3 4/14/90-B 2025 B -1.6 0 25 OR3 5/30/90-B 805 B -2.5 3 26. OR3 6/27/90-B 714B -3 2 - ---- --------------- ... ----------- ----------- ------------------- -------------- - -------------------- 2'7 ORJ 7/25/90-B 840 4.8 28 OR3 8/22/90-B BOOB -4 4 29 OR3 9/5/890-B 745 B -3.7 4.2 ----------------------------------------- - -------------- ............. ---------- ------------------ 30 ----- -OR-3 10/29/90-6 757 B -2.8 18 27 8 @2 29 30 - ----- - -------- 31 OR3 11/28/90-B 1415 B -3.4 4 32 -------------- 33 34 D N DN DO DID DO DR DS DT DU I CONDUCTIVITY TEMPERATURE DO OXYGEN ANOMAL STATION DATE TINE DEPTH CODE DEPTH 1 48000 13.8 9.2 -0.2 CP 1/22/90-5 1537S -0.1 2 49000 33 7 0.8 CID 2/28/90-S 1420 @ -0.1 -------------- ...... ------------------ ........ -------------------------- --- 3 101- -13-.-8 7.4 -3.1 CP 3/19/90-S 6303 -0.1 4 100 15.1 7.8 -2.4 CP 3/22/90-S 1327S -0.1 5 135 16 7.8 -2.2 CP 4/12/90-S 15255 -0.1 6 105 18.9 7.5 - 1.9 CP 4/14/90-S 1800S -O'l 7 2900 25 6 -2.3 CP 5/25/90-5 15085 -0. 8 2600 29 5.6 -2.1 CP 5/30/90-5 9255 -0.1 9 6000 30 6.6 -0.9 CP 6/23/90-S 1230S -0.1 10. 5000 30 4,5 -3 CP 6/27/90-5 844S -0.1 -------------- ------- - -------------------------------- - -------------- - ------ ---- 1 1 8000 29 4.2 -3.4 CP 7/12/90-S 1416S -0.1 12 8000 is 8.7 -0.6 CP 7/25/90-5 IOIBS -0.1 13 2000 20 9.5 0.4 CP 8/6/90-S 1203 -0.1 14 9000 12 8,5 -2 CP 8/22/90-5 IONS -0.1 ---- -- ---- 15 22000 22 9 1 CID 9/5/90-5 843S -0.1 -- --- ----7 -01 16 27500 21.5 6 -2 CP 9/26/90-3 10155 17 30000 29 8.2 LI CP 1 1/28/90-5 929S -0.1 18. 42500 32 7.8 1.3 CP 1/22/90-B 1537 B -1.6 191 46500 34 7.4 1.2 CP 2/28/90-B 1420 B -1.9 20 -9999 13.8 9.2- -0.2 CP 3/1 9/90-B - 830 B -1.5 21 101 13.5 7.9 -2.7 CID 3/22/90-B 1327 B - 1'7 ------ ------------------------ -- ------ 22 1 10 14.9 7.7 -2.6 CP 411 2/90-B 1525 B - I . 5 23 130 16 7.6 - 2.4 CP 4/14/90-6 18006 -1.5 24 100 19 7.6 - 1.8 CP 5/25/90-B 1508 B -2.2 25 3500 25.5 5.6 -2.6 CP 5/30/90-B 9256 -1.7 26 3050 29.7 5.4 -2.2 CP 6/23/90-B 1230 B -1.9 27, -9999 30 5,9 - 1.6 CP 6/27/90-B 844 B -2 -4 ------------------ - --------- - 28 7000 30.2 4.2 -3.3 CP 7/1 2/90-B 1416 B -2.2 29 5500 30 4 -3.5 CP .... 7/25/90-B ----------------- 1. O@ I 8.B -1.6 30 27000 20 7.4 -0.9 CP 8/6/90-B 12-03 B -2 31 6500 20 8 -1 CID 8/22/90-B ------- - 1000 B -1,5 7b e 2 32 CP 9/5/90-B 8436 -2.5 33 CID 19/26/90-8 10 15 B -1.5 I- - A -34, lCP I 1/28/90-B 9291B Lauel IWALINI I Y-@-P LUNUUL-Ilvlly IEI'lPIHAIUHE L)u OXYUEN ANUMAL 6TA f ION DA I E TIM@ DEPTH CODE 1 8.5 12000 14 9.8 --O.l DBI 1/22/90-B 12306 2 7.5 12000 16 8.8 -0.8 DB I 1/22/90-S 1230S 3 10 12000 1--6-. 9 8.1 72 DB I I 1/28/907B 1 12.06 4 10 13000 17 8 - 1.2 D61 1 1/28/90-5 1 1205 5 15.5 20000 19.5 8.8 0.3 DB I 3/20/90-B 1325 B 6 5 7500 21 8.2 - 0.6 DB 1 3/20/90-5 13255 7 20.5 32500 26.5 7.4 0.1 DB I 3/22/90-B 832 B 8 22.5 35000 26 5.4 - 1.9 DBI 3/22/90-5 8325 ----------- ------ ----- --- ------- 9 15 24500 29.5 5.7 - 1.4 DB1 41 13/90-B 1605 B 10 20.5 34500 28.8 5.4 - 1.6 DB I 4/13/90-S 1605S 1 1 14.5 26000 28.5 6. 1 - 1.2 DB 1. 4/1 4/90-B 1028 B --------- -------I-------------------- 12 21.2 36000 30 - 1,6 DB I 4/14/90-S 1028S 13 17.8 31000 31.5 6.8 0 DBI 5/29/90-B 1230 B 14. 14 26900 TO 5.2 - 1.9 DB 1 5/29/90-5 12303 15 26 41000 29 5.6 - 1.2 DB I 5/30/90-B 1219 B 16 23 38000 25 6.7 -0.7 DB I 5/30/90-S 12195 17 21 31000 21 6.8 - 1.2 DBI 6/23/90-B 7 10 B 18 8.5 -9999 14 10.2 0.3 DB I 6/23/90-S 710S ----- ---- --- - --- -------------------------- ---- --------------- --- ---- 19 1--- 4.-5 20000 15 8.6 - 0.8 DB I 6/-2-7/90-B 1250 B --------- 20 1 1 13000 16.9 8 - 1.2 DB1 6/27/90-S 1250S 21 1 1 14000 17 8 - 1.2 DB 1 7/1 4/90-B 950 B 22, 15 20000 19.5 8.8 0.3 DB 1 7/ 1 @/-90-s 950S - -------------------- @-- w --------- 23 19 27000 19.2 6.9 - 1.5 DB I 7/25/89-S 1343S 24 20.5 32500 26.5 7.4 0.1 DB I 7/25/90-B 1343 B 25 22.5 35000 26 5.4 - 1.9 DBI 8/23/90-B 140 B 26 15 24500 28.9 5.2 -2 DB1 8/23/90-5 140S - - ------------------------- -------------- ----------- --- 271 21 35000 28.1 5.4 - 1.7 DB I 8/8/90-B 830 B 28 15.5 28000 28.9 5.4 - 1.8 DB I 8/8/90-S 830S 29 21.5 36800 30 5.4 - 1.4 DBI 9/25/90-B 255 B - ---- -- ----------------------- ---------- -------------------- 30 20 34000 31 - 1.6 DBI 9/25/90-S 255S ------- 31 --------- 15 27000 30 5 -2.1 DBI 9/5/90-B 312B 32 24 42000 29 5 - 1.8 D61 9/5/90-S 3123 33 2 4,___ 38000, 25 6.5 -0.81 34 2 1 30500r' 2^ 1 6.81 =1 11 EE EF EG EH E I EJ E K EL EM I DEPTH SALINITY-DBI CONDUCTIVITY TEMPERATURE DO OXYGEN ANOMAL STATION DATE TIME 1 12 -9999 14 5.5 -4.2 EH 1/22/90-S 1415 2 - 0.1 2.5 -9999 13.8 9.4 - I EH 2/28/90-5 810 ---- --------- 3 -1.5 20 29000 22 8.8 0.9 EH 3/19/90-5 1 105 ------------- 4 -0.1 19 28000 21.5 9 1 EH 3/22/90-S 1202 5 -1.75 13 18000 16 5.1 -4.2 EH 4/12/90-S 1310 ----------- 61 -0.1 4.5 6000 15.4 8.9 - 1 EH 4/14/90-S 1254 7 -1.75 13 18000 16 5 -4.3 EH 5/25/90-5 1357 8 -0.1 4 5500 15.5 8.8 -1.1 EH 5/30/90-5 10 9 -2.4 6 8500 18.5 8 - 1.2 EH 6/23/90-S 1025 10, -0.1 6 8500 19.9 9 0. 1 EH 6/27/90-S 932 ----------------- -------------- I 1 -1.8 7 10000 18.5 8 - 1. 1 EH 7/12/90-5 1102 12 -0.1 6 9000 18.3 9.2 0 EH 7/25/90-S 11 19 13 -2.2 17,5 28000 26 5.4 -2.1 EH 8/6/90-S 1040 ------- .. ...... I--,' ----- 14 -0.1 14.5 23000 25 7.4 -0.3 EH 8/22/90-5 1 130 15 -2.2 23 37500 26 3.2 -4EH 9/5/90-S 939 16 -0.1 8.5 15000 26 7.8 0 EH 9/26/90-3@ . ...... ----------- - 21 1 17 -2.1 32 49900 28.1 5 - 1.6 EH I 1/28/90-S 1021 18 -0.1 31.5 49500 27.9 5.3 - 1.4 EH 1/22/90-B 1415 -2.1 18 3500 30 6.3 -0.6 EH 2/28/90-B 810 20 -0.1 10.5 1900 30.1 7.6 0.4 EH 311 9/90-B 1105 21 -2 29 48000 28.5 5.6 - 1. 1 EH 3/22/90-B 1202 ------------------------------ ------ ------------ ---------- 22 -0.1 21.5 35000 27 -6.5 -0.7 EH 4/12/90-B ---1210 23 -0.1 20 36000 31 7.2 0.4 EH 4/1 4/90-B 1254 24 23 38000 31 6,5 -0. 1 EH 5/25/90-B 1357 25 -1.5 21 37000 29 6.2 -0.7 EH 5/30/90-B 1035 26 -0.1 22 38000 30 8 1.2 EH 6/23/90-B 1025 271 -2.25 24 40000 30 4.5 -2.2 EH 6/27/90-B 932 ------ - ------- 28 -0.1 25 39500 31 5.3 - 1.3 EH 7/12/90-B 1102 29 -1.9 26 40000 27 4.2 -2.8 EH 7/25/90-B I1 19 30 -0.1 18 29000 27 7 -0.3 EH 8/6/90-B 1040 31 -2 20 34500 30 6 -M EH 8/22/90-B 1 130 32 -0. 1 19 34500 30. 6.8 -0. 1 EH 9/5/90-B 939 33 - -------- EH 19/26/90-B----- @F- 21 1 34 EH 1/ 28/90-6 1021 Lape i ULP I H LOUE UEP I H bAL I NI I Y-LH LUNL)ULIIVI'iY IEMPLRAI'URE DO OXYGEN ANOMAL STAT16N DATE I s -0.1 6 18000 13.5 8.8 - 1.4 NS 1/29/90-5 2 s -0.1 13.5 18000 14.1 9.4 -0.2 NS 1 1/28/90-S 3 s -0.1 4.6 6900 6.8 8.2 - 1.4 NS 2/28/90-S 4 S -0.1-- 4.5 -- 7000 17 8.2 - 1.4 N 3/22/90-5 5 S -0.1 13 20000 19.5 9.2 0.6 NS 4/13/90-S 6 s -0.1 16 23000 20 9.8 1.4 NS 4/14/90-5 7 5 -0.1 18,5 29000 26 7.2 -0.2 NS 5/29/90-S ---------85 ----------- -0.1 21.5 33000 25.5 6 - 1.4 NS 5/30/90-5 9 s -0.1 17.5 28800 28A 5.8 - 1.4 NS 6/22/90-S 10 5 -0.1 21.2 36000 28.9 5.7 - 1.3 NS 6/27/90-5 1 1 5 -------------------- -- -0.1 17.9 31--ooo--- 28.5 5.1 -2 Ns 7/14/90-S 12 5 -0.1 20 34000 30 5.6 - 1.3 NS 7/25/90-5 13 S -0.1 19.2 34000 31 6 -0.8 NS 8/23/90-S 14 S -0.1 14.5 28000 30 6 - ].I Ns 8/8/90-5 15 S -0.1 26 43000 30 5.2 - 1.4 NS 9/25/90-5 16 S -0.1 19.5 32000 27 7.8 0.6 NS 9/5/90-S 17 S -0.1 26 37000 21 8 0.2 NS 1/29/90-B ------ 118B -1.4 71 ------------------ -9999 13.5 8.8 - 1 .3 NS I 1/28/90-B 19 B -2 18 23000 14.5 8.9 - 0. 4 NS 2/28/90-B 20 B -1.75 6 7500 16.9 8.2 - 1.3 NS 3/21 /90-B 21 B -1.75 6 7500 17 8.2 - 1.3 NS 3/22/90-B 22 B ----2 15 21000 19.5 9.1 0.6 NS 4/13/90-B 23 B -1.4 19 26100 19.5 7.2 - ].I NS 4/1 4/90-B 24 B -2 19.5 31000. 26 6.7 -0.7 NS 5/29/90-B 25 B -2.1 21.5 33500 25.5 6 - 1.4 NS 5/30/90-B 26 B --------------------------- ------------------ 17.5 28800 28.1 5.8 - 1.4 NS 6/22/90-B - ------------------------------- 27 B -2.4 21.3 35000 28 6 -1.1 NS 6/27/90-B 28 B - -2 19.8 34000 28.9 4.9 -2.1 NS 7/1 4/90-B 29 B -2 20 34000 30 5.5 - 1.4 NS 7/25/90-B 30 B 2.3 20 35000 31 5.7 - 1. 1 NS 8/23/90-B 31 B 2.5 16 29000 30 5.8 - 1.2 NS 8/8/90-B ----- 32 B- - 26 42800 30 4.2 - 2.4 Ns 9/25/90-B ---- - ------- - 33 B -2.7 20 32500 26.2 7.5 0.2 Ns 9/5/90-B 34 IB 7 .5 27 37000'1 21 7.9 0.2 EW EX EY E Z FA FB FC FD F E 1 TIME DEPTH CODE DEPTH SALINITY-NS CONDUCTIVITY TENPERATURE DO OXYGEN ANOMA STATION 1 15305 -O'l 2.8 3800 14 1 1.8 1.5 PA 1 1305 -O'l 18 27000 21 9 0.9 PA ----------- -- ----- -------- ------------------- ----- --- ------- 3 9345 -0.1 2 2500 14.5 9.1 -1.1 PA -------------------------- ----- 4 814S -O'l 4.5 6000 15 9.2 -0.8 PA 5 9555 -0.1 5 8000 17.9 8,2 - 1.2 PA 6. 9225 -0.1 4,2 6000 18.5 8.7 -0.6 PA 7 1733S -0.1 15 24500 26.5 8 0.5 PA 8 1235S -0.1 1 1 18500 26 8 0.3 PA 9 71 1 3 -0.1 30 48500 29.2 5 1.6 PA 10. 13135 -O'l 10.5 18900 30 7.7 0.5 PA --------- -------------- -------------- ....... ---------------------------- - -------- ---------- ------- ---------------------- ------ ----------------------------------------- I I 1400S -0.1 23.5 42000 30 7 0.3 PA 12 141 1 S -0.1 21 38000 31 6.4 -0,3 PA 13 05 -0.1 22 41000 30 8.3 1.5 PA ---------- -- ---------------- 14 3245 -o'l 21.5 41000 32.5 7.2 0.7 PA 15 12305 -0.1 18 29000 26.5 7 --0.4 PA 16 3435 -0.1 17 32000 31 7.3 0.4 PA 17 1530 B -1.2 6@3 6500 13.7 1 1.2 1. 1 PA 18, 1 130 B -2 19 29000 22 8.8 0.9 PA ------------- -------------- 19 934 B -2.1 5 8600 14.9 8.8- - 1 @2 PA 20 855 m -0.9 1.5 4500 15 9.6 -0.6 PA 21 814 B 14 18000 16 - 4.2 PA 22 955 B -1.9 5.2 8000 17.9 8.4 -0.9 PA 23 922 B -2 4.2 6000 18.5 8.7 -0.6 PA 24 1733 B -----2.-25 18 28000 -7.6 --0,2 PA 251 1235 B -2.3 23 37500 26 5.8 - 1.4 PA 26 71 1 B -2.3 30 49000 29.5 4.8 - 1.8 PA 27 1313 B -2 1 1.5 20000 30 7.6 0.4 PA 28 1400 B -2 26 34000 28 6.9 0 PA 29. 141 1 B -2 23.2 41000 31 6 -0.6 PA --- 1-1- --------- --- ----------------------- ------------------ 30 0 B -2 26 45000 30 7.5 0.9 31 324 B -2.5 23 41000 33- 7.2 0.8 L 7aO e 1 1 2 32 1230 -2.7 25 38000 26.5 5.2 -l-.9 33. 343 B -2.5 18 33000 31 7 0.2 Laoe i JUAlt I IIIIL UEP I H I-OUL ULP I H bALINI I Y-PA WNL)U(-IIVIIY ILMPERATURE DO OXYGEN ANOMAL I2/28/90-S 1030S -0.1 2 2350 15 9 - 1. 1 23/21/90-5 1 140S -0.1 4.9 6900 15.1 9.6 -0.3 34/13/90-S I loos -0.1 7 10000 19 8 - 1 44/14/90-S 9405 -0.1 7 10000 18.2 7.8 -1.4 55/28/90-5 1750S -0.1 14.5 22000 27 7.4 -0.1 6@/30/90-S 1255S -0.1 19 31000 25 7.5 0 76/22/90-S 1051 5 -0.1 3-2.1 -9999 28.9 5 -1.5 8- 6/27/90-5 13385 -0.1 16.5 29000 30.5 7.2 0.3 97/13/90-5 15305 -0.1 27.5 47000 29 6 -0.7 10 8/8/90-3 420S -0.1 24.9 45000 33 6.6 0.2 ------ ---- ---- ------ 11 8/23/90-5 1244S -0.1 23.5 42000 29 6.8 -0.1 12 9/5/90-5 4505 -0.1 18 32000 31 7.5 0.7 13 1 1/28/90-S 1205S -0.1 14 22000 21 8.8 0.5 ----------- --- ------ -------- ----------------- ----------- 14 1/22/90-M 1049 M -0@5 6 -9999 14 9.2 -0.9 15 7/25/90-M 1432 M -0.1 25.3 40100 32 5.8 -0.7 16 9/25/90-M 1122 M -0.5 19 30000 25 6.2 -1.3 17 2/28/90-B 1030 B -1.8 2.1 2400 15 9 - 1. 1 18 3/21/90-B 1140 B 5.5 7200 15.1 9.6 -0.3 - --- --------------------- --------------------- --------- ------- --------------------------------- 19 4/13/90-B 1 100 B -1.5 7 10000 19 8 - I ------------- ------- 20 4/14/90-B 940 B -1.4 7 10000 18.2 7.8 -1.4 21 5/28/90-B 1750 B -1.5 15.5 25000 27 6.8 -0.6 22 5/30/90-B 1255 B -1.5 19.5 32000 25 7.2 -0.3 23 6/22/90-B 1051 6 32 -9999 28.9 4.6 -1.9 24 6/27/90-B 1338 B -1.4 17 30000 30.5 7.2 0.3 25 7/13/90-B 1630 B -2 --- 2--8- -4-7-0-0-0 - ---------- 29 6.1 -0.6 26 8/8/90-B 420 B -1.5 26 46000 33 6,2 -0.1 2 78/23/90-B 1244 B -1.5 25 43000 29 3.5 -3.3 28 9/5/90-B 450 B -2 19 34000 31 7.2 0.4 29 1 1/28/90-B 1205 B -1.4 15 23000 21 8.6 0.3 --- ------------- ------ 30 31 32 33 1 341 -f FO F P FQ FR FS FT F U FV FW 1 STATION DATE TIME DEPTH CODE DEPTH SALINITY-PL CONDUCTIVITY TEMPERATURE DO I PL 1/22/90-S 14505 -0.1 7.5 8000 14.5 10.2 2 PL 2/28/90-S 756S -0.1 21 27000 14.9 8.9 ------------------ ------ ----------------------------- 3 PL 3/19/90-S 1440S -0--,--] 12000 16.8 8.3 4 P L 3/22/90-5 12305 -0.1 1 1 13000 17 8.2 5 PL 4/14/90-S 15005 _U 21 29500 21 T8 6 PL 5/25/90-S 1142S -O'l 20.5 31500 @5.3 7.3 7 PL 5/30/90-S 1020S -0.1 23 35000 25.5 6.6 8 PL 6/13/90-S 1215S -0.1 28 47000 29.5 5.8 9 PL 6/27/90-S 912S -O'l 25.1 40500 28.5 5.3 10 -PL 7/12/90-3 821 S ---- -0.1 27 45000 - -------------------- 30 5.8 I I PL 7/25/90-5 10585 -0.1 20.5 35000 30 6.8 12 PL 8/6/90-5 832S -0.1 23 39000 27 5.5 13 PL 8/22/90-5 10573 -0.1 16.5 30000 30 6.8 ---- --------------------------- ---------- .. ... --- 1-4.P-L 9/5/90-S 9175 -0.3 27 45000 29 6..2 15 1/22/90-B 1450 B -1.8 17 -9999 14 8.2 16 2/28/90-B 756 B -2.2 21 27000 14. () -W 8. 7@ 17 P L 311 9/90-B 1440 B - 1 14 17000 16.7 8.5 18-PL 3/22/90-B 1230 B - 1 14 17000 ----------------------- 16 8.4 ---------- ------------ 19 PL 411 4/90-B 1500 B -1.1 21.5 30000 1 7.8 20 PL 5/25/90-B 1142B -1.4 21 33000 25.3 7.2 21 PL 5/30/90-B 1020 B -1.8 23 34000 25.5 6.4 22 -PL 6/1 3/90-B 12 15 B -1.3 28 47000 --- 29 23 PL 6/27/90-B 912B -1.9 24.5 - ------ -40000 28.5 5.3 24 PL 7/12/90-6 821 B -1.9 27.1 45000 30.1 5.8 25 PL 7/25/90-B 1058 B -1.4 21 ----------- 35000 30 6.5 26 PL 8/6/90-B 832 B -1.2 22 38000 31 5.4 - - ---------------- ----- 2 7 8/22/90-B 1057 B -1.5 18 31000 --30 6 2-8 P-L 9/26/90-B 1200 B -0.4 22 ------- 39000 26 7.1 29 PL I I /28/B6 950 m -0.5 23 37000 21 8.4 - ------- ..... 30 PL ---------- - -------- 31 P L 7e 1 1 2 32 33 34 LaiDe i IOXYbEN ANOMAL b I AA ION DATE I IME DEPA H COOL DEP CH SALINITY-SC CONDOCTIVITY TEMPERATURE 1 0.3 sc 1/22/90-M 1125M -0.15 7 1 1000 14 2 -0. 1 sc 2/28/90-M 1048 M - , 2.9 3800 15.2 i -I sc 3/21/90-M 1335 M -0.@75 10.1 13000 16.5 4 - I S-C ----- 4/13/ 90-M- 1140M -0.4 7.5 10000 @- 18 5 - 0. 2 SC 411 4/90-M 951 M -0.4 10 14000 18.5 61 -0. 1 sc 5/28/90-M 1630 M ---------- --------------------- -0.5 23.5 36000 27 7 -0.7 SC 5/30/90-M 1307 m -0.5 24 -38000 26.5 8 -0.8 SC 6--/--2-2/90-M --- - -------- 920 M -0.5 32.5 49000 28.9 9 - 1.5 SC 6/27/90-M 1355 m -0.45 18.2 3300 31 10 -0.8 sc 7/13/90.-m 1455 M -0.5 25 42000 .27 I I -0@ I sc 7/25/90-M 1451 M -0.1 - --------- 3-0 49000 31 12 - 1.6 SC 8/8/90-M 457 M -0.1 29 50000 33.4 13 -0.2 SC 8/23/90-M 1210 M -0.3 29 47500 28 14. -0.5 SC 9/5/90-M 516 m -0.5 20 36000 31.5 151 - 1.2 SC 9/25/90-M 908 m -0.5 24 40000 24.5 16 -0.3 sc I 1/28/90-M 1230 M -0.2 21 29500 21 17 -0.6 18 -0.8 ------------------ .......- ------- ---------- ...... 19- -0.2 20 -0. 21 -0.9 ------------------ 22 -1.2 23 --1.6- 24 -0.8 25 -0.3 26 -1.3 ------ 2-7 -0.9 28 -0.2 29 0.5 30 31 32 33 34 GG GH 01 GJ GK GL GM GN GO 1 DO OXYGEN ANOMAL STATION DATE TIME DEPTH CODE DEPTH SALINITY-SG CONDUCTIVITY 1 9.6 -0.4 SG 2/28/90-S 1410S -0.1 6.5 1 1000 2 9.2 -0.8 SG 3/20/90-S 840S -0.1 6 9000 --- ----------------------------------------- --------------- --------- -- - --- 9.8 0.5 SG ---------- 3-/22/90-S 1348S -0.1 6 - ----- --------- --9-0--0-0 4 8 - 1.2 SG 4/-14/90-S 1608S -0.1 3,5 5000 5 7.6 - 1A SG 5/25/90-S 1633S -O'l 19.5 31000 --------------------------------- 6 8.1 -1 SG 5/30/90-S -91 1 S -0.1 22 34000 7 7 -0.1 SG 6/23/90-5 14235 -O@ 1 26000 8 4.8 - 1.7 SG 6/27/90-S 8305 -0.1 19.5 33900 9 7.2 0.4 SG 7/13/90-S I 1 105 -0.1 13 22800 10 6,5 -0,5 SG 7/25/90-5 looos -0.1 21 36000 ----------- -- --------------- ----------- I 1 6 -0.4 SG 8/6/90-S 2005 -0.1 18.4 34000 12 7.3 1.1 SG 8/22/90-5 945S -0.1 12 22000 13 6.9 0.1 SG 9/26/90-S 9105 -0.1 21 33000 - ---------------------------------------- ------------------ 14 7.5 0.8 SG 1 1/28/90-5 9025 -0.1 17 27000 15 6 1.4 SG 1/22/90-M 1549 M -0.5 7.2 -9999 16 9.1 1, 1 SG 9/5/90-M 830 M -0.5 25 37000 17 SG 2/28/90-B 1410 B - I @ 9 12.1 17500 18, SG 3/20/90-B 840 B -1.3 8 10000 ------------- - I----I ------------------ --------- 19 SG 3/22/90-B 1348 B -1.2 8 10000 20 SG 4/1 4/90-B 1808 B - 1 3.5 5100 21 SG 5/25/90-B 1633 B -2.1 20 32000 ------------------ - - ---- 2-2- SG 5/30/90-B 91 1 B -1.5 22 34000 23 SG 6/23/90-B 1473 B -1.8 15 26000 24 SG 6/27/90-B 830 B -1.8 20.1 34000 25 SG 7/13/90-B 1 1 10 B -1.5 13 22800 26. SG 7/25/90-B 1000 B -1.6 21.5 36000 27 SG 8/6/90-B 200 B - 1 19 34000 28 SG 8/22/90-B 945 B -1.25 13.5 25000 29 SG 9/26/90-B 9 10 B -1.4 22 35000 30, SG I 1/28/90-B 902 B -1.5 19---- 28000 31 7b e 1 1 2 @ 32 3 3 ---------------- --------- 341 '5AL I NI I Y-6V LdUt;@ I i Ll It-LMM I Ot-@L: OU UAIULII tAI'4UI I/AL i I MI IUN UIA I L ULP I H LQUL ULP(H 1 17 8.6 -0.8 sv 2/28-/90-S 919S -0.1 3 2 17.8 8.7 -0.6 SV 3/20/90-S 1040S -0.1 ------------------ ---- 3 18 8.6 -0.7 SV 3/22/90-S 925S -0.1 4 4 20.5 8.2 -0.8 sv 4/13/90-S 1700S -0.1 8.9 5 26.5 7.6 0.3 3v 4/14/90-S 1 1025 -0.1 12 6 25.5 6.1 - 1.2 SV 5/29/90-S 1005S -0.1 16 7 29.9 5.7 - 1. 4 SV 5/30/90-S I 140S -0.1 16 28.9 5,2 - 1.8 sv 6/23/90- 827S -0.1 32.1 9 28 5.5 - 1.9 sv 6/27/90-S 1220S -0.1 13.5 10 29.5 5.4 - 1.5 sv 7/14/90-5 815S -O'l 33 1 1 32 5.8 - 0. 9 sv 7/25/90-5 1322S 1 9- 12 30 5's - 1.4 SV 8/8/90-S 216 S -0.1 27 13 24.5- 7.1 - 0. 4 SV 8/23/90-S 140S -0.1 29 14 21.5 7.3 -0.8 sv 9/5/90-S 2225 -0.1 22 15 14.5 9.2 -0.7 SV 9/25/90-S 539S -0.1 19 16 27 4.8 -2.2 5V 1 1/28/90-5 1 loos -0.1 23 17 15 8.8 -0.7 SV 1/22/90-B 1340 N -0.5 17 18 17.8 8.6 -0.6 SV 2/28/90-B 9 19 B -2.7 18 ----------- ---------------------------- --------------------- ------ ------ ------------- -------- 1 18 8.6 -0.6 SV 3/20/90-B 1040 B - 1 1 7.5 20 20.5 8,2 -0.8 sv 3/22/90-B 925 B - 1 1 7.5 21 26 5 7.5 0.2 SV 4/1 3/90-B 1700 B -2.1 9.5 22 25.5 6.2 - ].I 5v 4/1 4/90-B 1 102 B -1.8 19 ---- ---------- 23 29.1 5.4 - 1.8 sv 5/29/90-B 1005 B -2 19 24 28.5 5.3 - 1.7 SV 5/30/90-B 1 140 B -2 25 25 2 8 2 5.3 -2.1 SV 6/23/90-B 827 B -1.9 32.1 26 29.3 5.2 - 1. 7 SV 6/27/90-B 1220 B -2,5 1 5- 27 - ----------- 32 5.5 - 1.2 SV 7/1 4/90-B 815B -1.8 32 28 30.5 4.8 -2.3 SV 7/25/90-B 1322 B -1.7 23 29 25.3 6.6 -0.8 sv 8/8/90-6 -2 1-61 -2.3 27 ------------------- ---- ..... 30 21.5 7 1 sv 8/23/90-B 140 B -2 27 31 sv 9/5/90-B 222 B -2 21.5 32 sv 9/25/90-B 539 B - 1.6 21 33 sv 11 1/28--/-9-0- B 1 1006 -2.9 22 34 GY GZ HA HB HC HD HE HF H5 1 CONDUCTIVITY TEMPERATURE DO OXYGEN ANOMAL STATION DATE TIME DEPTH CODE' DEPTH 1 3100 14.2 9A -0.8 DB2 4/13/90-S 1500S -0.1 2 5600 15.4 8.8 - 1. 1 D62 5/29/90-S 1403S -0.1 - ------ --------- --- ----- ---------------------- 3 5500 15.5 8.8 - LI DB2 6/22/9 0-5 14155 -0.1 4 12500 19.5 9.1 0.2 D62 7/14/90-S 10505 -0.1 5 17000 19 9.4 0.6 DB2 8/8/90-S 951 S -0.1 6 25000 4.5 7.2 -0,5 DB2 --.g-/-2-5/90-S 340S 7 27000 25 8.2 0.5 DB2 4/13/-90-B 1500 B - 1.6 8 50000 28 5.4 - 1.2 DB2 5/29/90-B 14036 -1.75 9 23000 29.9 7.4 0.3 DB2 6/22/90-6 1415 B -2.1 101 -9999 27.5 5.4 - 1.3 DB2 7/1 4/90-B 10506 -2.5 ......... .... ...... 1 1 32800 30.5 6.2 -0.7 DB2 8/8/90-B 951 B -2 12 48000 32 9 2.6 D62 9/25/90-B 3406 -1.8 13 48000 30 7.2 0.7 - -------- ---- ----------- -------- ------------------- -------- ---------- 14 38500 30 7.3 0.5 15 32000 26 7.6 0.2 16 32000 21.5 8.6 0.8 17 -9999 14.3 8.4 - I 18. 22500 15 8.6 -0.6 ---------------------------- --- ---------- --- ---- 19 10000 15.9 8.7 -0.9 20 10000 16 8.6 - 1 21 13500 19 9 0.1 22 25500 19 7.4 - I 23 30500 25 6.4 -1.1 24 33000 26 6.5 -0.6 25 50000 28.3 5.1 -1.5 26 25100 25.7 7.1 -0.5 27 -9999 28 5.2 -1.4 28 41000 30 7 0.2 29 45000 32 8.8 2.4 30 47000 30 5.5 -1.1 31 38000 30 5.2 -1.6 7b ell 2 32 34500 26 7 -0.3 33 31000 2 1 7.8 -0.2 34 LaDL- I I @DAL 1111 1 Y -::) V LUlquu L I I v I I y I LIIIHtKf@ I UKL uu UA Y U t 114 1 UIN UAI t I IML OLP I H COOE 1 6 9000 18 9.4 0. 1 D83 2/28/90-5 1 130S 2 12 20000 26 8 0.3 DB3 4/13/90-S 1330S 3 31.5 49500 27,9 5.3 - 1.4 DB3 5/29/90-5 1555S 4. 21 35000 27 6.1 -,1. 1 DB3 6/22/90-S 1215S 5 22 38000 31 5.2 - 1.5 DB3 7/14/90-S 1200S 6 17 39000 27 7.2 -0.2 DB3 8/8/90-5 1039S 7 6 8500 19 8.6 -0.5 DB3 9/25 / 90-5 435S 8. 15 23000 26.5 7.6 0. 1 DB3 2/28/90-B 1 130 B 9 32 49900 28.1 5 - 1.6 DB3 411 3/90-B 1330 B 10 30 48000 27 5.9 -0.9 DB3 5/29/90-B 1555 B 1 1 24 41000 ------- -- -- --- 3-1 4.2 ' -2.4 DB3 6/2-2 -/_90-B 12-1-5 @B ------ - 12 25 40000 26.5 4.4 -2.7 DB3 7/1 4/90-B 1200 B 13 DB3 8 / 8 /-9-0---B 10 3 9 B 14 DB3 9/25/90-B 435 B 15 16. 17 18 19 20 21 22 -- - ------------- 2 3 24 25 26 ---------- ------- ------- ---------------------- 27 28 29 ------------ ................... ........... ..... .......... ----------------- --------- 30 ------- 31 32 33 34, HO FIR HS HT HU HV I DEPTH SALINITY-SV CONDUCTIVITY TEMPERATURE DO OXYGEN ANOMAI 1 -0.1 1.5 2100 15 9,2 -1 2 -0.1 5.5 8000 19 7.8 -1.3 3- -0.1 5.5 8000 19 8 -i'll 4 -0.1 17 25000 26 8.3 0.8 5 -0.1 14 23000 26 8 0.4 6 -0.1 28.5 46500 28,9 5.3 -).4 7 -0.1 2 2600 14.5 8.6 -1.6 8 -1.2 16.5 25000 27 7.3 -0.1 9 -1.7 28.5 46500 28.9 5.4 -1.3 10 -1.5 27 34000 28.5 6.3 -0.5 ------ .... ------------- 1-1 -0.1 23 39000 29 6.9 0 12 -1.5 23 40000 31 5 -1.6 13 -1.7 22 38000 31 6.2 -0.5 14 -1.7 18 31000 26 7.2 -0.2 15 16 17 18. 19 20 21 - ------------------------------------ --- ----------------------------------- ----- --------- ----------- ---------------------------- -------------------- ------------------ 22 23 24 25 ------- - ------- -- ----- -- ---- ----------- 27 28 29 .30 31 7 001 2 32 33 -341 Table 2: Laboratory chemical data taken in the Apalachicola estuary from January, 1990-September, 1990. A B C 0 E IF a H K L M NH3 NITRITE NITRATE ORTFK)PHOSPI 1STATION DATE DEPTH COLOR (P COLOR (NCAS TURBIDITY 04LOR A CHLCR B 60k 2 1 1/30190 S 100 24 is 6.3 3.2 1.5 0.035 0.007 0.75 0.024 3 1 1130/90 B 90 21 20 21.3 0 0 0.058 0.007 0.69 0.017 4 1 2/28190 S 130 29 -is-- 5.6 0.8 0 0.033 0.005 0.48 0 S 1 2/28190 8 215 31 so 10.1 2.1 0 0.098 0.01 O@4 0 6 1 3123/90 S, 140 35 28 2.3 0.4 1.9 0.074 0.005 0.52 0.018 7 1 3/23/90 8 140 27 27 2.6 1.5 2.1 0.076 0.003 0.35 0.018 1. 4115/90 S 140, 28 19. 3.5 0.7 0. 0.038 0.005 0.34 0.01. 0 11 4/15/90 a 120 21 18 4.9 0.5 0.7 0.043 0.008 0.36 0.01 7-0- 1 5131190S 40 17 4 5.1 0.8 0.8 0.035 0.001 0.11 0.015 I S/31190 8 30 21 8 13 1.4 2.4 0.046 006i 0.015 12 1 6128190 S 57 42 7 6.7 1.8 2.3 0.04 0 0.18 0.01 13 1 6/28/90 8 45 37 8 7.9 1.2 2.5 0,047 0 0.11 0.005 14 1 7/26/90 S 30 32 2 0 3.2 3 0.039 OMS 0 0.009 15 1 7/26/90 B is 38 2 1.6 4.6 4.8 0.039 0 0.04 0.012 16 1 $124/90 S 40 17 2 9.7 6.91 6 0.056 0.002 0.13 0 1 8/24/90 8 30 8, 2 4.6 3.5 17 1 9 0.054 0.003. 0.09 1. 9/6/90 S Is 17 2 3.i 0.7 1 0.054, 0.004 0.11 0.036 1 916/90 8 20 11 6 3.3 1.1 2 0.08 0.003 0 0.056 20 2 1/30190 S 110 30 16 3.5 1.8 4.1 0.061 0.007 0.81 0.038 21 2 1/30/90 B 90 29 Is 4.1 0 0 0.088 0.01 0.9 0.034 22 2 2128/90 S 120 so 19 3.7 0.2 0 0.03 0.008 0.4 0 23 2 2/28/90 B 120 33 21 4.7 0.7 0 0.028 0.01 0.55 0 24 2 3/23/90 S 400 70 70- 2.6 1.6 0.7 0.078 0.014 0.67 0,005 2S 2 4/15/90 S ISO. 34 20. 2.7 1 0.9 0.053 6.005 0.41 0.015 26 2 4/15/90 B 270 22 so 4.3 3.1 3.4 0.051 0.004 0.27 0.005 27. 2. 5/31/90 S so 26 9 6.9 1.1 1.3 0.083 0 2.55 0.023 28 2 5/31/90 B 30 23 6 6.8 0.9 1 0.039 0 1.98 0.023 29 2 6128190 S 40 33 8 6 0.9 1.3 0.056 0 2.2 0.005 30 2 6128/90 B 40 41 10 7.3 1.2 1.5 0.04 0.002 1.82 0.013 31 2 7/26190 S 4-5 37 3 0 -3,9- 4.4 0.056 0 0 0.00i 32 2 7126190113 30 31 1 8.7 2 2.4 0.039 0.004 0.15 0.009 33 2 8/23/901S 30 12 3 0. 0.2 0 __0.056 0.002 -5.1-8 0 34 2 8/23190 B 15 13 1 5.2 2.8 0.8 0.056 0.004 0.27 0.003 3S 2 916/90 S 20 a 4 2.9 2.2 2.9 0.059 0.005 0.38 0.03 36 2 916190 B 30 14 5 4.2 0.7 1.9 0.08 0.004 0.27 0.024 37 4 1/30190 S 100 29 is 4.7 0 0 0.056 0.02 0.64 0.041 38 4 1130/90 8 96 29 Is 6.5 11.4 13.8 0.067 0.024 -0.78 0.048 39 4 2/2719D S 140 38 26 4.7 0.7 0 0.029 0.011 0.64 O@041 40 4 2/27190 B ISO 31 25 3.S 0 0 0.027 0.015 0.44 0.04i 41 4. 3/23/90 S 520 60 ----95 2.6 1.5. 1.4 0.083 0.006 0.51 0.005. 42 4 3/23190 8 $25 60 90 2.2 2.2 2 0.062 0,021 0.61 0.0051 43 4 4/15/90 S ISO 30 21 4.4 1.9 3.1 0.045 0.004 0.44 01 - 0.051 0.005 0.16 0.01 74 4 4/15190 B 250 23 46 2 2.5 3 45 4 5/31190 S 40 20 6 4.5 0.7 IA 0.034 0.002 0.73 0.015 Ts- 4 5/31/90 B 20 32 6 9.3 1.3 1.2 0.039 0 0.61 0.004 47 4 6/28/90 S 26 27 7 6.4 0.7 1.6 0.04 0 0.45 0.008 48 4 6128190 B 20 28 7 7o3 1.2 1.9 0.04 0 0.39 0.005 49 4 7126/90 S 20- 26 2. 3.8 1.9 1.6 0.039 0 0.15 O.Ois so 4 7/26190 8 20 32 1 5.3 1.6 2.4 0.039 0.012 0 O.D24 51 8/23/90 S 20 12 1 4.9 2.3 2.31 0.051 0.005 0.22 0 52 4 8/23/90 B Is 14 3 5 0.8 2.2 0.062 0.00i 0.2 53 4 9/6190 S 35 13 1 3.2 2.2 1.7 0.057 0.002 01 0.024 54 4 916/90 13 20 12 1 5 1.4 1.4 0.083 0.002 0 0.024 55 01A 1/30/90 S 15 19 a 19.7 3.6 2.4 0.044 0.004 O@5 0.02 76- OIA 1/30/90 8 30 is 16 i8*9 1.8 3 0.088 0.004 0.39 0.02 S7 OIA 2128/90 S 60 21 9 4.5 0 0 0 0.007 0.39 0 SS OIA 2/28/90 8 so 21 17 7.5 0 0 0 0.003 0.32 0 59 OIA 3123/90 S 1171 27 16 1.7 0 0 0.062 0.005 0.34 0.014 60 DIA 3/23/90 B 2101 34 36 2.8 0 0.1 0.055 0.003 0.27 0.005 61 OIA 4/15/90 S 75 21 11 6.9 0 6.9 0.038 0.013. 0.27 0.01 62 OIA 4/16/90 B 60 21 12 6.9 0.5 7.6 0.043 0.0041 0.11 0.025 63 DIA 5/31190 S 20 37 4 4.3 0.8 1.1 0.027 0 0.16 0.008 64 OIA 5/31/90 B 30 26 11 7.3 1.2 -1.9 0.029 0.002 0.45 0.015 SS OIA 6128/90 S 25 48 7 6.1 1.4 2.2 0.04 0 0.06 0.003 66 OIA F/28190 8 20 26 14 6.2 1.2 2.3 0.033 0 0.23 0.005 67 OIA 7/26190 S 30 29 1 4A 1.6 2.8 0.039 0 0 0.009 68 OIA 7/26/90 8 26 29 3 5.8 1.8 2.7 0.039 0.012 0 0.009 69 OIA 8/24190 M 30 -i 3 3 1.4 0 0.2 O.OS4 0.007 0.2 0,024 70 OIA 916190 S, 45 is 1 2.9 01 0 0.065 0.002 0.15 0.03 71 01A 916/90 B 35 17 3 1.9 1.2 0 0.092 0.002 0.31 0.033 -f-2 OIB 1/30190 S 30 FO -9 28.7 0 0 0.046 0.002 0.421 0.02 73 018 1130190 8 Is 19 5 15.3 0 1 0.061 0 0.331 0.02 74 016 2/28190 S 110 27 14 4.1 0 0.2 0 0.001 0.39 0 75 DIS 212�1,20 B Is 17 12 3.8 a.4 3.3 0 0 0 0 76 018 312 3 9 0S 145 34 26 0.9 1.9 0.4 0.049 0.007 0.4 0.014 77.01 B 3/23190 B 115 is 24 1.7 4.9 1.8 0.025 0.002- 0.06 0.005 78 01B 4/15190 S 60 27 4 4.9 0.6 0 0.035 0.003 0.17 0.01 79 DIS 4/16/90 B 260 19 55 7.8 1, 2 0.043. 0.004- 0.01 0@015 so.018 5/31190 S 10 36 3 3.1 0.81 1.7 0.023 0 0.5 0.03 81 018 5131190 B 30 38 6 4 0 1.1 0.031 0. 0.5 0.01 82 018 6/28190 S 22 28 4 3.4 0.6 1.1 0.02 01 0.36 0.00 83 018 6126/90 8 20 34 9 8.1 1.1 2.9 0.029 0 0.41 0.00 84 018 7/26/90 S 40 22 1 1.6 1 1.4 0 0 0 0.01 as Ois 7126/90 8 35 24 2 7.3 1.1 3.1 0.028 0 0.08 OM 86 018 8/23190 S is 13 21 5.7 2.9 1.7 0.054 0.003 0.16 0.017 87 01B 8/23190 B 25 14 1 3.3 1.3 0@8 O.Osg 0.26 0 so 018 916/90 S 30 13 10 8.2 0.2 2.6 0.054 0.002 _ 0.58 0.033 89 01B 916190 B 40 14 5 1.7 U 0 0.092 0.003 0.27 0.03 "Oic 1/30/90 S 50 20 13 42a6 1A CS 0.044 0 0.47 0.027 91 Oic 1/30/90 B 25 21 9 30.1 2.5 20 0.1061 0 0.3 0.02 92 01C 2/27/90 S so 19 14 6.8 0.3 0 0 0.005 0.06 0.014 03 OIC 2/27/90 8 ISO 17 40 6.8 0.2 0.6 0 0.005 0.01 0.01 94 01C 3/23/901S 2:3 39 45 3 0.9 0.1 0.139 0.006 0.36 0.005 95 OIC 3/23/901B .1 21 17 1.9 2.6 0 0.07 0 0.13 F.005 @ 9 0 1 2 23 24 2S 2. 27 5 0 0 0 0 .0 3 0002 000 3 Page 1 PHYSICAUCHEMICAL DATA IN THE APALACHICOLA ESTUARY: 1990 N 0 P a R 8 T U v w ITON TKN TN TOP TP POD TC 1C D0C TOC 2 0,948 0,983 1.741 0 0.024 2.95 13.1 4 9.1 12 3 0.324 0.382 1.082 0 0.017 3.21 14 4.2 9.9 13 4 3.185 3.218 3.7 0 0 3.07 13 4.2 8.8 11.9 5 1.872 1.97 2.378 0.032 0.032 _Y52 16.1 4.3 10.8 14.3 6 1.313 1.387 1.909 0 0.018 3.01 12.6 4.2 8.4 11.4 7 0.542 0.62 0.972 0.013 0.032 3.35 14.6 4.8 9.9 13.1 a 1.568 1.606 1,948 0.006, 0.06 0.89, 12.7 4.2 B.S. 9.4 01 1.6831 1.726 2.091 0.006 0.016 0.8 14 4.3 9.71 10.6 10 0.581 0.617 0.73 .0 0.015 0.64 10.0 4 6.9 7.5 11 0.772 0.818 1.432 0 0.015 0.82 11.3 4.2 7.1 7.9 12 1.568 1.607 1.789 0 0.01 0.66 10.1 4.2 5.9 6.6 13 1.062 1.109 1.223 0 0.005 0.35 9.7 4.7 5 6.4 14 1.683 1.722 1.73 0.023 0.032 tel 12.7 4.7 a 9.6 Is 1.568 1.607 1.645 0.035 0.048 1.7 13.6 3.7 9.9 11.6 16 1.744 1.8 1.936 0 0 2.3 12.1, 5.2 6.9 9.2 17 1.41 1.464 1.665. 0 0. 3.05 13.2 4.9 -8.3 11.4 Is .9999, -9999 -9999 .9999 -9999 .9999 -9999 -.9999 -9099. -999i is -99991 -9999 -gigg -9999 .9999 -9999 -9999 .9999 -9999 -9999 20 0.452 0.513 1.331 0 0.038 2 12 4 8 10 21 0.679 0.767 1.682 0 0.034 1.42 13 4.3 8.7 1 ZT.-l 22 0.159 T, -16 4.1 7.i 10.1 0.858 0.888 1.296 0.159 12 23 1.1 1.128 1.683 0.016 0.016 1.56 13.1 4.7 8.4 10 24 0.922 1 1.683 0 0.005 2.02 11 3.4 7.6 9.61 25 0.922 0.976 1.386 0 0.015 0.81 12.6- 4.6 a 8.8 26 0.858 0.91 1.182 al 0.005 0.71 14.1 4.3 9.8 10.5 27 0.661 0.644 3.19 ol 0.023 0.79 10.7 4.3 6.4 7.2 28 0.745 0.784 2.761 ol 0.023 0.65 12.1 4.91 7.2 7.9 29 0.642 0.598 2.802 0 0.005 0.51 10.2 4.3 5.9 6.4 30 OoS23 0.562 2.38 0 0.013 0.3S 10.3 4.3 6 6.4 31 1.361 1.416 1.416 0,007 0.016 1.48 12.6 4.6 a 9.5 32 0.955 0.994 1.148 0.023 0.032 2.08 13.4 4.5 8.9- 11 33 0.922 0o978 1.159 0 0 1.59 12.7 5.1 7.6 9.2 34 0.772 0.828 1,101 0 0.003 3.29 12.6 4.9 7.7 11 35 -9999 -0999 .9999 -0999 -9999 .9999 -9999 -9999 -9999 -9909 36 -9999 -9999 -9999 .9999-- -9999 .9999 -9999. -9999 -9999 -9999 37 0.39 0.445 1.11 0. -0.041 2.09 13 3.4 9.6 11.7 38 1 Oo3621 0.429 1.229 0 0.048 1.97 12 3.5 8.5 10.5 39 0.881 0.91 1.465 0 0.041 2.06 13.1 4.6 8.5 10.6 ' 40 0.807 0.834 1,286 0 0.045 2.06 10.1 4.5 5.6 7.@ 41 0.089 10072 1,592 0 0.005 2.15 12.8 3.S 9.3 11.5 42 1.026 1.087 ljil) 0 0.005 2.1 11.1 3.5 7.6 9.7 43 0.955 1 1.445 0 0 0 13 3.3 9.7 9.7 44 0.922 0.973 1.13 0 0.01 0.72 Is 4.2 13.8 14.5 45 0.642 0.576 t303 0 0.015 0.33 11.2 4.3 6.9 7.2 46 0.438 0.477 togi 0.012. 0.016 0.661 11.3 4.2 7.1 7.8 47 0.487 0.627 0,981 0 0.008 0,96 10.2 4.3 5.9 6.9 481 0.6421 0.581 0@968 0.0 11 0.016 0.51 11.7 4.2 7.5 a 49 00989 1.028 1,182 0.08 0.095 1.61 l3m7 3.7 10 11.6 so 0.829 0.868 0.88 0.039 0.063 1.99 12.6 4.3 8.3 10.3 51 oq858 0.909 1.136 0 0 1.59 12.6 4.7 7.9 -9.5 52 0.829 0.991 1.096 0 0 2.21 12.7 4.5 8.2 iO.4 S3 -9999 -9099 -9999 -9999 -9999 -9999 .9999 -9999 -9999 -9999 S4 -9999 -9999 -9999 -9999 .9999 .9999 .9999 -9999 -9999 -9999 55 0.608 0.652 1.152 0. 0.02 2A 13.1 5.1 a 10.1 56 0.312 0.4 0.793 0 0.02 2.08 16.3 6.7 9.6 11.7 S7. 1.14- 1.14 1.541 0 0 1.92 12.9 6 7.9 9.8 so 0.858 0.868 1.197 0 0 2.1 18.1 4.8 13.3 16.4. 59 0.647 0.709 1.056 0 0.014 2.04 13.2 5 8.2 10.2 60 0.694 0.76 1.023 0 0.005 2.16 17.8 6.1 11.7 13.9 61 0.868 0.896 1.18 0 0.01 0.81 12.7 3.6 9.1 g.i 62 0.561 0.605 0.715 0 0.025 0.65 16. 4.2 11.8 12.i 63 0.439 0.465 0,624 0 0.008 0.36 9.7 4.1 5.6 6 64 0.542 0.57 1.025 0. 0@015 0.58 12ol 4.2 7.9 805 65 0.602 0.642 0.687 0 0.003 0.61 7.6 4.7 2.9 3oS 66 0.487 0.52 0.747 0 0.005 0.68 10.9 4.6 6.3- 6.9 671 0.6471 0.686 0.686 0,023 0.032 1.63 12.7 5.1 7.6 9.2 68 0.67 0.709 0.721 0,039 0.048 1.93 12.6 4.7 7.9 9.8 69 0.542 0.596 008 0 0.024 1.95 13.7 4.7 9 10.9 70 -9999 -9999 -9999 .9999 -9999 -9999 -9999 -9999 -9999 -9999 71 -9999 -9999 -9999 -9999 .9999 .9909 .9999. .9999 -9999 -9999 72 0.29 0.336 0.761 0 0.02 1.85 13.1 4.5 8.6 10.4 73 0.336 0.397 0.722 0. 0.02 2.07-- 23 8.9 14.1 16.2 74 t-744 1.744 2.134 ol 0 1.79 12.2 4.7 7.5 9.3 75 0.719 0.719 0.719 0 0 2.15 22 4.3 17.7 19.9 76 0.772 0.821 1.229 0.018 0.032 1.92 12.4 4.7 7.7 9.6 77 0.647 0.671 0.731 0.164 0.159 2.15 21.3 -8.9 12.4 -T4.6 70 0.955 0.99 1.159 0 0.01 0.81 14 3.9 10.1 10.9 79 0.523 0.666 0.585 0 0.016 0.74 18.7 3.8 14.9 16.6 so 0.394 0.416 0.916 0 0.03. 0.47 10.6 4.9 5.7 6.2 a 1 0.47 0.501 1.00 1 0 0.016 0.64 12.2 4.8 7.4 a 82 0.4S4 0.473 0.837 0 0.008 0.52 9.2 5 4.2 4.7 83 0.354 0.382 0.791, 0 0.005 0.41 8.7 5.1. 3.6 4 64 00647 0.647 0.6471 0.014 0.032 1.45 -12.7 6.1 6.6 8.1 as 0.694 0.722 0.799 0.023 0.032 1.84 12.6 4.7 7.9 9.7 so 0.67 0.724 0.883 0 0.017 1.61 11.8 4.6 7.2 8.8 87 0.67 0,722 0.972 0 0 2.66 12.6 4.3 8.3 11 as -9999 -9999 -9999 .9990. .9999 -9999 .9999 .9999 -9999 -9999 so -9999 --9999 ---9-999 -9999 -9999, -9999 .9999 .9999 .9999 -9990 go 0.39 0.434 0.002 0.058 0.085 1.91 12.5 4.1 8.4 10.3 91 0A87 0.593 0,893 0 0.02 1.76 20 7.7 12.3 14.1 92 0.678 0.678 0728 0 0.014 1.02 12.9 4.2 8.7 10.6 93 0.807 0.8071 0.819 0 0.01 1.79 2 4.7 15.41 17.2 0 0.005 1.92 11 0.7411 1.109 N 4.1 8.41 10.31 94 0.602 12 1 951 0.6941 0.7641 0.896 0 0.005 1.79 19.21 7.61 11.61 13.41 M14 1 07 12' 02 03 26 34 2.7 26 39 0 42 @43 44 S 9 60 @62 ,3 6 6 6 Pap 5 PHYSICAL/CHEMICAL DATA IN THE APALACHICOLA ESTUARY: IM A a C 0 E F 0 m I K L m 06 DIC 4/15190 S 50 27 is 2.9 0 0.8 0.042 0.004 0.11 0.01 97 OIC 4115/90 B 225 26 39 4 0 0.4 0.061 0.005 0.04 0.01 go 01C 6/31/90 S 40 43 3 3.2 0.3 0.8 0.021 0 0.61 0.026 99 01C 5/31/90 6 so 43 32 6.2 0.8 1.9 0.031 0 0.16 0.023 L100,01c 6128/90 S 20 27 9 9.5 1.3 1.7 0.023 0 0.45 0.015 101 01C 6/28/90 B is 31 Is 7.3 1.1 2.5 0.033 0.003 0.02 0.013 102 OIC 7/26/90 S 30 26 2 4.2 0.2 2.1 0.019 0.008 0.07 0.024 103 OIC 7/26/90 8 30. 29 7. 4.2 1.2 1.7. 0.028 0. 0 0.024 104 OIC 8/23/90 S 15 12 2 3 0- 0 0.044 0.005 0.18 0 los Oic 8/23190 8 20 12 2 1.7 0.1 0.6 0.04 0.005 0.22 0 106 Olc 916120 S 30 12 7 1.7 0 0.2 0.059 0.002 0.46 0.039 107 Oic 916/908 so is 1 3.6 1.5 2.4 0.08i 0.003 0 O.Oi 100 OSA 1130/90 M 150 55 24 17.8 1.4 3.2 0.046 0.005 0.31 0.051 102 OSA 212 7/90 M 260 39 38 0 0 0 0 0.007 0.34 0.041 110 OSA 3/23190 S 430 60 70 1.3 1 1.3 0.093 0.017 0.43 0.014 111 05A 3/23/90 8 340 60 65 1.4 0 0.3 0,074 0.01 0.65 0.005 112 05A 4/15/90 S 150 39 20. 5.9 0.6 0.7. 0.038 0.006. 0.44 0 113 05A 4/15/90 B 140 30 Is 5.6 O.S 0.6 0.05 0.006 0.47 0.01 114 OSA 5/31/90 S so 55 7 10.6 1 1.8 0.024 0 0.016 115 05A 5/31/908 60 4 1 5 11.1 1.1 1.1 0.031 0 0.09 0.016 116 05A 6/28/90 S 25 38 a 4.1 1.1 2.20.023 0.005 0 0.039 117 OSA 6/28/@() B 20 29 17 6.9 1.4 1.6 0.028 0 0 0.03 118 OSA 7126/90 S 25 28 1 3.6 1.5 1.6 0.023 0 0.15 0.012 119 OSA 7/26190 B Is 31 1 7.6 1.5 2.9- 0.02i 0.008 0.18, 0.009 120 05A 9/6/90 S is 13 2 4 0 1.1 0.05 0.009 0.071 0.039 121 OSA 9/6/90 B 15 13 1 3 1.3, 1.6 0.083 0.005 0.23 0.03 122 OAI 1/30/90 S 80 31 19 3.7 0.6 1 0.051 0.009 0.97 0.048 123 OAI 113050 B 340 31 13 3.9 0 0 0.056 -9999 -9999 0.065 124 DAI 2128/90 S go 34 14 13.6 1.2 0 0 0.003 0.43 0 12S OAI 2/28/90 B go 29 15 13.3 0 0.7 0 0,003 -5.52 0 126 OAI 3123190 S 240 55 40 2.7 1.4 2.1 0.052 0.005 0.61 0.005 1 27IOAI 3123/90 8 250 so 45 7.6 1.3 0 0.049 0.011 0.48 0.014 128 OAl 4115190 S 160, 34 24 8.6 1.2 0 0.037 0.005. 0.51 0.015 129 DAI 4/16190 8 150 36. 23 4.9 0.9 0 0.051 0.004 0.46 0.03 130 OAI 5/31/90 S 40 39 a 5.7 1.6. 1.9 0.057 0.001 2@43 0,015 131 OAI 6131/90 B 20 42 10 12.1 1.3 1.2 0.032 0.002 1.75 0.034 132 OAI 6/28190 S 23 33 9 7.7 1.4 1.3 0.05@ 0 2.09 0.048 133 OAI 6/2850 8 20 160 9 6.9 1.8 1.4 0.033 0 1.52 0.028 134 OAI- 7/26/90 S 20 31 1 5.8 1.7 14 0.056 0 0@08 0.006 135 OAI 71261WB 25 25 1 4.2 1.2 2.3 0.039 0 0.08 0.009 1 36.OAI 8124/90 S 40 17 2 3.9 0 0 0.065 0.003 0.13 0.01. 137 OAI 8/24/90 B is 9 2. 3.9 1.4 1.8- 0.056 0.003- 0.04 0.003 138 OAI 9/6/90 S 101 14 4 6.6 2.3 4A 0.062 0.002 0 0.024 i.08 0 0.024 139 OA! 9/6/90 B 15 12 5 3.7 0.7 0.3 0.002 140 OA7 1130190 S 120 22 Is 9 1 0.2 0.051 0.004 0.77 0.027 141 OA7 1/3050 B 75 is Is 33.8 1.6 3.9 0.044 0.005 0.41 0.024 142 OA7 2/28/90 S 70 23 11 6.4 0 0.7 0 0 0.35 0 143 OA7 2/28/90 B 100 19 30 8.1 0 0 0 0 0.07 0 144 OA7 3/23/90 S 200 44 40 2.9 2.3 1.7 0.03 0.011 0.41 0.023 145 OA7 3/23/90 8 ISO 26 11 1.7 0.6 1 0,047 0.004 0.121 0.014 146 OA7 4/15/90 S 176 29- 23 4.7 0.7 0 0.046 0.009 0.33 0.026 147 OA7 4/15/90 B 110 22 16 8.3 1.3 0.4 O.OS3 0.008 0.05 0.015 149 DA7 5/31/90 S 60 29 3 3.6 0.5 0.6 0.046 0.002 0.73 0.008 149 OA7 S/31/90 B 20 37 17 12.3 1.1 1.9 0.027 0.001 0.16 0.011 150 OA7 6/2DOO S 20 36 4 3.9 0.9 1.1 0.04 0 0.05 0.013 151 OA7 6128190 13 27 33 a 7.3 1.6 1.4 0.04 0 0.23 0.008 152 OA7 7/26/90 S 20 21 1 4.1 2.2 2 0.039 0 0 6.0-00 153 OA7 7/26/90 B 40 48 3 10.1 2.3 1.8 0.039 0. 0.27 0.018 154 OA7 8/23190 S 20 11 1 2@6 2.4 2.4 0.052 0.004 0.36 0.037 155 OA7 8/23/90 8 Is 12 4 2.5 1.2 0.6 0.056 0.003 0.25 0.017 156 OA7 9/6/90 S 30 9 3 3.7 0.6 1 0.05S 0.002 0.15 0.024 157 OA7 9/6/90 8 30 10 2 4.7 1.4 2.7 0.073 0.005 0 0.03 158 OAS 1/30/90 S 40 20 6 29.6 0 379.1 0.07 0.004 0.27 0.024 ISO OAS 1130/90 B 40 21 10 SO.8 2.9 7.4 0.0611 0 0.26 0.031 160 OAS 2/27190 S 30 Is 5 11.3 0.3 2 0 0 0.07 0.00@ 161 OAS 2/27/90 8 26 25 6 13.3 0 0.7 0 0 0 0.003 1 621OA9 3123/90 S 60 26 a 9.6 0.6 1.4 0.025 0.003 0.23 0.028 163 OAS 31231906 20. Is el I 1 0.9 1.41 0.099 0 0.1 0.005 164 OA9 4115/90 S so 27 61 9.3 1 0.9-- O.OSI 0.004 0.06 0.01 los OAS 4/15190 B 60 22 8 12 1.2 0.6 0.055 0.003 0.06 0.025 166 OAS 6/31/90 S 30 35 6 3.6 0.5 1 0.046 0 0.16 0.008 167 OA9 5/31/90 B 70 42 10 9.6 1.5 1.5 0.053 0 0.45 0.008 168 OAS 6/28190 S 22 41 7 11.6 2 2.6 0.04 0 0.06 0.006 169 OA9 6/28/90 8 23 39 13 10.5 1.7 t.5 0.047 0 0.32 0.003 170 OAS 7/26/90 S 30 28 1 3.6 1.5 2.4 0.039 0.004 0.3 0.039 171 OAS 7/26190 B 30 21 2 2.8 1 1.1 0.039 0.004 0.15 0.049 172 OAS 8/23/90.S Is. 11 2 -2.S 0.6 1.3 0.056 0.003 0.16 0 173 DA9 8/23/901B 20 Is 6 2.6 2.4 1.7 0.056 0.003 0.09 0.003 174 OAS 9/6/90 S so a 7 4.5 1.2 0.5 0.054 0.003 0 0.039 175 OAS 916/90 a 40 9 10 3.1 0 0.8 0.073 0.003 0.27 0.042 176 OGi 1/23190 S so 19 6 24.6 1.4 6.1 0.058 0.002 0.34 0.02 177 OG1 1123/90 8 55 19 Is 23.5 1.9 5.9 0.061 0 0.35 0.02 178 OGI 2/28/90 S 20 19 4 10 0 0.1 0 0.001 0.02 0 179 OGI 2/28/90 B 30 19 5 7.9 0 0.7 0 0 0 0 ISO OGI 3/23/90 S 40 18 7 1.3 I.S. 1.9 0.062. 0.009 0.2 0.005 181 OGI 3/23/90 8 40 Is. 7 2.4 1.7 0.9 0.049 0.006 0.2 0.028 182 OGI 4/15/90 S 66 26 5 6.6 1.1 0.3 0.048 0.004 0.19 0.01 183 001 4/15/90 B so 23 6 5.6 1A 0.3 0.057 0.005 0.11 0.015 184 OGI 5/31/90 S 20 46 6 4.3 0 1.1 0.065 0.002 0.84 0.004 18S DGI 5/31/90 8 70 42 29 12.4 1.6 2.5 0.048 0.014 0.12 0.015 16GOGI 6129190S 40 39 7 6.6 1 1.7 0.056 0 0.7 O.Oos 187001 6/28190 8 82 38 22 6 1 1.9 0.04 0 0 0.005 7126/90 S 55 27 Is 4.7 1.9 2.5 0.056 0.012 0.06 0.018 IF, flql DW-G 712 32 2 @.31 2-1011 0:0W 0.0081 0 0.021 3/ '01 14 3. 1 00,61 0.18, 11901OG1 I 81261:00i: i is 2.il 3 0.0021 0.01 Pogo 2 PHYSICAUCHEMICAL DATA IN THE APALACHICOLA MUARY: 1990 N 0 P a R s T u v w 96 0.8 0.842 0.963 0 0.01 0.81 12.7 2.9 9.8 10.6 97 0.505 0.566 0.607 0 0.01 0.66 20 3.1 16.0 17.6 go 0.38 0.401 1,015 0 0.026 0 8.7 3.9 4.8 4.8 go 0.354 0.385 0.544 0 0.023 0.66 10.9 3.9 7 7.7 100 0.33 0.352 0.807 0 0.015 0.52 6.5 5.1 1.4 1.9 101 0.318 0.351 0.374 0 0.013 0.64 7.8 4.7 3.1 3.7 102 0.581 0.601 0.678 --0.039 0.063 1.36 12.61 5.3 7.3 8.7 103, 0.602. 0.63 0.63 0.055 0.079 2.14 12.71 4.7 S. 10.1 104 0.67 0314 0.896 0. 0 2.66 ".9 4.4 T5 10.i 106 0.624 O@664 0.891 01 0 2.66 12.7 4.5 8.2 10.9 106 -9999 -9999 .9999 -0999 -9999 -9999 -9999 -9999 -9999 -9999 107 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -0999 -9999 -9999 100 0.362 O@408 0.723 0 0.051 1.72 13 3.7 9.3 11 109 0.962 0@962 1.312 0.166 0.208 2.04 13.1 5.1 -- 8 10 110 0.694 O@787 1.234 0 0.014 2.06 12.3 3.7 8.6 10.7 ill 0.523 0,597 1.26 0 0.005. 2.2 9.9 3.6 6.3 8.5 112. 0.772. 0.81 1.265 0 0 0.76 18.1 3.7, 14.4 15.2 113 0.542 0.591 t.072 0 0.01 0.37 21.2 3.2 19 18.4 114 0.394 0.418 0.463 0 0.015 0 8.9 4.1 4.8 4.8 lis 0.38 0,411 0.502 0 0.015 0.37 10.3 4.7 6.6 6 116 0.38 0,403 0.408 0 0.038 0. Oi 10.1 4.2 5.9 6 117 0.354 0,382 0:28-2 0 0*03 Or35 1 1m2 4.6 6.6 7 lie 0.694 0.717 0.871 0 0.012 1.29 12.9 5.4 - 7.6 8.8 119 0.624 -0@652 -0*844 0.007, 0.016 2.05 12.7 5.2 7.5 9.5 120 -9999 -9999 .9999 -9999 -9999 -9999 -9999. -9999 -9999 -9999 121 .9999. -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 122 0.375 0,426 1.306 0 0.048 1.98 12 4 8 10 123 0.362 0.418 -999 9 0 0.065 -9999 15 4.1 10.9 -9999 124 0.8 0.8 1.234 0.063 0.063 1.97 10.9 6.1 5.8 7.8 12S 0.955 0,955 1.477 0.095 O@095 2A5 15.1 5.1 10 12.2 126 0.67 0,722 1.24 0 0.005 2.01 11.2 3.9 7.3 9.3 127 0.647 0@696 1.183 0 0.0`14 2.16 14.4 4.2 10.2 12.4. 128 0.719 0.766 1.271. 0 0.015- 0.92 12.2 3.8 8.4 9.3 129 0.523 O@574 1.043 0 0.03 0.81 21- 4.1 16.9 17.7 130 0.438 0,495 2.927 0 0.015 0.4 12.1 4.3 7.8 8.2 131 0.47 0.502 2.252 0 0.034 0.82 10.7 4.2 6.5 7.3 132 0.307 O@363 2.464 0 0.048 -0.3i 11 3 5.1 6.2 6.6 133 0.38 0,413 1.936 0 0.028 0.01 11.4 3.7 7.7 7.7 134 0.591 0.637 0.714 0 0.006 1.29 13.7 5.1 8.6 9.9. 13S 0.67 0,709 0.786 0 0.009 1.94 12.6 5.1 7.5 9.3 136 0.694 0.759 0.896 0 0.01 1.95 11.9 5.2 6.7 8.6 137 0.772 0.829 0.874 0 0.003 2.96 13.6 4.7 8.9 11.9 138 -9999 -9999 -9999 -9999 -99991 -9999 -9999. -9999 -9999 -9999 139 -9999. .9999 -9999 -9999 -9999 -9999 -9999 -9909 -9999 -9999 140 0.469 0.52 1.295 0 0.027 1.37 14 4 10 11.4 141 0.914 0.958 1.378 0 0.024 2.12 23 8.1 14.9 1 i 142 0.694 0.694 1.04 0 0 1.47 4.11 4.9 9.2 10.7 143 0.719 0.719 0.794 0 0 2.15 20.1 4.9 15.2 17.4 144 0.8 0,829 1.25 0 0.023 1.39 13.3 4 9.3 10.7 145 0.922 0.968 1.094 0 0.014 2.25 22.2 8.2 Ii 16.3 146 0.745 0.791 1.133 0 0.025 0.81 12.7 5.1 7.6 8.4 147 0.394 0.447 0.5 0 0.015 0.66 21.7. 4.1 17.6 18.3 14B 0.354 0.399 1.126 0 0.008 0.32 14 4.3 9.7 10 149 0.394 0.421 0.68 0 0.011 0.79 21 4.11 16.9 17.7 ISO 0.394 0.433 0.479 0 0.013 0.68 11.5 4.9 6.6 71 151 0.33 0.369 0.597 0 0.008 0.6 11.6 5.6 6 Cs 152 0.602 0.641 0 @64 1 0 0.009 1.15 7.3 5.6 1.7- 2.8 IS3 0.647 0.686 0.955 0 0.018 2.05 13.6 5.7 7.9 9.9 IS4 0.602 0.655 1.018 0 0.037 0.88 10.8 5.1 6.7 6.6 Iss 0.694 0.75 1 0 0.017- 1.46 9.8 4.9 4.9 6.4 ISO -9999 -9999 -9999 -9999 .9999 -9999 -9999 -9999 -9999 -9999 lS7 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 ISO 0.624 0,594 0.867 0 0.024 1.69 16 6.7 ----9.3 10.9 ISO 0.564 0,626 0.883 0.033 0.064 11.67 25 6.8 18.2 19.9 ISO 1.146 1.146 1.218 0 0.007 1.7 16.9 6.1 11.8 13.5 161 1.489 1.489 1.489 0 0.003 1.79 33 4.9 28.1 29.9 162 0.719 0.744 0.973 0 0.028 1.68 17.3 6.2 11.11 12.8 163 0.523 0.61 0.707 0. 0.005 1.86 30.9 6.8 24.11 26 164 0.642 0.593 0.658 01 0.01 0.79 12.6 4.7 7.9 6.7 16S 0.408 0.463 0.528 0 0.025 0.64 18.7 6.1 13.6 14.2 166 0.38 0.426 0.586 0 0.008 0.31 1 a 3.9 14.1 14.4 167 0.354 0.407 0.862 0 0.008 0 21 4 17 17 is$ 0.307 0.347 0.392 0 0.005 0.58 11.7 5.7 6 6.6 169 0.307 0.364 0:673 0 0.003 0.45 10.9 5.2 5.7 6.2. 170 0.694 0.733 1.041 0 0.039 1.48 12.7- - 4.9 7.8 9.3 171 0.647 0.686 0.84 O.Ois 0.063 2.7 12 4.8 7.2 9.9 172 O.Sal 0.638 0.797 0 0 1.3 10.8 4.7 6.11 7.4 173 0.542 0.598 0.689 0. 0.003 0.71 11.9 4.6 7.3 a 174 -9999 -9999 -9999 -99991 -9999 -9999 -9999 -9999 -9999 -9999 17S -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 1761 0.3241 0.382 0.725 0 0.02 1.48 20 6.3 13.7 15.2 177 0.42 0.481 0.833 0 0.02 1.94 20 6.4 13.6. is.5 178 0.745 0.745 0.771 0 0 1.57 19.2 4.8 14.4 Is 179 0.772 0.772 0.772 0 0 1.97 23 4.7 18.3 20.3 180 1.1 1.162 1.367 0 0.005 1.65 18.7 6.3 12.4 14 191 0.745 0.795 1.002 0 0.028 2.15 20. 6.6 13.4 75-6 182 0.691 0.629 0.821, 0 0.01 0.64 112@41 6.1 6.3 6.9 183 0.542 0.699 0709 0 0.015 0.66 12.4 3.7 8.7 9.4 184 0.33 0.395 1.236 0 0.004 0.37 18.2-- 4.3 13.9 14.3 les 0.342- 0.39 0.626 0 0.015 0.36 20 4.2. 15.8 16.2 186 -307 0.363 1.068 0 0.005 Oas iOM6 4.3 6.3 6.8 187 1 '.358 0.358 0 0.005 0.58 10.7--- 3.7 71 O@3 ,115 741 0,828 0.905 0 0.018 1.51 12.1 6.7 :@41 7j 189 0.81 0.839 0.847 0.026 O.Oje@ 1.,96 21.2 5.3 9 17.1 ISO 0.56111 0,617 0.799 0 0. 01 1 36 10.7 4.21 6.61 79 Page 6 PHYSICAL/CHEMICAL DATA IN THE APALACHICOLA ESTUARY: 1990 A 9 C 0 E - F a- N I K L M 19-1 DQ 1 8/23190 B 30 Is 2 3.8 1.0 1.6 0,056 0.003 0.13- -0.007 122 OGI 916/90 S 25 14 a 6.5 4.1 5.8 0.052 0.004 0.38 0.03 193 OGI 9/6/908 15 12 7 5.5 6 6.3 0,092 0.002 0.77 0.036 194033 1/30/90 M 36 is 6 23.1 0 0 0.056 0 0.27 0.02 125033 2127190 M so 19 17 21.4 0.3 0 0 0.003 0 0.01 196 DG3 3/23/90 M 20 23 7 2.5 0.2 0.9 0.026 0.004 0.05 0.005 197 OG3 4/15/90 M .820 26 120 7.1 0.3 0 0.043 0.003 0.1 0.015 Igo OG3 5/31/90 M 40 39 12 6.5 0.6 to O@031 0.002 0.48 0.0is 199 OG3 6/28/90 M 60 29 32 5.8 1.91 2.1 0,028 0 0.27 0.008 200 OG3 7126190 M 4S 2A A 3@6 1 2 0.028 0 0 0.021 201 003 8123/go M 36 12 2 2.9 2.2 2.9 0,056 0.002 0.16 0 202 OG3 9/6/90 M 20 13 1 3 1.3 2.1 O.OS2 0.002 IT 1-6 0.045 203 OR3 1123/90 S 116 25 13 4.8 0.6 0.6 0,168 0.003 0.64 0.0 204 OR3 1123/90 B 120 27 is 3.9 A 0.7 0.088 0A04 06 0.044 205 OR3 2/28190 S 100 36 14 6.5 0.4 0. 0 0.007 -64-4-0 206 OR3 2/28/90 B 130 36 13 4.1 0.3 0.7 0 0.009 0.36 0. 207 0113 3/23/90 S 110 38 13 1.6 1.5 1.3 0.026 0 0.32 0.005 208 0143 3/23190 8 110 29 14 2.1. 1.7 1.6 0.026 0 0.3 0.0051 209 OR3 4115120 S 140 34 1 a 4.61 0.8 0 O.OS3 0.004 0.36 0.0151 210 OR3 4115/90 B 145 34 19 4.3 0.3 0.3 0.121 0.005 0.43 0.011 211 OR3 5/31/90 S 30 44 a 5.9 0.4 0.7 0.05-- . 0-- -1.62 0.026 212 OR3- 5/31/90 B 30 23 Is 16.9 2.-6 0.7 0,086 0 0.95 0.019 213 OR3 6/28/90 S 64 49 10 4.4 1.3 1.6 0.04 0 1.18 0.013 214 OR3 6/28/90 B 38 38 10 6.9 1.4 1.6. 0.04 0. 0.68 0.02 215 OR3 7/26/90 S 56 26 2 6.7 1.5 1.41 0.039 0.012 0.06 0.024 216 OR3 7/26/90 B 20 25 1 1.7 0.6 1 0,079 0.004 0.07 0.021 217 OR3 8/23/90 S 40 14 1 2.5 1.1 1.1 0.08 0 0.09 0 218 DR3 8)231908 60 13 2 4.2 3.9 3.6 0.077 @.-Ooi 0.09 0 219 OR3 916/90 S, 40 12 2 2.7 0 0 0@059 0.003 0.07 0.024 220 OR3 9/6/90 8 25 13 4 3.4 0 0.8 0.105 0.005 0.07 0.027 221 1E 8123/90 S 40 13 1 2.2 0.8 0.7 -9999 0.004 0.02 000i 222 IE 8/23/90 B 30 14 1 3.5-- 1.9 2.8 .9999 0.004 0.16 0.013 223 CP A 123190 S 45 23 6 25.2 2 5.9 0.046 0.005 0.38 0.017 224 CP 1/23/90 B 50 21 6 25.7 2.7 6.11 0.051 0.003 0.41 OF031 225 CIP 2/28/90 S so 28. a 6.5 0.6 01 0 0 0.08 0 226 CIP 2/28/90 8 so 21 8 4.6 1.8 0.6 0 0,005 0 0 227 OP 3/23/90 S 38 760 8 1 DA 0 0.026 0.001 002 0.010 220 OP 3/23/90 B 45 Soo a 3.7 1.1 0.5 0. ON 0.002 0.2 0.023 229 OP V15190 S 110 28 t4 8.2 0.6 0.1 0.041 0.005 0.13 0.015 2301OP 4/15190 B as 25 10 5 1.4 0.8 0.057, 0.008 -6.0-8 0.036 231 OP 5131190 S 30 19 9 4.7 0.5 1.8 0.0531 0.00.1 0.11 0.008 232 CP 5131/90 B 20 23 9 3.8 0.4 0.6 0.033 0.003 0.27 0.009 233 OP 6/28/90 S 43 33 15 4.1 0.71 2.3 0.061 0 0.09 0,011 234 CIP 6128/90 B 55, 42 is, 4.3 0.7 1.6 0.04 0 0.14 0.005 23S CP 7126)90 S 39 26 6 2.1 1.6 2.8 0.056 0.012 0 0.009 236 CP 7f26/90 8 40 27 1 3@9 1.3 2.4 0,039 0 0 0.018 237 OP 8/23190 S 40 14 1 3.4 0 0 0.052 0.003 0.36 0.024 238 OP 8123190 B 30 12 3 5.7 0 0 0.061 0.003 0.04 0 2391OP W6190 S 30 13 6 4.5 1.2 1.1 0.044 0.003 0.27 0.027 240 CP 916/90 B 20 16 6 4.4 2 3.1 0.044. 0,003 0.19 0.027 241 08 6128/90 S 29 32 6 7.1 1 1.3 -0.033 0 1.52. 0.008 242 M 6128/90 B 45 so 12 24.8 2.7 5.8 0.067 0 0.sl 0.005 243 m 916190S, 30 A 1 1 4.5 1 2.3 0.044 0.003 0.15 0.036 244 Do 9/6/90 B 20 10 1 _1-4 21 3.1 0.044 0.003 0.15 0.03 245 081 1/23/90 M 1 125 21 10 7 1.8 2.4 0.067 0.003 0.55 0.027 246 D81 3/23190 S 70 25 13 1.7 0 3.2 0.039 0.009 0.38 0.005 247 DBI 3/23190 8 53 31 9 1.7 0 0.3 0.049 0.0021 0@08 0.005 248IDB1 4115190 S 70 22 a 6.3 0.8 0.5 0.035 0.011 0.37 0.01 249ID81 4/15/90 B so 22 12 6 0.3 0.41 0.041 0.013 0.61 OaO36 25DIDBI 5/31/90 S 60 24 7 4.9 0as 0.9 0.035 0.003 2.09 0.02 251 ID81 5/31/90 8 110 27 25 4.2 0 0.7 0.07 0.007 0.61 0.0 1 sl 2S210BI 7126fgO S 5 27 1 3@3 ts 3.1 0.039 0 0 0.012 2S31DBI 7/26/90 8 45 21 3 1.8 1.6 2.2 0.039 0.004 0 0.018 264 DBI 8124190 S, 25 14 2 2.3 0 0 0.056 0.002 0.13 0.04 2SS DBi 8124190 B 25 14 1 1.4 0 0 0.056 0.003 0.il 0.017 256 D83 2/28/90 S 80 31 13 7.4 1.2 0 a 0.011 0.35 0 251083 2/261908 100 3-1 Is 9.8 5.9 5.2 0 0.005 0.46 0 250 EM 1/23/90 S 80 20, 9.5 15.2 1.6 3.9@ 0.07 0.006 0.53 0.014 2SO EH 1123/90 a 90 211 9.6 17.4 3.3 S.51 0.067 0.49 0.014 260 EH 2/28/90 S 40 241 5 4.5 0 0 0.025 0.003 0.06- - 0 261 94 21281906 10 19 4 11.9 4.7 1.4 0.02 0.001 0 0 262.&1 3/23/90 S 98 23 is 2 0.2 5.6 0.033 0.005 0.34 0.009 2631EH 3/23/90 B 76 26 18 2.6 0 0 0.036 0.003 0.36 0.005 264181 4/15/90 S so 26 4 4.9 0.1 1.1 0.0461 0.005 0.11 0.01 265 EM 4)15190 B 40 22 5 4.4 0 0.2 0.057 0.005 0.08 0.025 26 6131190 S 20 22 7 5.6 0.8 0.6 0.042 0 0.23 0.023 267 EH 5/31190 B 30 23 7 5.6 1.2 0.5 0.038 a 0.. 4 0.045 268 EH 6/28/90 S 36 31 11 4.2 1.3 2.1 0.047 0 0.14 0.063 269 EH 6/28190 a 50 37, 12 4m3 0.7 1.5 0.04 0 0.05 0.048 270 EH 7/26/90 S 15 291 1 3.9 0.8 2.6 0.056 0 0.27 0.012 271 EN 7/26/90 B 1 20 211 2 2.7 1.8 3.g 0*039 0.008 0.38 0.0091 272 EH 8/23190 S 50 12 3 2.8 0 0 0.054 0.006 0.13 a 273 EH 8123/90 a 30 13 6 3.6 0 0 0.054 0.003, OAS 0.007 274 EH 9/6/90 S 20 9 3 4.7 1.9 2.5 0.045 0.004 0.07 0.03 275 84 916190B 20 9 1 3.2 0 0 0A44 O@002 0.04 0,048 276 EHA 8/23/90 S Is 12 4 3.11 0.3 1.2 -9999 0.004 0,13 0.01 271 EHA 8/23190 B 36 13 2 1.4 0 0.2 -9999 0.003 0.04 0.017 270 GA 8/23/90 S 25 14 6 2.2 0.3 0.9 -9999 0.004 0.22 0 279 CA 8123/90 B 10 is 4 2.2 0.8 0.7 -9999 0.003 0.16 0.003 280 GB $123190 S is 12. 1 4.4 I-S 2.7 -9999 0.005 OA3 0- 281 GB 8/23/90 8 10 11 1 2.5 0.8 0, .9999,- 0.003 0.041 01 1' :2 'E 1 8/23/90 S 20 14 1 5.9 4.1 3.6 04. 0.1 2 31. 8/23/90 B 20 17 3 3:1 19:2 00:0.051 0.131 0 4.6 2.8 Il J286INS 1130/90!S Is 21 is 10.7 1.4, 3 0.027 1285INS 1/301901B 1 17, 11.3. 0.21 0.0461 01 0.571 0,106 0 0'02' 0019 0.13 0-2 0024 0.21 0 ..24 0" . .136 0,0. 00" 9 2 1'- 1112 13 Page 3 PHYSICALICHEMICAL, DATA IN THE APALACHICOLA ESTUARY: 1990 N 0 P a R S T -j U v w 121 0.581 0.638 0.774 0 0.007 1.45 10.3 4.2 6.1 7.5 192 -9999 -9999 .9999 -9999 .9999 .9999 -9990 -9999 -9999 -9999 193 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -gggg -9999 194 0.39 0.445 0.71 0 0.02 1.99 25 8.1 Wo 19.9 19S 0.678 0.678 0.68 0 0.01 2.15 30 4.7 25.i 27.5 196 0.647 0.673 0.726 0 0.006 2.2 24.9 8.1 16.8 19 197 0.602 0.646 0.745 0 0.015 0.94 30 8.1 25 22.7 198. 0.39. 0.411 0.888 0. 0.015 0.4 20, 4.3 ISM -16.1 1991 0.3421 0.37 0.642 of 0.008 0.69 10.6 3.6 7 7.7 200 0.829 0.856 0.856 0 0.021 1.66 23.6 5.1 18.5 20.2 201 0.67 0.726 0.885 0 0 1.18 10.2 4.2 6 7.2 202 -9999 -9999 -9999 -9999 -9999 -0999 -9999 -9999 -9999 -9999 203 0.452 0.62 1.267 0.037 0.085 1.76 19 5 14 15.8 204 0.679 0.767 1.527 0.019 0.064 2. Fl 14 6 a 10.2 20S 0.67 0.67 1.115 0,032 0.032 1.79 20.2 4.6 15.6 17.4 206 0.74S 0.745. 1.113 0.016 0.016 2.29 12.1 4.6 7.6 9.8 207 0.602 0,629 0.946 0.0 11 0.016 1.8 17. 4.9 12.1. 13.9 208. O.S42 0,568 0.865 0.027. 0.032 2. 5 Is 5.9 9.1 11.4 209 0.542 0.595 0.96 0 0.015 0.54 is 8.2 9.8 10.3 210 0.542 0.662 11.097 0 0.01 0.54 16.9 a 8.9 9A 211 0.38 0.43 1.962 0 0.026 0.37 16 4.2 11.8 12.2 212 0.408 0.494 1.448 0 0.019 0.13 14 3.9 10.1 10.2 213 0.38 0.42 1.601 0 0.013 1 10.5 3.7 6.8- 7.8 214 0.38 0.42 1.101 0 0.02 0.69 11.2 3.7 7.5 8.2 215 0.772 0.811. 0.88B 0 0.024 1.45 20.1 5.1 Is 16.S 216 0,694 0.773 0.85 0.074 0.096 2.28 12.6, 4.7 7.9- 10.2 217. 0,894 0.774 0.865 0, 0 1.7 10.6 4.2 6.4 8.1 219 0.772 0.849 0.94 0 0 1.36 20.1 4.2 15.9 17.3 219 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9099 -9999 .9999 220 -9999 -9999 .9999 -9999 -9999 -9990 -9999 -0999 -9990 -99ig 221 0,438 -9999 -9999 0 0.01 0.76 10.6 4.6 5.9 6.7 222 0.542 -9999 -9999 0 0.013 0.84 10.4 4.3 6.1 6.9 223 0.29 0.336 0.726 0 0.017 1.49 19.1 6 13.1 14.6 224 0.42 0.471. 0.886 0.012 0.043 2.25 17.3 6 11.3 13.6 225 0.24 0.24 0.321 0 0 1.49 18.9. 4.8 14.1. 15.6 226. 0.216 0.216 0.221 0.016, 0.016 1.3 181 4.7 13.31 14.6 227 0.719 0.745 0.95 0 0.018 1.52 19.1 6.1 131 -T4-.-S 228 0.922 0.945 1.15 0 0.023 1.38 17.8 6.3 11.51 12.9 229 0.772 0.812 0.951 0 0.015 0.69 20.1 6 14.11 14,7 230 0.8 0,867 0.045 0 0.036 -0.09 24 6.1 17.91 18 231 0.354 0.407 0.521 0 0.009 0 12.4 6.4 61 6 232 0.33 0.363 0,636 0 0.008 0 11.2 6.5 4.7 4.7 233 0.38 0.431. 0.621 0.166- 0.176 1.71 13.7 5.3 8.4 10.1 234 0.423 0.462 0.599 0.138 0.143 2.44 13.7 6.1 7.6 10 235. 1.568 1.624 1.636 0.229. 0.238 2.46 14.7 5.9 8.8 11.3 236 0.989 1.028 1.028 0.125 0,143 1.51 13.6 4.9 8.7 10.2 237 0.989 1.042 1.406 0.183 0.206 4.16 14.3 S.1 9.2 73.4 238 0.772 0.822 0.868 0.143 0.143 1.61 IS.2 4.8 10.4 12. 239 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 240 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -2999 -9999 -9999 241 0.354 0.387 1.91 O@04 0.048 1.7s 12.7 4.3 8.4 10.2 242 0.38 0.447 0.947 0.122 0.127 2.09 13.1 4.2 8.9 11 243 -9999 .9909 -9999 -9999 .9999 -9999 -9999 -9999 -9999 -9999 244 -9999 -9900 .9999 -9999 -9999 -9999 -99991 -9999 -9999 -9999 24S 0.324 0.391 0.941 ol 0.027 1.68 16 5.6 10.6 12.2 246 1.41 1.449 1.839 0.0111 0.016---- 1.75 162 5.4 9.8 11.6 247 1.461 1.51 1.599 0 0.00s 1.40 12.1 6.8 12.3 13.81 24B 1.568 1.603 1.98 0 0.01 0.73 13 5.6. 7.4 8.1 249 1,683 1.724 2.25 0 0.036 0." 14.3 5.7 8.6 9 250 0.394 0.429- 2.62 0 0.026 0 15.4 6.7 8.7 8.6 251 0.33 0.41 1.013 0 0.015 0 14.7 5.9 8.8 8.8 252 1.361 1.4 1.4 0.147 0.159 2.82 14.7 5.1 9.6 12.4 2531 1.062 1.101 1.105 0.125 0.143 2.641 14.6 5.7 8.9 11.5 254 0.829 0.885 1.021 0 0.04 3.411 15.2 4.3 10.9 14.3 255 0.922 0.978 1.091 0 0.017 2.57 IkI5 4@2 10.4 13 2S6 0.8 0.8 1.161 0.063 0.063 1.7 IS.2 5.3 9.9 11.6 2S7 0.561 0.661 1.015 0 0 1.56 20. 6.2 13.S 15.4 258 0.269 0.339 0.877 0 0.014 1.97 131 5.4- 7.6 9.6 259 0.362 0.429 ----0.921 0 0.014 1.65 17 5.4 11.6 13.3 260 o.sos 0.529, 0.589 0 2.16 16 6.1 10.9 13.1 261 0.367 0.387 0.388 0 0 1.54 18.1 4.8 13.3 14.8 262 0.922 0.955 1.298 0.054 0.063 2.14 15.6 5.2-- 10.4 12.6 263 0.681 0.616 0.982 0 0.006 i.sa 17.1 5.1 12 13.6 264 0,719 0.766- 0-876 0 0.01 0.6 18.7 6 12.7 1 iA 265 0.67 0.727 0.808 0 0.025 0 19.2 6.4. 12.8 12.7 266 0.33 0,372 0-.529- 0- 0.023 0.1 12.3 6.7 5.6 5.7 267 0.307 0.345 0.481 0 0.045 0 14.3 6.8 7.5 7.5 268 0.394 0.441 0.677 0.032 0.095 1.67 13.5 6.9 6.6 8.3 269 0.354 0.394 0.439 0.032 0.079 119 14.2 4.9 9.i 11.3 270 0.922 0.977 1.246 0.226 0.238 2.64 13.7 6.4 8.3 10.9 271 0.989 1.028 1.413 0.197 0.206 2.4 15 4.9 10.1 12.5 272 1.1 1.154 1.291 0,27. 0.27 4.57 14.2 4.2 9.3 13.9. 273 0.989 1.043 1.202 DAB4 0.19 3.25 14.2. 4.8 9.4. 12.7 274 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 275 -9999 -9999 -9999 -9999 -9999 -9999 --9999 -9999 -9999 .9999 276 0.542 -9999 -9999 0 0.01 0.8 12 4.9 7.1 7.9 277 0.454 -9999 .9999 0 0.017 0.82 10.9 4.7 6.2 7 278 0.542 -9999 -9999 0 0 1.11 13 4.2 8.8 959 279 0.464 -9999 .9999 0- 0.003 1.18 12.4 4.3 8.1 9.3 280 0.542 -9999 -9999 0 0 0.8 10.5 5.2 5.3 6A 281 0.542 -9999 .9999 0. 0 0.86 11 5 6 6.9 202 0.454 -9999 -9999 0 0.003 1.08 10.9 283 0.542 -9999 -9999- ol 0 1.: 284 0.29 0.338 0.943 ol n noT 285 0.362 0 40A n --- J 0 0 0 1 1 9 4 4 9 6 0 0 3 4 I. 9 6 24 2 2 2 2 2 9 03.7 0447 3. @ 44 1 62 .0 3 3 724 E143 042. 4 47 47 5 6 6.9 5 5.9 7 5.3 6.4 6.7 5.5 9.5 11.8 5.5 8.s 10.6 Page 7 PHYSICAL/CHEMICAL DATA IN THE APALACHICOLA ESTUARY: 1990 A a C D E I F _ a H I i K L JA 286 NS 2/28190 S 95 281- 14 5.7 0 0 0 0.007 0.65 0 287 NS 2128190 B 90 23 13 6.8 0.8 1.1 0.024 0.003 0.33 i 288 NS 3123190 S so 33 9 2.7 0.3 1.9 0.026 0.00@ 0.34 0.005 289 NS 3/23/90 B 30 23 9 1.5 0 3 0.028 OMI 0.38 0.014 290 NS 4115190 S 120 23 19 6.8 0.5 0.1 0.038 0.01 0.41 6.02 291 NS 4/15/90 8 120 23 20 4.9 0.5 0.7 0.038 0.005 0.46 0.015 292 NS 5/31/90 S so 23 6 5.6 1.2 0.5 0.038 0 1.07 O.OT9 293 NS 5/31/90 a SO- 20 8 8.3 1. 1. 1.2 0.038 ol OAS 0.015. 294 NS 6/28/90 S 33 34 6 4.6 1.5 2.3 0.04 0 0.8 0.015 295 NS 6/28190 B 3S 36. 7 7.9 1.2 2.1 0.04 0 0.09 0.013 296 NS 7/26190 S so 201 7 3 1.3 2.1 0.039 0.008 0 0.03 297 NS 7126/90 8 45 26 2 1.8 1.7 3.5 0.039 0 0 0.01i 298 NS 8124/90 S 20 is 3 0.5 0 0 0.052 0.003 0.18 0.003 299 NS 8124190 B 30 15 3 2.5 0 0 0.056 0.003 0.27 0.01 300 NS 9/6/90 s Is 11 4 2.8 0.6 0.7 0.044 0.002 0.27 0.018 301 NS 9/6/90 B 25 14 1 4.3 3.5 3.2 0.044 0 0.23 0.027 302 PA 1/23/90 m 130 23 20_ _11.9. 3.9 6.5 0.16 0.015 0.58. 0.027 303 PA 2/28/90 S 70 28 12 7.2 1.1 0 0.021 0.007 0.39 0 304 PA 2/28/90 8 100 26 Is 9.5 0.9 0 0.018 0.003 0.47 0 30S PA 3/22/90 S 76 24 16 0.9 1.3 0 0.028 0 0.09 0.014 306 PA 3/22/90 8 35 25 9 0.3 1 0.2 0.026 0.002 0.29 0.014 307 PA 4115/90 S 100 24 16 2.2 0.7 0.5 0.037 0.007 0.19 0.01 300 PA 4/15/90 B 110 -9999 16 4.2 0.4 0.3 0,053 .0.007 0.24 0.01 309 PA 5/31/90 s 40 19 6 4.5 0.4 0.4 0.032 -0.002 0.04 0.008 310 PA 5131190 a 60 26 Is 5.1 0.8 0.4 0.036 0 0.11 0.016 311 PA 6/28/90 S 72 37 19. 6.7 1.1 2.5 0.028 0 0 0.013 312 PA 6128/901B 94 31 24 5.4 1.1 1.8 0.033 0 0.05 0.005 313 PA 7/26190 m 1 10 32 4 1.6 1 2.1 0.033 0.004 0 0.05 314 PA 8/24190 s 30 12 4 0.9 0 0 0.051 0.005 0.04 0 315 PA 8/24/90 8 50 11 2 0 169.3 0 0.051 0.006 0.22 0.01 316 PA 916/90 S- 55 Is- 1 3.3 1.3 0.8 0.047 0.004 0.07 0.018 317 PA 9/6/908 30 11 3 3.7 0.6 1 0.0441 0-05 ---i. I 1 0.027 319 Pl. 1/23/90 s 65 20 6 16.9 2.2 5 0.035 0 0,45. 0.014 319 PL 1123190 B 40 19 7 31.3 0 360.1 0.034 0.004 0.27 0.014 320 PL 2128aO S 40 27 4 5.2 0 0 0.018 0.009 0 0 321 PL 2128/90 a 30 19 4 10.2 0 2 0 0.005 0 0 322 PL 3123/90 s is 24 6 1 0.1 0 0.031 0.003 0.24 OmOO5 323 PL 3/23/90 B 28 23 9 0.5 2 1.2 0.025 0.001 OAS 0.005 324 Pl. 4115/90 S 50 27 3 5.4 0.9 1.1 0.046 0.005 0.09- 0.02 325 PL 4/15/90 B so 24 4 4.1 0.61 0.4 0.065 0.005 -0.6-1 0.03 326 PL 5/31/90 s 20 24 4 2.4 0.4 1 0.032, 0 0.39 0.015 327 PL 5/31/90 B 30--- 2-2 8 2.8 0.6 0.9 0.0291 0 0.16 0.008 326 PL 6/28190 S 33 so 7 3 0.7 1.1 0.0281 0 0.27 0,008 329 Pl. 6/28/90 a 11 37 7 3.1 1.3 1.7 0.028 0 0.18 0.006 330 PL 7/26190 S so 27 1 I.S 1.9 2.3 0.039 0.004 0.15 0.015 331 PL 7/26190 B 1 40 21 2 2.4 1.5 -2.2 0.039 0 0 0.009 332 PL 8/23/90 s 20 13-- 5 6.4 0 0 0.054 0.002 0.13 0.003 33 31PI. 8/23190 B 36 17 2 a 0 0 0.061 O-06i 0.22 0.017 3341PL 9/6/90 S 40 12 2 4.1 0 0 0.044 0 0.15 0.039. 335 Pl. 9/6190 8 30 13 1 3.7 0 0.7 0. 0" 0.002 0.16 0.024 336 SO 1/23/90 M 100 20 12 11.8 2.2 4.8 0.067 0.004 0.29 0.01 337 SC 2/28/90 m 90 21 12 8.1 0 0.1 0.011 0.28 0 338 SC 3/22/90 m 34 23 9 1.5 2.3 0 0.0313 0.002 0.3 0.005 339 SC 4/15/90 M 105 24 14 9.1 0 0.6 0.038 0.009 0.1 0.015 340 SC 5/31190 m 30 22 18 8.7 1.5 1.9 0.035 0 0.2 0.026 341 SC 6/28/90 M 1 83 29 24 7 0.8 1 0.04 0 0.16 0.008 342 SC 7/26190 m Is 26 20 1.1 O.S. 1.7 0.039 0,004 0.07 0.009 343 SC 8124190 M 40 17 -2 8.8 Ol 0 0.056 0.008 0.17 0 344 SC 9/6/90 M 65 13 7 3.9 0.41 1.5 0.045 0.011 0.07 0.024 34S 93 1/23/90 M 100 20 12 11 of 4.2 0.097. 0.005 0.43 0.031 346 93 2/28/90 S 45 20- a 5.1 01 0 0.026 0.003-- 0.17 0 347 93 2/28/90 B 40 26 7 7.3 0 0 0.02 0.007 0.05 0 348 S3 3/23/90 s go 28 14 2- 0.3 0 0.031 0.003 0.26 0.014 349 S3 3/23/90 8 60 28 Is I---- 0.1 0.4 0.022 0.003 0.28 O.Ooi 350 93 4/15/90 S ISO 26 22 10.1 2.5 0.6 0.06 0.007. 0.31 0.0115 3SI 93 4115/00 B 160 27 24 12.4 1.9 0 0.057 0.009 0.44 0.015. 352 93 5/31/90 IS 10 25 9 3.4 0.6 0.7 0.063 0.5-02 0.23 0.015 353 33 5131/90 13 30 19 13 6.2 0.8 1.6 0.035 0.003 0.27 0.019 3S4 S3 6/28190 s 27 33 11 4.8 1 2.4 0.066 0 0.14 0.003 355 93 6/28190 8 30 46. 12 4.3 0.7. 1.9 0.04 0 0.07 0.005 3S6 93 7/26/90 s 35 26 1 2.3 2.51 3 0.056 0.008 0 0.024 3S7 M 7/26/90 B 20 24 1 3.1 0.71 2.3 0.039 0 0.08 0.021 358 93 8/23/90 S 20 12 5 4 Ol 0 0.08 0.004 0.09 0 3S9 S3 8/23/90 13 26 14 3 11-3 Ol 0 0.074 0.002 0.13 0 360 S3 9/6/90 S 35 12 1 3 1.3 1.6 0.0441 0.002 0.31 0.039 361 93 9/6190 B 40 IS 1 4.5 0.6 1.9 0.0441 0.002 0.08 0.033 362 SV 1/23190 M 110 21 7 3.8 1.8 2.8 0.366 0.007 0.52 5.027 363 SV 2/28/90 S 65 28 10 4.4 0.9 0 0.019 0.00@ 0.24 0 364 SV 2/28120 13 so 241 10 6.2 0 0 OM2 0 0 a 365 Sv 3123/90 S 110 60 25 0.7 0.1 1.1 0.047 0.003 0.37 0.01@ 366 SV 3123/90 B so 41 17 0 0 0 0.037 0.004 0.51 0.005 367 SV 4/15/90 S 60 20 6 8.7 0.3 0.6 0.034 0.006 0.09 0.02 360 SV 4/15/90 8 80 23 12 11.6 1.11 1.8 0.043 0.01 0.12. 0@041 369 Sv 5/31190 S 20 29 3 3.8 0.41 1 0.038 0 01 0.008 370 SV 6/31/90 B 40 23 8 5.1 0.4 1.4 0.038 0 0.18 0.008 371 SV 6/28/90 S 30 42 5 4.4 1.6 1.6 0.04 0 0 0.015 372 SV 6/28190 B so 29 9 6.2 1.2 1.1 0.04 0 0.09 0.01 373 SV 7/26190 S 10 1 1.8 1.9 1.6 0.039 0.008 0.07 0.015 374 SV 7126190 B Is 26 1 2.5 1 2.4 0.039 0.004 0.07 0.009 137519V 8/24190 S is 9-- 1 S.6 0 0 0.054 0.004 0.13 0 i 3 ;,6,1 SVV 8124/90 B 20 11 4 1.9 0 0 0,054 0.004 0.13 0.003 f 3 S 40 14 21 1. 0.1 0.6 0.044 1:01012 0.15 0.042 13781sv 11 : .0 a 30_ _16 11 2.3. 0. 0.5. 0.044, 21 0.34,::=O 62i Pago 4 PHYSICAUCHEMICAL DATA IN THE APALACHICOLA ESTUARY: 1990 N 0 P 0 R 5 T U v w 286 1.1 1.1 1.655 0 0 2.29 is 6.6 9.4 11.7 287 0.858 0.882 1.212 0 0 2.15 14.7 4.7 10 12.2 288 0.829 0.865 1,201 0 0.005 2.27 14.8 5.6 9.2 -Fl.-5 289 0.745 0.773 1.166 0 0.014 2.2 14.4 5.5 8.9 11.1 290 0.8 0.838 1.26 0 0.02 0.66 14.1 6.4 8.7 9.4 291 0.772 0.81 1.279 0 0.015 0.29 14.3 5.7 8.6 8.9 292 0.38 0.418 1.496 0 0.019 0 16.7 6.3 10.4 10.4 293. 0.394. 0.432 0.613 0 0.015 0 16.3 6.4 9.9 9.9 204 0.38 0.42 1.215 0.033, 0.048 1.86 12.1 4.6 7.5 9.4 29S 0.33 0.369 0.46 0.019 0.032 2.6 11.6 4.5 7.1 9.7 206 0.922 0.961 0.960 0.176 0.206 2.69 14.9 4.7 10.2 12.9 297 1.1 1.139 1.139 0.178 0.19 2.79 16.1 4.8 10.3 13.1 298 0.772 0.824 1.006 0 0.003 3.39 13.6 4.9 8.7 12.1 299 0.6 0.856 1.129 0.006 0.016 2.3 14.1 4.7 9.4 11.7 300 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9909 301 -9999 -99991 -9999 -9999 -9999 -9909 -0999, -9999 -09991 -9999 302. 0.375 0.536 1.128 0.122 0.149 2.07 Is 5.2 12.8 14.9 303 0.922 0.942 1.335 0. 0 2.15 18 4.7 13.3 16.6 304 0.05 0.068 0.642 0.0161 0.016 1.33 Is 4.8 13.2 14.5 305 0.829 0.857 0.947 0 0.014 1 @7 18.9 6.4 12.5 141 306 0.8 0.826 1.117 0 0.014 1.3 16.6 53 10.9 12.2 307 0.8 0.836 1.03 0 0.01 0.91 14.3 6.9 8.4 9.3 308 0.745 0.798 1.048 0 0.01 0.81 is 5.4 10.6 11.4 309 0.505 0.536 0.582 0 0.008 0 12.2 6.7 5.5 5.5 310 0.38 0.416, 0.529 0 0.015 0 13.3. 6.6 6.7 6.7 311. 0.38 0.408 0.409 0.146 0.159 1.64 14.2 5.7 8.5 10.1 312 0.394 0.427 0.472 --76.138 0.143 1.33 13.7 6.1 7.6 8.9 313 1.361 1.394 1.397 0.197, 0.206 2.67 16.1 4.7 10.4 13.1 314 0.922 0.972 1.018 0.176 0.176 3.91 13.6 4.7 8.9 12.8 315 0.922 0.972 1-.199 -0.149 0.159 3.64 12.6 6.2 7.4 11 316 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 317 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999, 318 0.39 0.425 0,872 0 0.014 1.71 Is 5.2 9.8 11.5 319 0.312 0.346 0.616 0 0.014 2.04 18.1. 5.4 12.7 14.7 320. 0.318 0.336 0.345 0 0 1.72 18.9 4.9 14 15.7 321 0.24 0.24 -6.245 0 0 2.15 15.2 4.7 10.5 12.7 322 0.746 0.776 1.016 0. 0.005 1.92 18.6 6 12.6 14.5 323 0.647 0.671 0.83 0 0,006 1.92 16.8 5.4 10.4 12.3 324 0.505 0.551 0.65 0 0.02 0.82 1 i 6.2 11.8 12.6 325 0.642 0.597 0.615 0 0.03 0.79 20.3 4.7 15.6 16.4 326 0.38 0.412 0.798 0 0.015 0.04 12.7 6.1 6.6 6.6 327 O@33 0.359. 0.618 0 0.008 0 12.6 __6.3 6.3 6.3 328 0.33 0.358 0.63 0. ii 0.048 1.78 14.2 5 9.2 11 329. 0.38 0.409 0.59 0.059 0.063 1.36 14.2 4.9 9.3 10.7 330 1.1 1.139 1.293 0.207 --5.2ii 2.51 16.1 6.6 9.5 1 i 331 1.41 1.449 1.449 0.166 0.1175 2.85 14.9 6.6 8.3 11.2 332 0.694 0.748 0.885 0 0.003 3.91 14.3 4.6 9.7 13.6 333 0.719 0.77 0.997 0.047 0.063 3.29 14.1 6.1 9- 12.3 334 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 33S -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999- 336 0179 0.346. 0.641 0 0.01 1.69 20 6.4 1376 15.3 337 Imi 1.1 1.305 0 0 1.69 18.9. 4.7 14.2 15.9 338. 0.694 0.727 1.029 0 0.005 2.16 17.5 5.2 12.3 14.5 339 0.719 0.757 0.868 0 0.015 0.86 16.7 6.1 10.6 11.5 340 0.354 0.389 0.694 0. 0.026 0.04 11.2 6.3 4.9 4.9 341 0.542 0.581 0.74 0.0081 0.016 1.78 13.6 7.2 6.4 8.2 342 1.181 1.22 1.297 0.213 0.222 2.43 14.6 6.3. 9.3 11.7 343 0.829 0.885 1.067 0.016 0.016 4.38 13.7 5.7 a I F4 344 -9999 -9999 -9999 -9999 -9999 .9999 -9999 -9999 -9999 -9999 34S 0.39 0.486 0.926 0 0.031 1.96 20.1 6.2 13.9 15.9 346 0.248 0.273 0.443 0 0 2.01 18.1 4.7 13.4 15.4 347. 0.231 0.261 0.311 0 0 2.2 t8.1 4.7 li.4 15.6 348 0.772 0.803 1.07 0.002 0.016 2AS 17.6 6.3 11.3 13.6 349 0.694 0.716 0.996 0 0.006 2.3 17.6 5.6 12 14.3 3SO 0.745 0.795 1.113 0 0.016 0.92 22 5.7 16.3 17.2 351 0.829 0.886 1.331 0 0.016 1.03 21 5.7 15.3 16.3 3S2 0.438 0.491 0.718 0 0.016 0.37 11.3 6.3 5 6.4. 353 0.408 0.443 0.716 0 0.019 O@39 11.4 6.2 6-.-2 S.6 3SAI 0.38 0.436 0.673 0.14 0.143 1.95 13.6 5.7 7.9 9.9 355 0.38 0.42 0.488 0.09 0.095 2.46 13.6 4.9 8.6 11.1 356 1.568 1.624 1.632 0.119 0.143 2.64 12.6 5.7 6.9 9.5 367 1.181 1.22 1.207 0.074 0,095 2.73 10.9 4.9 6 9.7 358 0.772 0.852 0.943 0.27 0.27 4.36 14.6 4.7 9.9 14.3 359 0.772 0.846 0.983 0.206 0.206 6.07 14.7 4.6 10.1 16.2 360 -9999 -9999 -9999 -9999 -9999 -9999 -99991 -9999 -999 - 9 Fg-9 361 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 362 0.435 0.801 1.326 0 0.027 1.9 is 5.3 9.7 11.6 363 1A 1.119. 1.363 0 0 1.93 14@9 4.3 10.6 12.6 364 0.052 0.074 0.074 0 0 1.51 18 6.2 12.8 14.3 355 0.647 0.693 1.07 0 0.014 1.88 14.7 5.3 9.4 11.3 366 o.sal 0.619 1.136 0 0.005 1.45 17A 6.2 Ii.2 -f2-7 367 0.542 0.576 0.675 0 0.02 1.21 14.4 6 8.4 9.6 368 O.S42 0.585 0.719 0. 0.041 1.31 16.1 6.1 9 10.3 369 0.354 0.392 0.392 0 0.008 0, 15.1 6.11 9 B.i 370 0.318 0.356 0.538 0 0.008 0 14.2 6.2 a a. 371 0.394 0.433 0.433 0.159 0.176 1.78 13.2 4.1 9A 10.0 372 0.33 0.369. 0.46 0.133 0.143 2.46 14.1 5.2 8.9 11.4 373 1.181 1.22 1.297 0.048 0.063 2.46 13.7 4.6 9.1 11.6 374- 0.647 0.686 0.763 0.181 0.19 2.46 14.9 5.1 9.8 12.5 37S 0.7 2 0.826 0.962 0.016 0.016 5.04 15.1 4.1 11 16 3 '1 0.7 2 0,826 0.962 0.044 0.048 6.07 14.9 5.1 9.8 14.9 3 ;r7 "99 -9999 -9999 M9999 -9999 -9999 -9999 -i999 3781 -9999 -9999 -99991 .9999 -9999 -9999 -9999 -9999 Page a Study area: Apalachicola Day Data type: Oyster tong data Abundance summary for species - OYSTER Page 1 Number of individuals in seven tong samples Location 90/02 90/03 90/04 90/05 90/06 90/07 90/08 90/09 TOTAL MEAN Platform 1591 1426 1596 954 2622 2317 1624 2459 14589 1824 East Hole 1251 1506 716 843 855 1212 542 580 7505 938 Catpoint Bar 1040 1010 737 855 1083 1117 488 457 6787 848 Dry Bar - Experimental Site #3 1383 641 764 657 443 592 555. 224 5259 657 Dry Bar - Experimental Site #2 542 902 684 514 254 418 269 274 3857 482 St. Vincent 510 390 98 329 564 469 74 113 2547 318 Dry Bar - Experimental Site #1 182 250 352 303 217 187 127 222 1840 230 Scorpion Bar (St. Vincent Sound) ill 343 206 179 187 139 89 519 1773 222 Sweet Goodson 401 238 201 186 233 190 186 117 1752 219 North Spur (SE of St. Vincent's Island) 132 204 143 201 183 247 142 227 1479 185 Paradise 46 83 41 56 60 50 19 32 387 48 TOTAL 7189 6993 5538 5077 6701 6938 4115 5224 47775 5972 End of Report, species - OYSTER Table 3: Oyster tong data taken in the Apalachicola estuary from February, 1990-September, 1990. Study area: Apalachicola Bay Data type: Oyster tong data Abundance summary for species - OYSTER Page 1 Ash free dry wt (to nearest gram) in seven tongs Location 90/02 90/03 90/04 90/05 90/06 90/07 90/08 90/09 TOTAL MAN East Hole 441 442 180 412 258 490 279 235 2736 342 Catpoint Bar 343 310 254 375 331 431 210 176 2430 304 Platform 226 256 297 293 241 563 274 255 2403 300 Dry Bar - Experimental Site #3 141 165 204 228 168 350 236 71 1562 195 Dry Bar - Experimental Site #2 164 247 179 227 99 225 128 189 1458 182 North Spur (SE of St. Vincent's Island) 94 143 107 162 115 141 86 108 955 119 Dry Bar - Experimental Site #1 116 115 130 143 123 109 96 5 838 105 Scorpion Bar (St. Vincent Sound) 76 187 125 135 74 83 72 87 837 105 Sweet Goodson 119 104 75 112 65 139 159 42 814 102 Paradise 48 75 41 46 54 52 36 23 374 47 St. Vincent 7 6 2 4 10 14 4 3 49 6 TOTAL 1774 2050 1593 2135 1537 2596 1580 1192 14457 1807 End of Report, species OYSTER Study area: Apalachicola Bay Data type: Oyster tong data Relative abundance (%) summary for species - OYSTER Page 1 Ash free dry wt (to nearest gram) in seven tongs- Location 90/02 90/03 90/04 90/05 90/06 90/07 90/08 90/09 TOTAL East Hole 24.8 21.5 11.3 19.3 16.8 18.9 17.7 19.7 18.9 Catpoint Bar 19.3 15.1 15.9 17.6 21.5 16.6 13.3 14.7 16.8 Platform 12.7 12.5 18.6 13.7 15.7 21.7 17.4 21.4 16.6 Dry Bar - Experimental Site #3 8.0 8.1 12.8 10.7 @10.9 13.5 15.0 5.9 10.8 Dry Bar - Experimental Site #2 9.2 12.0 11.3 10.7 6.4 8.7 8.1 15.9 10.1 North Spur (SE of St. Vincent's Island) 5.3 7.0 6.7 7.6 7.5 5.4 5.4 9.1 6.6 Dry Bar - Experimental Site #1 6.6 5.6 8.2 6.7 8.0 4.2 6.1 .4 5.8 Scorpion Bar (St. Vincent Sound) 4.3 9.1 7.9 6.3 4.8 3.2 4.5 7.3 5.8 Sweet Goodson 6.7 5.1 4.7 5.2 4.2 5.4 10.1 3.5 5.6 Paradise 2.7 3.6 2.-6 2.1 3.5 2.0 2.3 2.0 2.6 St. Vincent .4 .3 .1 .2 .6 .5 .3 .2 .3 TOTAL 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 End of Report, species OYSTER Study area: Apalachicola Bay Data type: Oyster tong data Abundance summary for species - OYSTER Page 1 Average size (mm) of individuals in tong collections Location 90/02 90/03 90/04 90/05 90/06 90/07 90/08 90/09 TOTAL MEAN Paradise 68 64 66 63 61 68 81 52 523 65 North Spur (SE of St. Vincent's Island) 57 57 60 62 52 52 53 46 439 55 Scorpion Bar (St. Vincent Sound) 55 47 51 58 44 53 60 26 394 49 Sweet Goodson 39 45 43 55 35 58 63 42 380 48 Dry Bar - Experimental Site #1 56 45 40 46 52 52 60 15 366 46 Dry Bar - Experimental Site #2. 39 38 37 48 44 49 50 52 357 45 East Hole 37 33 33 48 39 46 50 46 332 42 Catpoint Bar 37 35 36 46 39 44 47 45 329 41 Dry Bar - Experimental Site #3 23 34 36 43 44 55 50 35 320 40 Platform 24 28 29 40 18 33 30 24 226 28 St. Vincent 12 13 15 11 15 18 22 14 120 15 TOTAL 447 439 446 520 443 528 566 397 3786 473 End of Report, species OYSTER 'table 4: ANUVA analysis run with spat data trom open ana closed basket with data run taken in the Apalachicola estuary from January, 1990-September, 1990. Source df Sum of Squares Mean Square F-Value P-Value FACTOR 1 1 304.2221 304.2221 5.103 Residual 1 161 953.7781 59.6111 Dependent: PLATFORM SPAT Means Table Effect: FACTOR Dependent: PLATFORM SPAT Count Mean Std. Dev. Std. Error CPL 91 9.1111 10.5881 3.529 OPI- 91 .8891 2.6671 .889 Fisher's Protected LSD Effect: FACTOR Dependent: PLATFORM SPAT Significance level: .05 Vs. Diff. Crit. diff. P-Value OPL I CP`L 1 8.2221 7.716 '] S .0382 S = Significantly different at this level. ,cheffe's S Vect: FACTOR ependent: PLATFORM SPAT ignificance level: .05 Vs. Diff. Cril. diff. P-Value OPL I CPL 1 8.2221 7.7161 .0382 S S Significantly different at this level. 18 Interaction Plot -- Effect: FACTOR 16- Dependent: PLATFORM SPAT With 95% Confidence error bars. < 14- Cn 2 12- cc LO 10- L 8 a- 0 6- 4- 2 - 0 - -2 CPL OPL FACTOR Scattergram of Cell Means versus Standard Deviation Effect: FACTOR Dependent: PLATFORM SPAT 0 10- (n 9- 8 a. 7 6 .2 20 '2 4 - 3- U) 0 2 1, . -I- --- I . I . - I I I a I I I . I . 0 1 2 3 4 5 6 7 8 9 10 Cell Means of PLATFORM SPAT Type III Sums of Squares Source df Sum of Squares Mean Square F-Value P-Value FACTOR 11 50.0211 50.021 5.189 -.0274 Residual 1 461 443.4581 9.6401 Dependent: DRYBAR SPAT Means Table Effect: FACTOR Dependent: DRYBAR SPAT Count Mean Std. Dev. Std. Error CD 241 3.7501 3.5051 .715 CD 241 1.7081 2.6451 .540 Fisher's Protected LSD Effect: FACTOR Dependent: DRYBAR SPAT Significance level: .05 Vs. Diff. Crit. diff. P-Value CD JCD 1 2.0421 1.8041 .02741 S S = Significantly different at this level. Scheffe's S Effect: FACTOR Dependent: DRYBAR SPAT Significance level: .05 Vs. Diff. Crit. diff. P-Value CD JCD 1 2.0421 1.8041 .0274 S S Significantly different at this level. Interaction Plot Effect: FACTOR Dependent: DRYBAR SPAT With 95% Confidence error bars. 5.5 5 4.5- a. 4- a: < 3.5 - 3- cc 0 -0 2.5- V) a as 2 1.5- .5 0 CD CD FACTOR Scattergram ot Cell Means versus Standard Deviation Effect: FACTOR Dependent: DRYBAR SPAT 3.6 3.5- 0 I-- CL 3.4- cr) a: < 3.3- m cc 3.2. 3.1 .2 '159 3- 0 2.9- "2 co 2.8- W 2.7- 0 2.6- 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4 Cell Means of DRYBAR SPAT Type III Sums of Squares Source df Sum of Squares Mean Square F-Value P-Value REPLICATE i I - 9.3891 9.3891 .521 Residual 1 161 288.2221 18.0141 Dependent: SPAT N Means Table Effect: REPLICATE Dependent: SPAT N Count Mean Std, Dev. Std. Error CN 91 4.5561 4.978] 1.6591 CN 91 6.0001 3.3541 1.1181 Interaction Plot Effect: REPLICATE Dependent: SPAT N With 95% Confidence error bars. 8- 7- z 6 5 0 0 4- 3- 2- 0- CN CN REPLICATE Scattergram of Cell Means versus Standard Deviation Effect: REPLICATE Dependent: SPAT N 5.2- 5 - 0 z 4.8- < 4.6- a. U) 0 4.4- 4.2- (D 4- 3.8- '0 3.6- CO 'C@ r-@ Type III Sums of Squares Source df Sum of Squares Mean Square F-Value P-Value Column 1 1 12.0001 12.0001 .633 .44481 Residual 1 101 189.6671 18.9671 Dependent: Column 2 Means Table Effect: Column 1 Dependent: Column 2 Count Mean Std. Dev. Std. Error CSC 61 5.1671 5.0371 2.056 OSO 61 3.1671 3.5451 1.447 Interaction Plot Effect: Column 1 Dependent: Column 2 With 95% Confidence error bars. 12- 10- 8- E :3 0 0 6 - 0 Cd 4 - 2- 0 -2 CSC 09C Column 1 Scattergram of Cell Means versus Standard Deviation Effect: Column 1 Dependent: Column 2 5.2- 0 5 - 4.8 E 6 4.6- 0 4.4- 19 4.2- 72 4 - Cz 'a 3.81 Type III Sums of Squares Source df Sum of Squares Mean Square F-Value P-Value FACTOR 21 134.1171 67.0581 2.506 .13641 Residual 1 91 240.8001 26.7561 Dependent: EASTHOLE SPAT Means Table Effect: FACTOR Dependent: EASTHOLE SPAT Count Mean Std. Dev. Std. Error CEG 1 17.000 0.000 0.000 CEH 5 4.800 5.762 2.577 CEH 6 5.000 4.648 1.897 Interaction Plot Effect: FACTOR Dependent: EASTHOLE SPAT With 95% Confidence error bars. 17.5- 15- 12.5- LU -j 10 0 7.5 co 5 0 Cd 2.5- 0 -2.5- -5 Cm CEN CEH FACTOR Scattergram of Cell Means versus Standard Deviation Effect: FACTOR Dependent: EASTHOLE SPAT 0 5- 0 LU -1 4- 0 3- LU 0 r- .0 2- Type III Sums of Squares Source df Sum of Squares Mean Square F-Value P-Value FACTOR 1 .9081 .908 .018 Residual 1 201 1002.4541 50.123 891 Dependent: SPAT Means Table Effect: FACTOR Dependent: SPAT Count Mean Std. Dev. Std. Error C I 11 7.3641 5.4501 1.643 0 11 6.9571 8.3991 2.532 Scheffe's S Effect: FACTOR Dependent: SPAT Significance level: .0S V.. Diff. Crit. diff. P-Value 0 1C 1 .4061 6.2971 .89431 None were significantly different at this level. Fisher's Protected LSD Effect: FACTOR Dependent: SPAT Significance level: .05 V... Diff. Crit. diff. P-Value 0 1C 1 .4061 6.2971 .89431 None were significantly different at this level. Interaction Plot Effect: FACTOR Dependent: SPAT With 95% Confidence error bars. 14- 12- 10- 8 - 6 - 4- 2 0 1 a I C 0 FACTOR Scattergram of Cell Means versus Standard Deviatlon Effect: FACTOR Dependent: SPAT L. 8.5 0 8 - 7.5- 0 C 7- 0 6.5- 72 (z 6- co 5.5- 0 5 6.9 6.95 7 7.05 7.1 7.15 7.2 7.25 7.3 7.35 7.4 Cell Means of SPAT Table 5: P. marinum infestation. -data -with oysters taken on the various Apalachicola reefs in June, 1990. A B -1 Stati o n :;Size (cm) -:Infestation (qill,.,) 2 CatDoint 11.5:: 4.0 3 Catpoint 08.0; 3.0 . . ........... 4 09.0: 30 .7: 1.0 @a!N!_ntl . ............ ....... .. 6 Cat Poi nt 09.0:: 2.0 e -7 0- 8_._O 1.0 8 East Hole 10.0: 1.0 2.0 9 @l 10 East Hole 09.6; 0.0 -11 East Hole 10.5: 4.0 12 North SDur 10.9:: 2.0 13 14 North 09.6:: 4.0 . . .............. . 15 North r 09.8; 4.0 16 No r-t-h- SPYE 07.0: 4.0 0 .17 1.0 18 D 71 10.5:: 2.0 19 11.0: 1.0 ... . ....... 20 Dru Bar WI 2.0 . .. ............ 21 Dry Bar #1 09.2: 3.0 22 Dru Bar#2 11. 6:1 4.0 ........ . .... .. . ...... .. .... ...... 0: Dry Bar *2 12. 4.0 24 Dru Bar 92 09.8: 3.0 25 RaBar 02 09.4 4.0 26 Dru Bar 412 08.3: 4.0 . . . ... . ......... 27 Dru Bar *3 09.5:: 4.0 jr3 08.1' 4.0 .PaBar .. ........ . .. 29 08.0 30 Dru Bar #3 07.5-:--- 4.0 31 Dru Bar 03 07.0:: 4.0 32 Paradise 11.5; 4.0 0 .33 Paradise 0 9. -3.0 34 Paradise 1.0 35 Paradise 09.2: 4.0 36 Paradise 08.5: 4.0 0 37 Sweet Goodson 10. 2.0 38 Sweet Goodson 09.6:: 1.0 G-oo"'d, * io' ...n 10.0:: 1.0 ----- - - ----- - _ .;- .... - 40 Sweet Goodson 08.5:: 1.0 41 @ @e_e G""o odson 09.1' 2.0 09. 4.0 42 Sco 0 43 �corpion 06.7: 3.0 44 Scor on 0 7.0::: 45 IScorpion 08.0, 4.0 - -------- - - 46 E6rpion 1 07.5: 4.0 paw I Table 6: Summary statistical data for oyster station data. X 1 : CP-SALINITY Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 16.8088235 1 5.508:561 1.9446761 130.342041 132.7706517 134 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: Missing: 15 126 121 1571.5 110607.53 124 X2 : CP-TEMPERATURE Mean: Std. Dev.: Std. Error: Vari ance: Coef. Var.: Count: 1 24.0205882 15.7517207 1.986412 133.0822906 123.9449617 1:54 Minimum: Maximum: Rancle: Sum: Sum of Sqr,: Missing 114 117.5 1816.7 -T 131.5 20709.33 124 X3 : CP-COLOR (NCAS) Mean: Std. Dev.: Std. Error: Vari ance: Coef. Var.: Count: 129.2777778 1 19.1949919 14.524303 1368,4477124 165.561642 1 18 Minimum: Maximum: Rancie: Sum: Sum of Sqr.: I Missing: 112 7-80 168 1693 140 X4 : CP-TURBIDITY Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 17.833:5333 14.46226 11.0517648 119.9117647 156.9650218 118 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: -r Missing: 1 18 117 1141 11443 140 X5 : CP-CHLOR A Mean: Std. Dev.: Std. Error: Variance: Coef, Var.: Count: 16.7111111 16.9885527 11.6472177 148.8398693 1104.13406391 18 1 Minimum: maximum: Ranqe: Sum: Sum of Sqr.: -11 Missinq 125.7 124.7 120.8 71640.98 140 SUNNARY PC DATA-OYSTER STAT I ONS 1 990-STAT I ST I CS X6 : CP-NH3 Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.0393333 1.0171224 1.0040358 1.0002932 1 43.5315 172 118 Minimum: Maximum: Rancie: Sum: Sum of Sqr.: -v Missinq: 10 1.057 ,1-057 1.708 1.032832 140 X7 : U-NITRATE Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.1638889 1.1309755 1.0308712 1.0171546 _I 79.9172392 118 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: Missinq FO 1.41 1.41 12.95 1.7751 140 X8 :CP-ORTHOPHOSPHATE Mean: Std, Dev.: Std. Error: Variance: Coef. Var,: Count: 1.0153333 1.011072 1.0026097 1.0001226 72.2084162 18 minimum: Maximum. Ranqe: Sum: Sum of Sqr.: Missinq 10 1.036 1.036 1.276 _T006316 140 Xg CP-TON Mean: Std. Dev.: Std. Error: Variance: CoeT. Var.: Count: 1.6636111 1.3583828 1.0844716 1.1284383 154.0049469 1 16 Minimum: Maximum: Range: Sum: Sum of Sqr.: -Ir Missing: 1.216 1.568 11.352 111,945 110.110285 140 X 10 CP-TKN Mean: Std. Dev,: Std. Error: Variance: Coef. Var.: Count: -752.0861 1.7036111 -1.3664841 1.0863811 1343 IV- 747 118 Minimum: Maximum: Ranoe: Sum: Sum of Sqr.: -11 M 1.216 __11.624 11.408 112.665 1 1. 11945 15 140 SUMMARY PC DATA-OYSTER STATIONS 1 990-STATISTICS X CP-TN Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.8687222 1.3754627 1.0884974 1.1409722 143.2201059 118 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: -11' Missinq: 1.221 11.636 11.415 15.637 715.980737 140 X 12 CP-TOP Mean: Std. Dev.: 5td. Error: Variance: Coef. Var.: Count: 1.0742778 ___1.0851648 1.0200735 1.007253 1 114.6571158 118 Minimum: maximum: Range: Sum: Sum of Sqr.: Missing: 10 1.229 71:53 7 1.222611 140 X CP-TP Mean: Std. Dev, :- Std. Error: Variance: Coef. Var.: Count: 1.0878333 1.0840058 1.0198004 1.007057 195.642251 118 Minimum: Maximum: Range: Sum: Sum of Sqr.: -111 Mlssinq: 10 1.238 1.238 11.581 1.258833 140 X 14 CP-POC Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1 1.65:58889 1 1. 1765541 1.277:51:54 11.3842487 171.1378494 118 Minimum: maximum: Ranqe: Sum: Sum of Sqr.: 0 Missing. 10 14.16 14.16 -129.77 172.7685 140 X 15 CP-TC Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 116-2555556 1:5.229:3183 1.7611576 110.4284967 119.8659:563 118 Minimum: Maximum Range: Sum: Sum of Sqr.: * Missing: Fl 1 .2 124 112.8 1292.6 149:5:5.66 140 SUMMARY PC DATA-OYSTER STAT I ONS I 990-STAT I ST I CS X 16 : CP-IC Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 15.6055556 1.6448641 1.1519959 1.4158497 111.5040172 118 Minimum: Maximum: Ranqe: Sum: Sum of Sqr,: -T Missinq: 14.7 16.5 11.8 1100.9 1572.67 140 X 17 CP-DOC Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 110.65 1 3.2449508 1.7648422 110.5297059 130.4690219 118 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: 0 Missinq: 14.7 1 17.9 113.2 1191.7 12220.61 140 X 18 CP-TOC Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 12.311 111 1 13.2737618 1.7716331 1 10.7175163 126.591928 118 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: Missing: 14.7 118 113.3 1221.6 12910.34 140 XIg :DBI-SALINITY Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 117.4224138 18.7262468 11.1458123 176.1473835 150.0863251 158 Minimum: Maximum: Range: Sum: Sum of Sqr.: Missing: 11.5 132 130.5 11010.5 121945.75 10 X20 : DBI-TEMPERATURE Mean: Std. Dev.: Std. Error; Variance: Coef. Var.: Count: 15.4607913 1.717037 129.820242 ]21.921781,4 158 Minimur@ Maximum: Ranqe: Sum: Sum of Sqr.: Ir Missing: 113.8 731 117.2 11444.8 137690.22 10 SUMMARY PC DATA-OYSTER STAT I ONS I 990-STAT I ST I CS X21 : DBI -COLOR (NCAS) Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 124.1111111 19.4114379 12.2182972 1 88.5751634 139.0336134 1 18 Minimum: maximum:: anqe: Sum: Sum of Sqr.: Missinq 110 150 ____140 1434 111970 140 X22 : DBI-TURBIDITY Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 18.2777778 16.4607918 11.5228232 1 41.7418301 178.0498332 1 18 Minimum: tuximum: Ranqe: Sum: Sum of Sqr.: 0' Missing: F, 125 124 T49 11943 140 X 23 : DB I -CHLOR A Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 15.9777778 15.2956759 11.2482028 128.044183 188.5893734 118 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: Missing: 23.4 1107 119.96 11.4 _T24.8 140 X24 DB I -NH3 Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.0433889 - 1.0200122 1.0047169 1.0004005 146.1227978 1 18 Minimum: Maximum: Range: Sum: Sum of Sqr.: o Missing: 10 1.07 1.07 1.781 1.040695 140 X25 : DBl-NITRATE Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.4722222 1.5334963 1.1257463 1.2846183 ill 2.9756868 118 Minimum: Maximum: Range: Sum: Sum of Sqr.: 0' Missing: _T8.8524 10 2.09 12.09 18.5 140 SUMMARY PC DATA-OYSTER STATIONS 1990-STATISTICS X26 : W-ORTHOPHOSPHATE iean: Std. Dev.: Std. Error; Variance: Coef. Var.: Count; 1.0176111 1.0129803 1.0030595 1.0001685 173.7048979 118 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: Missina: 10 1.04 .317 1.008447 140 X 27 DB 1 -TON Mean: Std. Dev,: Std. Error: Variance: Coef. Var.: Count: 1.8624444 1.4737377 1.1116611 1.2244274 154.9296519 118 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: missing: F24 11.683 11.359 115.524 117.203854 140 X 28 DB I -TKN Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 19066667 1.4698026 1.1107335 1.2207145 151.81654618 118 minimum: Maximum; Range; Sum: Sum of Sqr.: -v Missinq: 1.387 11.724 11.337 116.32 )46 140 118.548( X29 DB I -TN Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1 1.3886667 1.5081924 1.1197821 1.2582595 1 36.5957091 1 18 Minimum: Maximum: Range: Sum: Sum of Sqr.: -11@ Missing: 1.868 12,_52 11.652 124.996 -F39-101524 140 X30 DB1 -TOP Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1_0463333 1.0655762 1.0154565 1.0043002 1141.5313223 F18 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: 41 Missinq 10 1.183 1.183 1.834 1.111746 140 SUMMARY PC DATA-OYSTER STATIONS 1990-STATISTICS X31 : DBl-TP Mean: Std. Dev.: Std. Error: Vari ance: Coef. Var.: Count: 1.0615556 1.063588 1.0149878 1.0040434 1 103.3018583 118 Minimum: maximum: Ranqe: Sum: Sum of Sqr.: 0 Missinq: 10 1.206 1.206 11.108 J.136942 140 X32 DBl-POC Mean: Std. Dev.: Std, Error: Variance: Coef. Var.: Count: 1.7816667 71.0925698 1.2575212 1 1.1937088 161.3229088 1 18 Minimum: Maximum: Ranae: Sum: Sum of Sqr.: Missing: 10 14.16 14.16 132.07 177.4311 140 X33 DBl-TC Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 115.1833333 11.845583 1.4350081 13.406176S 1 12.1553214 118 Minimum: maximum: Ranqe: Sum: Sum of Sqr.: -1 Missing: 112.7 - 120 17.3 T273.3 -14207.51 140 X34: DBl-lC Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 15.35 1.7890799 1.1859879 1.6226471 114.7491567 118 Minimum: Maximum: Range: Sum: Sum of Sqr.: Missing: 14.2 16.8 12.6 __796.3 525.79 140 L X 35 : DB I -DOC Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 19.8333333 11.5056755 1.3548911 12.2670588 1 15.3119546 1 18 Minimum: Maximum: Range: Sum: Sum of Sqr.: -"@ Missing: 17.4 16.4 1177 11779.04 140 SUMMARY PC DATA-OYSTER STATIONS 1990-STATISTICS X 36 : DB 1 -TOC Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 111.6166667 12.0503228 1.4832657 14.2038235 117.6498375 F8 Minimum: Maximum: ange: Sum: Sum of Sqr.: Missinq: 18.1 115.4 17.3 1209.1 12500.51 140 X37 : EH-SALINITY Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 117.0294118 16.2833368 11.0775834 139.4803-209 136.8969689 134 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: 0 Missing: 14.5 127 122.5 1579 111162.88 124 X38 :EH-TEMPERATURE Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 123.905 -8824 15.939694 11.0186491 135.2799643 124.8461608 34 minimum: Maximum: Ranqe: Sum: Sum of Sqr.: Missing: 113.5 131 117.5 1812.8 120594.94 124 X 39 : EH-COLOR (NCAS) Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 121.5 17.3664582 11.7362908 154.2647059 134.2625961- 118 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: -1 Missing: 19 137 128 1387 --F9243 140 X40 : EH-TURBIDITY Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 17 15.1535253 1 1.21465976 126.5588235 173.6217907 F Minimum: Maximum: Ranae: Sum: Sum of Sqr.: 0 Missing: 11 18 117 1126 1 1333.5 140 SUMMARY PC DATA-OYSTER STAT I ONS I 990-STAT I ST I CS X41 : EH-CHLOR A Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 15.7444444 1 4.40443,92 1 1.0381363 1 19.399085 176,6730234 118 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: 11 Missinq: 12 117.4 115.4 1103.4 1923.76 140 X42 EH-NH3 Mean: Std. Dev.: Std. Error:. Variance: Coef. Var.: Count: 1.0451111 1.0131278 1.0030943 1.0001723 129.1010967 118 Minimum: Maximum: Rancie: Sum: Sum of Sqr.: -11 Missing: 1.02 1.07 1.05 1.812 703956 140 X43 -. EH-NITRATE Mean: Std. Dev,: Std. Error: Variance: Coef. Var.: Count: 1.1988889 1.1603631 1.037798 1.0257163 180.6295167 118 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: -v Missinq: Fo_ 1.53 1.53 13.58 1.1492 140 X44 :EH-ORTHOPHOSPHATE Mean: Std. Dev.: Std. Error: Vari ance: Coef. Var.: Count: 1.0201111 1.0191707 110045186 1.0003675 195.3240006 118 Minimum: maximum: Ranqe: Sum: Sum of Sqr.: -1 Missing: Fo_ 1.063 1.063 T362 1.013528 140 X45 EH-TON Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.6593889 1.3075985 1.0725017 1.0946168 146.6490275 118 Minimum: maximum: Range: Sum: Sum of Sqr.: .11 Missing: .269 1 11.869 19.434773 140 F 1.831 SUMMARY PC DATA-OYSTER STATIONS I 990-STATISTICS X 46 : EH-TKN Mean: Std, Dev.: Std. Error: Variance: Coef. Var.: Count: 1.7055 1.3100059 1.0730691 1.0961037 143.9413083 r1a Minimum: Maximum: Range: Sum: sum of Sqr.; -w Missinq 339 11.154 11815 112.699 110-592907 140 X 47 EH-TN Mean: Std. Dev.; Std. Error: Variance: Coef. Var.: Count: 1.9155556 _1.3415978 1.0805154 1.1166891 137.3104438 18 Minimum: Maximum: Ranqe; Sum: Sum of Sqr.: -1 Missing: F588 11.413 11.025 116.48 117.07207 140 X48 EH-TOP Mean: Std. Dev.: Std. Error: Variance: Coef, Var.: Count: 1.0805 1.1061953 1.0250305 110112774 1 131,919624 1 1 8 Minimum: Maximum: Range: Sum: Sum of Sqr.: -1 Missing: 10 1.27 1.27 11.449 1.308361 140 X49 EH-TP Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.0965 1.1007006 1.0237354 1.0101406 1104,3529884 118 Minimum: Maximum: Range: Sum: Sum of Sqr.: 0 Missing: 10 .27 1.27 1 1.737 1.340011 140 X50 EH-POC Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 12.008:5333 11.3485951 1.3178669 11.8187088 167.149965 118 Minimum: Maximum: Panqe: Sum: SUM of Sqr.: Missing: -T,03.5193 0 F4,57 14.57 F 136.15 140 SUMMARY PC DATA-OYSTER STATIONS 1990-STATISTICS X51 EH-TC Mean: Std. Dev.: Std, Error: Variance: Coef. Var.: Count: 115.25 12.0074127 1.4731517 14.0297059 1 13.16:53622 1 18 Minimum: Maximum: anqe: Sum: Sum of Sqr.: Missinq: 6.9 1274.5 7 112.3 _T 19.2 14254.63 140 X52 EH-IC Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 15.4666667 1.7467577 1.1760125 1.5576471 1 13.6602018 118 Minimum: Maximum: Ran(le: Sum: Sum of Sqr.: Missing: 1 _T_ 4.8 6.9 12.1 198.4 1547.4 140 X 53 EH-DOC Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1 9.78:5:5333 12.1791121 1.5136216 14.7485294 122.2737179 118 Minimum: Maximum: Range: Sum: Sum of qr.: 41' Missing: 15.6 1 13.3 17.7 1176.1 11803.57 140 X54: EH-TOC Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 111.8 12.4831195 1.5852769 5.1658824 121.0433854 118 ir Minimum: Maximum: Ranqe: Sum: Sum of Sqr.; Missing: 5.7 9.1 F 1212.4 12611.14 140 X55 : NS-SALINITY Mean: Std. Dev.: Std. Error: Vari ance: Coef. Var.: Count: 1 15.3 18.8469981 11.5400647 178.269375 1 57.82:55169 1 3:5 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: Missing: 11.5 128.5 -15-04.9 110229.59 125 SUMMARY PC DATA-OYSTER STAT I ONS I 990-STAT I ST I CS X56 : NS-TEMPERATURE Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 124.3363636 16.578555 11.1451794 143.2773864 127.0317913 33 F Minimum: Maximum: ange: Sum: Sum of Sqr.: Missinq: 113.7 133 119.3 1803.1 120929.41 125 X 57 : NS-COLOR (NCAS) Mean: Std. Dev.: Std, Error: Variance: Coef. Var.: Count: 123,111 111 1 1 16.702843 11.5798753 144.9281046 129.0026862 116 Minimum: Maximum: Ranae: Sum: Sum of Sqr.: Missinq FI 36 125 8 40 F 1416 11037 X58 : NS-TURBIDITY Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 19,0555556 15.9356572 11.3990478 135.2320261 165.5471345 1 18 Minimum: Maximum: Ranae: Sum: Sum of Sqr.: -v Missinq: 11 120 119 1163 12075 40 X 59 : NS-CHLOR A Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 15.0388889 13.0675031 1.7230174 19.4095752 160.8765772 118 Minimum: Maximum: Range: Sum: Sum of qr.: Missing: 1.5 11 11.3 110.8 190.7 1616.99 140 X60 NS-NH3 Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.0377222 1.0125314 1.0029537 1.000157 133.2202021 118 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: -v Missing: 10 7056 11056 1-679 1.028283 140 SUMMARY PC DATA-OYSTER STATIONS 1990-STATISTICS X61 : NS-NITRATE Mean: Std, Dev.: Std. Error: Variance: Coef. Var.: Count: 1-:5738889 1.273993 1 1.0645808 1.0750722 173.28196 118 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: 0 Missinq: 10 71.07 1 1.07 16.73 13.7925 140 X62 : NS-ORTHOPHOSPHATE Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.0193889 110233014 1.0054922 1.000543 1120.1793921 118 Minimum: maximum: Ranqe: Sum: Sum of Sqr.: Ir Missing: 10 1. 106 1.349 1.0 15997 1,40 X63 NS-TON Mean: Std. Dev.: Std, Error: Variance: Coef. Var.: Count: 1.6892222 1.2627966 1.0619418 1.0690621 1 38.1294472 118 Minimum: maximum: Ranqe: Sum: Sum of Sqr.: Missing: 1.29 1.81 .406 19.724546 140 X 64 NS-TKN Mean: Std. Dev..: Std. Error: Variance: Coef. Var.: Count: 1.7279444 1.2584398 1.0609148 1.0667911 135.5026776 118 Minimum: maximum: ange: Sum: Sum of Sqr.: -I' Missing: 1.338 1.801 113.103 -TIO.673705 140 X65 NS-TN Mean: Std. Dev.: Std. Error: Vari ance: Coef. Var.: Count: 11.102 1.2741869 1.0646265 1.0751785 124.8808463 F18 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: Mis 1.46 11.655 11.195 119.836 123-137306 140 SUMMARY PC DATA-OYSTER STAT I ONS I 990-STAT I ST I CS X66 NS-TOP Mean: Std. Dev.: Std, Error: Variance: Coef. Var.: Count: 1.041 1.0895492 1.0211069 1.0080191 1218.4126775 1 18 Minimum: Maximum: ange: Sum: Sum of Sqr.: Missing: 10 1.32 1.32 1.738 1.166582 40 X67 NS-TP Mean: Std. Dev.: Std. Error: Variance: Coef. Var,: Count: 1.0586111 1.1095972 1.0258323 1.0120115 1 186.9904795 118 minimum: Maximum: Range: Sum: Sum of Sor.: -w Missing: 10 1.426 1.426 11.055 _F26603 40_ X68 NS-POC Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 11.9744444 11.0440037 1.2,46074 11.0899438 152.8758221 1 18 Minimum: Maximum: Range: Sum: Sum of Sqr.: Missing: 10 13.39 135.54 186.7008 140 X69 NS-TC Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1 14.3555556 11.2229291 1.2882472 11.4955556 18.5188559 118 Minimum: Maximum: Range: Sum: Sum o gr.: Ir Missing: 111.6 116.7 15.1 1258.4 13734.9 140 X70 NS-IC Mean: Std. Dev.: Std. Error: Vari ance: Coef. Var.: Count: 1_7961 6 1.0989142 118 15.2222222 1. 13' 6154 1.3359477 11 Minimum' Maximum: Range: sum: Sum of Sqr.: Missing: _T 14.5 _T6.4 J 1.9 194 496.6 140 SUMMARY PC DATA-OYSTER STAT I ONS I 990-STAT I ST I CS X71 : NS-DOC Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 19.13:5333:5 __1.9042384 1.213131 1.8176471 19.9004203 118 Minimum: maximum: Panqe: Sum: Sum of Sqr.: -0' Missinq: 17.1 1 10.4 13.3 1164.4 11515.42 40 X72 N5-TOC Mean: Std. Dev.: Std. Error: Variance: Coef, Var.: Count: 1 1 1. 1 222222_[ 1.2586433 1.2966651 11.584183 1 11.3164734 1 18 Minimum: - maximum: Ranqe: Sum: Sum of Sqr.: 4r Missinq: 18.9 -113.1 14.2 1200.2 _F2253.6 140 X73 : PA-SALINITY Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1 16.5448276_1 9.0326229 11.677316 181.5882759 154.5948443 129 Minimum: maximum: Range: Sum: Sum of Sqr.: -1 Missinq: 12 132.1 130.1 1479.8 1 10222.68 129 X74 : PA-TEMPERATURE Mean: Std. Dev.: Std, Error: Variance: Coef. Var.: Count: 124.6344828 16.3289175 11.1752505 140.055197 125.6912945 129 Minimum: maximum: Range: Sum: Sum of Sqr.: Missing: 114 133 119 1714.4 118720.42 129 X 75 : PA-COLOR (NCAS) Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 122.75 17.6898201 11.922455 159.1333333 133.8014071 116 Minimum: -Maximum: ange: Sum: Sum of Sqr.: -"* Missing: 111 137 1364 19168 142 SUMMARY PC DATA-OYSTER STATIONS 1990-STATISTICS X76 : PA-TURBIDITY Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 111.375 7.2652139 1 1.8163035 1 52.7833333 163.8700125 r16 Minimum: Maximum: Ranae: Sum: Sum of Sqr.: Missinq: F 124 123 1182 12862 142- X 77 : PA-CHLOR A Mean: Std. Dev.: Std. Error: Variance: Coef, Var.: Count: 14.2125 13.3805079 1.845127 111.4278333 180.2494445 16 Minimum: Maximum: Ranae: Sum: Sum of Sqr.: 0 Missinq 10 111.9 111.9 167.4 1455,34 1 42 X 78 PA-NH3 Mean: Std. Dev,: Std. Error: Vari ance: Coef, Var.: Count: 1.0435625 110328613 1.0082153 1.0010799 __I 75.4347464 116 Minimum: Maximum: Ranae: Sum: Sum of Sqr.: Missing: 1.018 1.16 1.142 1.697 1.046561 142 X79 : PA-NITRATE Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.180625 111744503 1.0436126 1.0304329 196.5814965 116 Minimum: Maximum: Range: Sum: Sum of Sqr.: I Missing: 10 1.58 1.58 12.89 ].9785 142 X80 : PA-ORTHOPHOSPHATE Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.01125 1.0082179 1.0020545 1.0000675 173.0477041 116 Minimum: Maximum: Rancie: Sum: Sum of Sqr.: - Missing: 10 1.027 1.027 1.18 1.003038 142 SUMMARY PC DATA-OYSTER STAT I ONS 1 990-STAT I ST I CS X 81 : PA-TON Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.7018125 1.325222 1.0813055 1.1057694 146.340300:5 116 Minimum: maximum: anqe: Sum: Sum of Sqr.: -v Missing: 1.05 71 361 1 111.229 19.467193 142 X 82 PA-TKN Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.7456875 1.3230684 1.0807671 1.1043732 1 43.3248989 116 Minimum: Maximum: anqe: Sum: um of Sqr.: Ollissinq 1.068 11.326 111.931 110.462395 142 X 83 : PA-TN Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.9355625 1.321964 1.080491 1.1036608 134.4139453 116 Minimum: Maximum: Range: Sum: Sum of Sgr.: V M' _714.969 115.559347 142 F408 11.397 1.989 X84 : PA-TOP Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.0791875 1.0814986 1.0203747 1.006642 1102.9185732 116 Minimum: Maximum: Range: Sum: Sum of Sqr.: -1 Missing: 10 1,197 _T, .267 1.199961 142 X85 : PA-TP Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.08825 1.0811201 1.02028 1.0065805 191.9207656 116 Minimum: Maximum: Range: Sum: Sum of Sqr.: -"@ Missing: 10 1.206 6 _T, .412 1.223316 142 SUMMARY PC DATA-OYSTER STAT I ONS I 990-STAT I ST I CS X86 : PA-POC Mean: Std. Dev.: Std. Error: Varl ance: Coef. Var.: Count: 11.938125 11.2987698 1.3246924 11.6868029 167.01 16618 F I Minimum: Maximum: Ranqe: Sum: SUM of Sqr.: Missin-q: 10 3.91 3.91 _T 131.01 85.4033 X87 PA-TC Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: [15.04375 12.2321794 1.5580449 14.982625 1 14.8379189 116 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: v Missinq: 112.2 1 18.9 16.7 1240.7 13695.77 142 X88 PA-IC Mean: Std, Dev.: Std. Error: Variance: Coef. Var.: Count: 15.48125 1.701635 1.1754087 1.4922917 1 12.8006385 116 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: -11 Missinq: 14.7 16.7 12 187.7 1488.09 142 X89 PA-DOC Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 19.5625 12.4649206 1.6162301 16.0758333 125.776947 116 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: -v missing: 15.5 113.3 17.8 1153 11554.2 142 X go PA-TOC Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 111.49375 1 Z-5680932 1.7170233 18.225958.3 124.9535021 116 Minimum: Maximum: Ranae: Sum: Sum of Sqr.: Missinq: 15-5 115.5 110 1183.9 12237.09 142 SUMMARY PC DATA-OYSTER STATIONS 1990-STATISTICS X91 : PL-SALINITY Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 120.65448276 15.30199:5:5 1.9845554 128.1111:5:5 125.6819452 129 Minimum: Maximum:: anqe: Sum: Sum of Sqr.: Missing: 17.5 _F28 120.5 1598.7 -TI3147.17 129 X92 : PL-TEMPERATURE Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 124.0689655 16.0020891 11.11456 136.02507:59 124.9370465 129 Minimum: Maximum: Ranqe; Sum: Sum of Sqr.: 4r Missing 114 131 1698 117808.84 129 X93 : PL-COLOR (NCAS) Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 123.2777778 1 9.0019969 12.121791 1 81.0359477 138.6720629 1 18 Minimum: maximum: Range: Sum: Sum of Sqr.: -v Missing: 112 150 138 _F419 1131 140 X94 : PL-TURBIDITY Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 14.5555556 12.4548205 1.5786067 16.0261438 153.8863041 18 :J Minimum: Maximum: Range: Sum: Sum of Sqr.: Missinq: 19 18 182 1476 140 X 95 : PL-CHLOR A Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: I E5.2222222 17.3660234 1 1.7365 1884 154.2583007 1 118.3825188 118 Minimum: Maximum: Ranqe: Sum: sum of Sqr.: Missinq 1.5 131.3 130.8 1112 11619.28 140 SUMMARY PC DATA-OYSTER STAT I ONS 1990-STAT I ST I CS X96 : PL-NH3 Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.0351111 1.0135164 1.0031858 1.0001827 1 38.4960487 F Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: -11 Missinq: 10 1.055 1.055 1.632 1.025296 140 X97 : PL-NITRATE Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.1677778 1.1273,973 1,0300278 1.0162301 175.9321499 118 minimum: Maximum: Ranqe: Sum: Sum of Sqr.: missing: 10 1.45 1.45 13.02 117826 140 X98 : PL-ORTHO PHOSPHATE Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.0128333 1.0104502 1.0024631 1.0001092 181.4298325 1 18 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: - Missinq: 10 1.039 1.039 1.231 1.004821 140 X 99 : PL-TON Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.5808333 1.3029145 1.0713976 1.0917572 152.1517106 118 Minimum: Maximum: Range: Sum: Sum of Sqr.: 4* Missinq: F2 4 11.41 11.17 110.455 17.632485 140 X100 PL-TKN Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.6168333 1.3096057 1.0729748 1.0958557 [50.1927607 118 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: V Missing: 1.24 11.449 11,209 111.103 [8.476247 140 SUMMARY PC DATA-OYSTER STATIONS 1990-STATISTICS X 10 1 : PL-TN Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.7906111 1.3034731 1.0715293 1.0920959 1 38.3846188 -1 18 Minimum: maximum: Ranqe: Sum: Sum of Sqr.: -r Missinq: 1.245 __11,449 11.204 114.231 1 12.816817 140 X 102 PL-TOP Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.0313889 1.0604163 1.0142403 1.0036501 1192.4768:514 118 Minimum: maximum: Range: Sum: Sum of Sqr.: -v Missing: 10 1.207 1.565 7 .079787 140 X 103 PL-TP Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.0417222 1.0617565 1.0145561 1.0038139 1148.0181295 1 18 Minimum: maximum: Range: Sum: Sum of Sqr.: -v Missing: 10 7.222 1.222 T51 1.096169 140 X 104 PL-POC Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 12.0005556 11.1622112 1.2739358 11.350735 158.0944247 118 Minimum: Maximum: Range: Sum: Sum of Sqr.: Missing: 10 13.191 13.91 136.01 195.0025 140 X 105 ; PL-TC Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1 15.5777778 12.2293643 1.5254662 14.9700654 1 14.3111834 118 Minimum: Maximum: Rancie: Sum: Sum of Sqr.: Missing F12. 6 17.7 1280.4 14452.5 140 SUMMARY PC DATA-OYSTER STATIONS 1990-STATISTICS X 106 : PL-IC Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 15.3 555556 1.6363704 1.1499939 1,4049673 1 1 1.8824354 118 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: -v Missinq: F4.6 16.6 12 196.4 1523.16 140 X 107 PL-DOC Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 110.2222222 12.3752537 1.5598527 15.6418301 123.2361773 118 Minimum: Maximum: RanQe: Sum: Sum of Sqr.: Missing: F6. 3 115.6 19.3 1184 1976.8 40 X 108 PL-TOC Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 112.2222222 12.6253416 1.6 187989 16.8924183 121.4800673 118 __j Minimum: Maximum: Ranae: Sum: Sum of Sqr.: -11 Missing: 16.3 116.4 110.1 1220 12806.06 140 X 109 : SC-SALINITY Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 119.60625 19.3271267 12.3317817 1,86.9952917 147.5722112 J16 Minimum: Maximum: Range: Sum: Sum of Sqr.: .11@ Missinq: 12.9 132.5 129.6 1313.7 17455.41 142 X 110 : SC-TEMPERATURE Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 124.5 16.3878009 11.5969502 140.804 126.0726566 116 Minimum: Maximum: Rancie: Sum: Sum of Sqr.: Missing: 133.4 119.4 1392 _I 10216.06 142 SUMMARY PC DATA-OYSTER STATIONS 1990-STATISTICS X SC-COLOR WAS) Mean: Std. Dev.: Std, Error: Variance: Coef. Var.: Count: 1 22.7777778 17.0891756 11.3643125 150.256410:5 131.1232098 127 Minimum: maximum: Range: Sum: Sum of Sqr.: 4' Missing: 112 F45 133 1615 115315 t3i X 112 : SC-TURBIDITY Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 110.7037037 16.960409 11.3395313 148.4472934 165.0280426 127 Minimum: maximum: Range: Sum: Sum of Sqr.: 11 Missing: 11 124 123 1289 14353 131 X 3 SC-CHLOR A Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 16.2074074 13.6573347 1.7038544 113.3760969 1 58.9188759 127 Minimum: maximum: anqe: Sum: Sum of Sqr.: Missing: 167.6 11 111.4 T 11388.14 131 X 114 SC-NH3 Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.046037 1.0201885 1.0038853 1.0004076 143.8527335 127 Minimum: Maximum: Range: Sum: Sum of Sqr.: 0 Missing: 10 1.097 11.243 1.067821 131 X 115 SC-NITRITE Mean: 3td. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.0041852 1.0034086 1.000656 1.0000116 181.443302 127 Minimum: maximum: Range: Sum: Sum of Sqr.: Missing: FO 1 .011 1.011 1.113 1.000775 131 SUMMARY PC DATA-OYSTER STAT I ONS I 990-STAT I ST I CS X 116 : SC-NITRATE Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.1951852 1.11742 1.0225975 1.0137875 1 60,1582717 127 7 Minimum: Maximum: ange: Sum: Sum of Sqr.: a, Missinq: 10 1.44 1. 44 15.27 1 1.3871 131 X 1 17 : SC-ORTHOPHOSPHATE Mean: Std, Dev.: Std. Error: Variance: Coef. Var.: Count: 1.0128148 1.0112525 _1.0021655 1.0001266 1 87.8083448 127 Minimum: Maximum: Ranae: Sum: Sum of Scir.: .41 Missing: 10 1.039 .039 11346 1.007726 31 X 118 SC-TON Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.6725185 1-:5288845 1.06:52939 1.108165 148.9034149 127 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: -11@ Missing: 1.231 1 1,568 11.337 -TI8.158 [15.023882 131 X 119 : SC-TKN Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.7213333 1.3285813 1.0632355 1.1079657 145.5519408 127 Minimum: Maximum: Panqe: Sum: Sum of Sqr.: I Missinq: 1.251 11.624. 11.373 119.476 116.855796 131 X 120 SC-TN Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.9187037 1.316245 1.0608614 1.1000109 134.4229606 127 Minimum: Maximum: Ranae: Sum: Sum.of Sqr.: Missing; 1 1 11.632 11.321 124.805 125,388729 131 SUMMARY PC DATA-OYSTER STAT I ONS I 990-STAT I ST I CS X 121 SC-TOP Mean: Std. Dev.: Std. Error: Vari ance: Coef. Var.: Count: 1.0603704 1.0931406 1.0179249 1.0086752 1 154.281921 127 Minimum: Maximum: anqe: Sum: Sum of Sgr.: -0 Missing: 10 1.27 11.63 1.323958 131 X 122 SC-TP Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.0696296 1.0903353 1.017385 1.0081605 1129.7369188 127 Minimum: maximum: Range: Sum: Sum of Sgr.: Missing: 10 1.27 1.27 11.88 1.343076 131 X 123 SC-POC Mean: Std. Dev.: Std. Error: Variance: Coef, Var.: Count: 1 2.3359259 11.4227067 1.2738 1 2.0240943 160.9054708 127 Minimum: Maximum: Ranqe: sum: Sum of Sqr.: 4r Missing: 1.04 15.07 15.03 163.07 _T199.9533 1:51 X 124: SC-TC Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1 15.7888889 13.2532035 1.62650793 110.58-33333 1 20.6043856 127 Minimum: Maximum: Range: Sum: Sum of Sgr.: Missing: 1 10.9 122 111.1 1426.3 17005.97 131 X 125 SC-IC Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 15.562963 1.7227874 1.1391005 1.5224217 112.9928497 127 Minimum: maximum: Range: Sum: Sum of Sqr.: Missing: -1849.14 131 F46 12.6 1150.2 SUMMARY PC DATA-OYSTER STATIONS 1990-STATISTICS X 126 SC-DOC Mean: Std. Dev.: Std, Error: Variance: Coef. Var.: Count: 110.2259259 13.3232969 1.6395688 1 11.044302 1:52.4987378 127 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: -1 Missinq: 14.9 116.3 111.4 1276.1 13110.53 131 X 127 SC-TOC Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 112.5740741 13.5658199 1.6862424 112.7150712 128.3585084 127 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: 4r Mlssinq: 14.9 1-17.2 112.3 _T339.5 14599.49 131 X 128 : SV-SALINITY Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1 18.9272727 18.6192108 11.500412 174.2907955 145.5385779 133 Minimum: Maximum: Range: Sum: sum of Sqr.: 21 Missinq 13 133 130 1624.6 114199.28 125 X 129 : SV-TEMPERATURE Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 123,930303 15.9219657 11.0308819 135.069678 124.7467227 J33 minimum: Maximum: Range: Sum: Sum of Sqr.: -111 Missinq: 114.2 _I 32 117.8 1789.7 120019.99 125 X 130 : SV-COLOR WAS) Mean: Std. Dev.: Std, Error: Variance: Coef. Var.: Count: 125.6666667 112.1848508 12.8719969 1 148.4705882 F47.4734446 118 Minimum: Maximum: Ranae: Sum: Sum of Sqr.: Missinci: IF4382 60 151 40 F9 F F SUMMARY PC DATA-OYSTER STATIONS 1990-STATISTICS X 131 : SV-TURBIDITY Mean: Std. Dev.-: Std. Error: Variance: Coef, Var.: Count: 17.1666667 16.280221 1 11.4802623 139.4411765 1 87.6309914 1 18 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: Missinq: 25 124 1 1 _F 1129 11595 140 :J X 132 : SV-CHLOR A Mean: Std, Dev.: Std. Error: Variance: Coef. Var.: Count: 14.0777778 1 2.8335294 1.6678693-T8.O288889 169.4870971 118 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: -1 Missing 10 _TI 1. 6 111.6 173.4 1435.8 140 X SV-NH3 Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.0757778 1.1059448 1.0249714 1.0112243 1 139.809853,41 18 Minimum: Maximum: Range: Sum: Sum of Sqr.: Missing: 019 1,364 1.347 T -1-294174 140 X 134 5V-NITRITE Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.0038889 1.0033235 1.0007834 1.000011 185.461813 118 Minimum: maximum: Ranqe: Sum: Sum of Sqr.: -v Missing: 10 10 1 1.01 - 1.07 1.00046 140 :J X 135 SV-NITRATE Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.1961 Ill 1.1795137 1.0423118 110322252 1 91.5367237 118 Minimum: maximum: Ranqe: Sum: Sum of Sqr.: -v Missing: 10 1.52 1.52 13.53 _T1.2401 140 SUMMARY PC DATA-OYSTER STATIONS 1990-STATISTICS X 1,36 : SV-ORTHOPHOSPHATE Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.0148889 1.0130108 1.0030667 1.0001693 187.3860035 1 18 Minimum: Maximum: ange: Sum: Sum of Sqr.: I Missinq: 10 1.042 1.042 1.268 1.006868 140 X 137 SV-TON Mean: Std. Dev.: Std. Error: Variance: Coef, Var.: Count: 1 5914444 1.2793076 1.0658334 1.0780127 1,47.2246542 118 Minimum: Maximum: anqe: Sum: Sum of Sqr.: -11 Missing: 1-052 -1 1.181 1.129 110.646 17.622734 140 X 138 SV-TKN Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.6682222 1.2800234 110660022 1.0784131 1 41.9057352 118 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: 0@ Missinq: 1.074 111.22 11.146 112.028 19.3704 140 X 139 SV-TN Mean: Std. Dev.: Std. Error: Variance: Coef. Var.; Count: 1.8566667 1.374663 1.0883089 1.1403724 143.7349789 118 Minimum: Maximum: Range: Sum: Sum of Sqr.: -11 Missing: 1.074 1 1.363 11.289 115.42 1 15.59613 140 X 140 SV-TOP Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.0356111 1.0592067 1.0139551 1.0035054 1 166.2589402 118 Minimum; Maximum: Ranqe: Sum: SUM of Sqr.: Missing: 10 7 1.181 __T674 1.082419 140 SUMMARY PC DATA-OYSTER STAT I ONS I 990-STAT I ST I CS X 141 SV-TP Mean: Std. Dev.: Std. Error: Vari ance: Coef. Var.: Count: 1.0471667 1.0594616 1.0140152 1.0035357 1126.0669001 1 18 Minimum: Maximum: Range: Sum: Sum of Sgr.: 0 Missing: 10 _T19 1.19 1.849 1.100151 140 X 142 SV-POC Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 12.3594444 1 1.6337019 1.3850672 12.66,3982 169.2409581 118 Minimum: Maximum Range: Sum: Sum of Sgr.: -11@ Missing: Fo__ 07 F5O 7 142.47 140 1145.5783 X 143 SV-TC Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 114.983:53:53 1 1.1288985 1.2660839 1 1.2744118 17.5343613 118 Minimum: Maximum: Range: Sum: Sum of Sqr,: 0 Missi 113.2 118 14.8 1269.7 _T4062.67 140 X 144: SV-IC Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 15.1888889 1.7323523 1.1726171 1.5363399 1 14.1138556 118 Minimum: maximum: Range: Sum: Sum of Sgr.: -1 Missing: 14.1 12.1 193.4 1493.76 140 X 145 SV-DOC Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 19.7944444 11.1613746 1.2737386 11.3487908 111.8574827 118 Minimum: maximum: Range: Sum: Sum of Sgr.: 0 Missing: 18 14.8 1176.3 11749.69 140 SUMMARY PC DATA-OYSTER STATIONS 1990-STATISTICS X 146 : SV-TOC Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1 12.1555556 12.3175094 1.5462422 15,3708497 1 19.0654336_1 18 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: * Missinq: 18 116 18 1218.8 12750.94 140 X 147 : SG-SALINITY Mean: :Std, Dev.: Std. Error: Variance: Coef. Var.: Count: 1 14.9733333 16.3938512 11.1673522 140.881:53:53 142.7015887 130 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: -11' Missinq: 13.5 125 121.5 1449.2 17911.58 128 X 148 : SG-TEMPERATURE Mean: Std. Dev.: Std. Error: Vari ance: Coef, Var.: Count: 24.6266667 F 15.3356274 1.9741478 1 28.4689195 121.666056 130 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: Missing: [14.5 32 117.5 9.78 F 1738.8 11901 128 OYSTER NUMBERS-STATISTICS X6; SVn Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1318.375 1 198.3668589 170.1332755 13.9349411 E4 162.3060413 T8 Minimum: Maximum: Panqe: Sum: Sum of Sqr.: -11@ Missing: 174 1564 1490 12547 71086347 10 X7: DBIn Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1230 171.3222065 125.2162079 15.0868571E3 131.009655 T Minimum: Maximum: Range: Sum: Sum of Sqr,: Missing: 1127 1352 _1225 __T1840 1458808 10 X8: SCn Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1221.625 1142.9674663 150.5466325 12,0439696E4 164.5087271 18 Minimum:' Maximum: Range: Sum: Sum of Sqr.: -11@ Missing: 189 1519 1430 11773 1536019 10 Xg: SGn Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1219 182.3129915 129.1020372 16,7754286E3 137.5858409 18 Minimum: Maximum: Range: Sum: Sum of Sqr.: -111 Missing: 1117 1401 1284 T1752 1431116 10 X 10 NSn Mean: Std. Dev.: Std. Error: Vari ance: Coef. Var.: Count: 1184.875 142.5119731 1 15.0302522 11.8072679E3 1 22.9949821 18 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: f Missing: 1132 1247 11479 1286081 10 OYSTER NUMBERS-STATISTICS X 1 PAn Mean: Std. Dev.: Std, Error: Variance: Coef. var.: Count: 148.375 119.2200602 16.7953175 1 369.4107143 1 39.73 13906 8 F Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: -11, Missina: 119 183 164 1387 121307 10 X 12 totpln Mean: Std, Dev.: Std. Error: Variance: Coef. Var.; Count: 1328252.5 1 1.041 7484E5 1:5.6831369E4 I 1.085240E 10 131.7361918 18 Minimum: Maximum: ange: Sum: Sum of Scir.: 0 Missinci: rl 71720 F471960 1300240 12626020 19.379644E I 1 10 X13 :TOTEHN Mean: Std. Dev.: Std. Error: Vari ance: Coef, Var.: Count: 1 191377.5 17.091319E4 12.5071599E4 15.0286805E9 137.0540894 18 Minimum: Maximum: Ranae: Sum: Sum of Sqr.: I Missinq: F 10568 1307224 1196656 11531020 1 3.282035E I 1 10 X 14 : TOTCPN Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1436064.75 1 1.3537184E5 I 4.7861174E4 11.832554E 10 131.0439773 18 Minimum: Maximum: Range: Sum: Sum of 5gr.: -01 Missing: 1234898 1574138 1339240 13488518 1 1,649498E 12 10 X 15 : TOTDB3N Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1113068.5 15.7661019E4 12.0386249E4 13.3247931 E9 150.9965364 18 Minimum: Maximum: Ranqe: Sum: sum of Sqr.: Missing: 1237876 1199348 904548 1 1.255494E 1 0 OYSTER NUMBERS-STATISTICS X 16 : TOTDB2N Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 182925.5 1 3.935869E4 1 1.391 5398E4 1 1.5491 065E9 147.4627103 18 Minimum: Maximum: ange: Sum: Sum of Sqr.: 0 Missinq: 143688 1155144 1111456 1663404 1 6.585685E 10 1 0 X 17 : TOTSVN Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 16367.5 1 3.9673372E3 1 1402.66551 1 1 1.5739764E7 1 62.3060413 18 Minimum: maximum: Ranqe: Sum: Sum of Sqr.: -11@ Missinq: 11480 1 11280 19800 _T50940 1434538800 10 X 18 : TOTDB 1 N Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 139560 1 1.226742E4 I 4.3371878E3 I 1.5048958E8 131.009655 18 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: -11@ Missinq: 121844 160544 138700 1316480 -Ti-357338EI0 10 X 19 : TOTSCN Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 142108.75 1 2.716:58 1 9E4 I 9.60:58602E3 17.3787304E8 164.5087271 18 Minimum: Maximum: Range: Sum: Sum of Sqr.: -01 Missing: 7336870 IF6910 98610 181700 1 1.935029E 10 10 X20 : TOTSGN Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 121462 18066.673168 12.851 9996E3 165071216 137,5858409 18 Minimum: Maximum: Range: Sum: Sum of Sqr.: -11@ Missing: 111466 139298 127832 1171696 14140438064 10 OYSTER NUMBERS-STATISTICS X PLn Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 11823.625 1 578.7491284 1204.6187166 1 3.3495055E5 1 31.7361918 18 - -1 Minimum: Maximum: Rar)qe: Sum: Sum of Sqr.: -11@ Missinq: 1954 12622 - 11668 114589 --F289495119 10 X2:EHn Mean: Std. Dev.: Std. Error: Variance: Coef, Var.: Count: 1938.125 1347.6136762 1 122,8999938 11.2083527E5 137.0540894 18 __j Minimum: Maximum: Panqe: Sum: Sum of Sqr.: issing: 1542 11506 1964 _T7505 17886475 10 X3: CPn Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1848.375 1263.3693428 193.1151241 16.9363,41 1 E4 131.0439773 18 minimum: Maximum: Range: Sum: Sum of Sqr.: Missing: 11117 1660 16787 _F6243465 10 X4: DB3n Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1657.375 1 335.2384812 1 1 18.5247017 11.1238484E5 150.9965364 18 Minimum: Maximum: Range: Sum: Sum of Sqr.: -1 Missinq: 1224 11363 11159 15259 14243829 10 -1 X5 DB2n Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1482.125 1228.8295919 180.9034781 15.2362982E4 1 47.4627103 1,8 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: -111 Missinq: 4 1902 1648 13857 12226097 10 OYSTER NUMBERS-STATISTICS X TOTSVN Mean: Std. Dev.: Std. Error: Vari ance: Coef. Var.: Count: 1 18:5065.625 1 1.1406094E5 14.032663-3E4 11.300990E10 I r02.3060413 18 Minimum: maximum: Rame: Sum: Sum of Sqr.: -1 Missing: 142550 1324300 1281750 -11464525 591735Ell 10 OYSTER AFDW-STATISTICS X EHn Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1341.625 _I 116.1845054 141.0774258 1 1.3498839E4 134.0093686_1 8 Minimum: Maximum: ange: Sum: Sum of Sqr.: Missina: 1180 1489 1309 12733 --T,028153 10 X2: CPn Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1303.125 185.5710857 130.2539475 17.3224107E3 128.2296365 18 Minimum: maximum: Ranqe: Sum: Sum of Sqr.: 0 Missinq: 1175 1431 1256 786335 10 12425 'T X3: PLn Mean: Std. Dev,: Std. Error: Vari ance: Coef. Var.: Count: 1299.875 1 108.6586234 138.4166247 11.1806696E4 136.2346389 18 Minimum: Maximum: Rancie: Sum: Sum of Sqr.: 0 Missinq 1225 1562 1337 12399 1802047 10 X 4: DB3n Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1194.75 1 81.6871209 128.8807585 16.6727857E3 141.9446063 _I 8 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: "' Missing: 170 1349 1279 11558 1350130 10 X5: DB2n Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 18.182 1181.75 -T51.4274801 7 36 12.6447857E3 128.295725 1 8 Minimum: Maximum: Panqe: Sum: Sum of Sqr.: Missing: 198 1247 1149 11454 _I 28277'8 10 OYSTER AFDW-STATISTICS X6: NSn Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1119 126.441-3097 19.3484147 1699. 1428571 122.219588 18 Minimum: maximum: Ranqe: Sum: Sum of Sqr.: -Ir Missinq: 185 1161 176 1952 1118182 10 X7: DBln Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1104.5 142-9451477 115.1834026 1 1.8442857E3 1 41.0958:552 18 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: Missing: 1 -T- 4 143 1139 1836 T00272 10 X8: SCn Mean: Std. Dev.: Std. Error: Vari ance: Coef. Var.: Count: 1104.25 1 41.18165:5:5 1 14.5599132 1 1,6959286E:5 1:59.502785 18 Minimum: maximum: Range: Sum: Sum of Sqr.: -11' Missinq: 171 7187 1116 198816 10 Xg: SGn Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1101.375 139.5038425 1 13.9667175 1 1.5605536E3 1:58.968032 18 Minimum: Maximum: Range: Sum: Sum of Sqr.: 41 Missing: 141 1159 1118 1811 193139 10 X 10: PAn Mean: Std. Dev.: Std. Error: Variance: Coef, Var.: Count: 146.25 114.926008 15.2771407 1 222.785714:5 1:52.2724497 8 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: -1 issing: 123 174 151 1370 118672 0 OYSTER AFDW-STATISTICS XII :SVn Mean: Std. Dev.: Std. Error: Vari ance: Coef. Var.: Count: 15.625 13.9977672 11.4134242 1 15.982 1429 1 71.0714175 18 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: -w Missinq: 11 113 112 145 1365 10 X 12 : TOTEHWW Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count; 169691.5 12.3701639E4 18.3797949E3 15.617677E8 134.0093686@ 8 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: Missinq F3-6720 F99756 163036 1557532 1 4.278762E 10 1 0 X TOTCPW Mean: Std. Dev.: Std, Error: Variance: Coef. Var.: Count: 1 155806.25 14.3983538E4 I 1.5550529E4 I 1.9,345516E9 128.2296365 18 Minimum: Maximum: I Range: Sum: Sum of Sqr.: 0 Missing: 189950 1221534 1131584 11246450 12.077466E 1 1 10 X 14 TOTPLW Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 153977.5 1 1.9558552E4 16.9149924E3 13.8253696E8 136.2346389 18 Minimum: Maximum: Range: Sum: Sum of Sqr.: Missing: [40500 1101160 160660 1431820 12.598632E 10 10 X 15 : TPTDB3W Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 133497 1 1.4050185E4 14.9674,905E3 11.974071,9E8 141,9446063 18 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: * Missina: 40 f60028 147988 1267976 1 1.035825E 10 10 OYSTER AFDW-STAT I ST I CS X 16 : TOTDB2W Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 131261 1 8.8455266E3 I 3.127365,DE:5 1 7.824:5:541 E7 128.295725 18 Minimum: Maximum:: ange: Sum: Sum of Sqr.: --l" Missing: 116856 142484 125628 1250088 -T8365704352 10 X 17 : TOTDB I W Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 117974 7386.565411 12.6115452E:5 15.4561349E7 141.0958352 18 Minimum: Maximum: Panqe: sum: Sum of Sqr.: Missinq: 1688 124596 123908 1143792 -T2966446848 10 X 18 : TOTNSW Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 15236 1 1. 1634176E:5 1 41 1.3302462 1 1.3535406E6 122.219588 18 Minimum: Maximum: Panqe: Sum: Sum of Sqr.: 0 Missinq: 13740 17084 13344 141888 -F228800352 10 X 19 : TOTSCW Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 119807.5 17.8245141 E3 12.7663835E3 16.1223021E7 139.502785 18 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: ll@ Missing: 113490 135530 122040 1158460 13567257600 10 X20 : TOTSGW Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 19934.75 1 3871.376564 11.3687383E3 1 14987556.5 1 38.968032 18 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: issing: 14018 115582 179478 1894506956 10 OYSTER AFDW-STAT I ST I CS X 21 : TOTPAW Mean: Std. Dev.: Std, Error: Variance: Coef. Var.: Count: 110730 1 3.4628339E3 I 1.2242966E3 1 1.199 1 218E7 732.2724497 18 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: -v Missinq: 15336 117168 111832 185840 11005001728 10 X22 : TOTSVW Mean: Std. Dev.: Std. Error: Variance: Coef, Var.: Count: 13234.375 12.2987162E3 1 812.7188922 15.284096E6 171.0714175 18 Minimum: Maximum:' Panqe: Sum: Sum of Sqr.: -v Missing: 1575 17475 16900 125875 1120678125 10 X23 : TOTSVWW Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1112.5 179.9553447 128.26'84832 16.3928571 E3 1-71.0714175 18 minimum: Maximum: Ranae: Sum: Sum of Sqr.: Missin 20 T260 1240 F 1146000 10 OYSTER SIZES-STATISTICS X PAn Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 165.375 18.1405072 1 2,8781039 1 66.2678571 112.4520186 1 8 Minimum: Maximum: Range: Sum: Sum of Sgr.: -"@ Missing: 152 181 129 1523 -734655 10 X2: NSn Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 154.875 15.1391356 1 1.8169588 1 26.410714:5 19.3651673 18 Minimum: Maximum: Range: Sum: Sum of Sgr.: -11@ Missing: 146 162 1 16 1439 124275 10 X3: SCn Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 149.25 1 10.7935166 13.8160844 1116.5 121.9157697 18 Minimum: Maximum: Range: Sum: Sum of Sqr.: -111 Missing: 126 160 134 1394 _F20220 10 X 4: SGn Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 147.5 19.9426929 1:5.5152728 198.8571429 120.9319851 18 Minimum: Maximum: Range: Sum: Sum of Sqr.: I Missing: 135 163 128 1380 IF8742 10 X5: DBln Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 145.75 1 13.9667974 14.9380086 1 195.0714286 1 30.5285188 18 Minimum: maximum: anqe: Sum: Sum of Sgr.: 11' Missing: 115 7-9- 145 1366 _F 8110 10 OYSTER SIZES-STATISTICS X6: D52n Mean: Std. Dev,: Std. Error: Variance: Coef. Var.: Count: 144.625 15.9506902 12.1038867 1 35.4107143 1 13.334880 1 F8 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: -1 Missinci: 137 152 115 1357 116179 10 X7: EHn Mean: Std. Dev.: Std, Error: Variance: Coef. Var.: Count: 141.5 16.824:5262 12.41276:57 146.5714286 116.4441596 18 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: -1 Missing: 133 150 117 1332 114104 10 X8: CPn Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 141.125 14.8825,491 1 1.7262418 123.8392857 1 1 1.8724598T Minimum: Maximum: Range: Sum: Sum of Sqr.: -1 Missing: 135 147 112 1329 113697 -10 Xg: DB3n Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 140 110.11364 13.5757117 1102.2857143 125.2841 18 Minimum: Maximum: Range: Sum: Sum of Sqr.: 0 Missing: 123 155 132 1320 113516 10 X 10 PLn Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 128-25 16.6062741 12.3356706 143.6428571 123.385041 18 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: -T Missinq: 118 140- 122 1226 16690 10 OYSTER SIZES-STATISTICS x svn Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 115 3.545621 1 1.2535663 112.5714286 123.6374736 18 Minimum: maximum: Ranqe: Sum: Sum of Sqr.: -It Missinq: 122 1120 _T1888 10 OYSTERLARVAE MEAN NUMBERS X CP TOTAL NUMBERS Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1967.28 1 2.3336786E3 1 466.7357122 1 5.4460556E6 1241.261947 F25 Minimum: maximum: Ranqe: Sum: Sum of Sqr.: 41@ Missl.nq: 10 19421 19421 124182 1154096100 13 X2 : DB1-TOTAL NUMBERS Mean: Std. Dev.: Std. Error: Variance: Coef, Var.: Count: 1 188.93:53333 1316,534238 1 81.7287888 1 1.0019392E5 1167.5375289 115 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: 0 Missing: 10 1909 1909 12834--T, 938152 113 X3 : DB TOTAL NUMBERS Mean: Std. Dev.: Std. Elr, Vari ance: Coef, Var.: Count: 15 1 15.811388:5 15 1250 1316.2277667 10 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: M ssinq: 10 150 150 150 12500 118 X4 : EH-TOTAL NUMBERS Mean: Std. Dev.: Std, Error: Variance: Coef. Var.: Count: 1 170.41666657 1404,2135592 182.5097473 11.633886E5 1237.1913306 124 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: -11' Missing: 10 11544 11544 14090 14454942 14 X5 : NS-TOTAL NUMBERS Mean: Std. Dev,: Std. Error: Variance: Coef. Var.: Count: 138.08 171.4743077 1 14.2948615 15.1085767E3 1 187.6951359 125 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: -v Missing: 0 -8858 1269 1269 1952 F 5 OYSTERLARVAE MEAN NUMBERS X6 : PA-TOTAL NUMBERS Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 125-12 194.2732:576 1 18.8546475 1 8.8874433E3 1 375.291551 1 125 Minimum: maximum: Ranqe: Sum: Sum of Sqr.: Missinq: 10 -T468 1468 1628 1229074 -3 X 7 : PL-TOTAL NUMBERS Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1 1314.32 1 3.6165043E3 172:5.3008634 1 1.3079103E7 1 275.1616286 125 Minimum: Maximum: Range: Sum: Sum of Sqr.: I Missing: 10 A 14228 1 14228 132858 -T357084410 13 X 8 : SC-TOTAL NUMBERS Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1 40.5384615 1 144.3557358 128.310489 12.0838578E4 1:556.095743 126 Minimum: Maximum: Rang Sum: Sum of Sqr.: -11@ Missing 10 1714 1714 1563692 12 Xg : SG-TOTAL NUMBERS Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count; 170.64 1 165.9600554 1 33,1920111 127542.74 1234.9377908 125 Minimum: Maximum: Range: Sum: Sum of Sqr.: -11' Missinq: 10 1586 1586 11766 1785776 13 X 10 : SV-TOTAL. NUMBERS Mean: Std. Dev.: Std, Error: Vari ance: Coef. Var.: Count: 1 107.1785714 1269.1783181 1 50.8699206 17.2456967E4 1251.1493804 128 Minimum: maximum: Ranqe: Sum: Sum of Sqr.: 0 Missinq: lo -7-lov 7 13001 12277981 10 SPAT OPEN AND CLOSED BASKETS-STATISTICS X NSO Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 12.25 13.2841611 11.161126:5 110.7857143 1 145.9627166 18 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: -1 Missinq 10 18 .18 118 1116- - -10 X2 NSC Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 11.74125 13.538225-7 1 1.2509517 1 12.519041 1 1 203.2003271 _I 8 Minimum: Maximum: Ranqe: Sum: Sum of Scir.: 0 Missing: 10- 110.3 110.3 113.93 1 1 11.8889 10 X3: PAO Mean: Std. Dev.: Std. Error: Vari ance: Coef, Var.: Count: 10- - - 10 10 10 10 18 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: 0 Missing: 10 10 10 10 0 0 X4: PAC Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.1625 1.4596194 1.1625 1.21125 1282.8427125 _] 8 Minimum: Maximum: Ranqe: Sum: sum of Sqr.: 411 Missinq: 10 1.3 1 1.3 11.69 10 X5: SCO Mean: Std. Dev.; Std. Error: Variance: Coef. Var.: Count: 1.7875 12.2273864 1.7875 14.96 125 1282.8427125 18 Minimum: Maximum: Ranqe: Sum: Sum of Sar.: - -11 Missing 10 16.3 16.3 16.3 139.69 0 SPAT OPEN AND CLOSED BASKETS-STATISTICS X6: SCC Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 11.2825 ] 3.3687037 11.1910166 1 1 1.3481643 1 262.6669513 18 Minimum: Maximum: Ranae: Sum: Sum of Sqr.: -11 Missinq J 0 19.6 19.6 1 10.26 192.5956 10 X7 : DlBO Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.245 1.4848269 1.1714122 1.2350571 1 197.888539 18 Minimum: maximum: Range: Sum: Sum of Sqr,: 0 Missinq: 10 1.3 11.3 1 1.96 12.1256 10 X8: DIC Mean: Std. Dev.: Std. Error: Vari ance: Coef. Var.: Count: 1.37875 _[.9450085 1,334111 1.8930411 1249.5071956 18 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: -I' Missing: 10 =2.7 12.7 T3.03 17.3989 10 Xg: D20 Mean: Std. Dev.: Std. Error: Variance: Coef, Var.: Count: 11.2875 12.7986923 1.9894872 1 7.8326786 1217.374159 1 S Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: 0 Missing: 10 18 18 -110.3 168.09 10 X 10 D2C Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 11.17125 11.7527239 1.6196815 13.0720411 1 149.6455838 18 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: Missing: 10 14 14 19.37 132.4789 10 SPAT OPEN AND CLOSED BASKETS-STATISTICS X11 :D30 Mean: Std. Dev.: Std. Error: Variance: Coef, Var.: Count: 1 1.05 12.3537205 1.8321658 15.54 1 224.1638533 18 Minimum: Maximum: anqe: Sum: Sum of Sqr.: 0 Missing: 10 116.8 16.8 18.4 147.6 10 X 12: D3C Mean: Std. Dev.. Std, Error: Variance: Coef. Var.: Count: 11.875 12.9001232 11.0253484 18.4107143 1 154.6732347 18 Minimum: Maximum: Ranqe: Sum: Sum of Sqr.: I Missinq.@ 10 17 17 115 187 10 X 13: SVO Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.125 1.3535534 1.125 1.125 1282.8427125 18 Minimum: Maximum: Ranoe: Sum: Sum of Sqr.: -* Missinq 10 1 10 X 14: SVC Mean: Std, Dev.; Std, Error: Variance: Coef. Var.: Count: 112875 1.8131728 1.2875 1.66125 1282.8427125 18 Missing: Minimum: Maximum: Rang Sum: Sum of Sqr.: - 10 2.3 12.3 12.3 15.29 10 X 15: EHO Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 1.4125 11.1667262 1.4125 11.36125 1282-8427125 18 Minimum: Maximum: Range: Sum: Sum of Sqr.: -1 Missinq: 10 13.3 13.3 13.3 7 1-0.89 10 SPAT OPEN AND CLOSED BASKETS-STATISTICS X 16: EHC Mean: Std. Dev.: Std. Error: variance: Coef. Var.: Count: 1.6 11.697056:5 1.6 12.88 1282.8,427125 18 Minimum: maximum: Ranqe: Sum: Sum of Sqr.:_ 0 Missinq: 10 14.8 14.8 14.8 123.04 10 X 17: PLO Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: @37375 1.930974 1.329149 1.8667125 1 249.0900207 18 Minimum: maximum: Range: Sum: SUM of Sqr.: 0 Missing: 10 12-66 - 12.66 2.99 17.1845 10 X 18 PLC Mean: Std. Dev.: Std. Error: Variance: Coef, Var.: Count: 13.4125 15.56428:54 11.9672713 130.96125 1163.0559245 18 Minimum: Maximum: Range: Sum: Sum of Sqr.: -1 Missinq: Fo 1 15 115 127.3 1309.89 10 X 19: CPO Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: 0, 10 10 10 10 1 - - - 17 Minimum: Maximum: Range. Sum: Sum of Sqr.: -@ Missing: 10 10 lo -To 1 1 :1 X20 CPC Mean: Std. Dev,: Std. Error: Variance: Coef. Var.: Count: 1.04125 1.1166726 1.04125 1.0136125 1282.8427125 18 Minimum: Maximum: Ranae: Sum: Sum of Sqr.: 0 issing: 10 1.33 1.33 1.33 1.1089 10 SPAT OPEN AND CLOSED BASKETS-STATISTICS X21 : SGO Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: I -75 12.1213203 1.75 14.5 1282.8427125 IS Minimum: Maximum: Ptanqe: Sum: Sum of S(ir.: Missing: 10 16 16 16 136 0 X22: SGC Mean: Std. Dev.: Std, Error: Variance: Coef. Var.: Count: 11.68375 14.497758 11.5901976 120.2298268 1267.1274223 18 Minimum: maximum: Ranqe: Sum: Sum of Sqr.: Missing 10 112.8 112.8 113.47 1164.2889 A a C D E K L M N ISTATION ME N SAUN17 SAL STAN DE% MEAN TEMPER MEAN COLOR MEAN TURBIEX MEAN CHLOR) MEAN NH3 MEAN N03 MEAN P04 WANTON MEAN TKN MEAN TN MEANTOP 2CAT POINT 16.8 5.508 24 29.2 7.81 6w7 0.032 0.164 0.015 0.663 0,704 0.869 3DRY BAR 1 17.4 8.726 24.0 24. 1 8.21 5.9 0.0433 0.472 0.018 0.862 0.907 1.389 4EAST HOLE 17.029 6.283 23,9 21.5 71 6.7 0.04S 0.199 0.02 0.669 0.705 0.916 5NORTH SPUR IS1 8.847 24.33 23.1 2.11 5 0.038 0.374 0.019 0.689 0.728 1.102 6PARADISE 16.5 9.032 24.6 22.8 11.41 4.2 0.044 0.11811 0,011 Om7O2 0.746 0.936 7PLATFORM 20.644 6.302 24.1 23.3 4.6 6.2 0035 0.1678 0.013 0.561 0.617 0.791 8SCORPION 19.606 9427 24.51 22.8 10.7 6 0.046 0.1961 0,013 0.673 0.7211 0.919 9IST.VINCENT . 18.9 8.619 23.91 25.7 7.2 4.1 0.076 0.1961 0.01S 0.591 0.857 10 9NEETOOOD9 Is 6.393 24.6271 -29.2 7.6 6.7 0.039 0.1641 0.016 0.663 0.869 11 1 12 STATION MEANTP MEAN POC MEAN TC MEAN IC MEANDOC MEANTOC MEANCYSTER TOT. OYSTER NMEAN DRY AFOW TOT OYSTER AFDW MEAN LARVAE SPAT NUM, 13 CAT POINT 0.088 1.653 16.256 5.606 10.65 12.31-1 -848.4 4360641 303.1 155806 41.1 967.3 14 DRY BAR 1 0.016 1.782 15.183 5.35 9.833 11.616 230 396601 104.5 17974- 45.8 188.9 15 EAST HOLE 0.097 2.008 16.25 S.467 9.783 11.8 938.1 191377 34-1.6 69692 41.5 170A 16 NORTH SPUR 0.0591 L.97 14.356 512i 9.133 11 ,122 1 4.9 18400 1 54.9 a . 17 PARADISE 0.0881 1.938 15.044 5.481 9.663 11.494 48.4 11228 46.3 10730 65.4 2SAI Is PLATFORM 161.42 001 16.670 6.356 10.222 12.222 1823.6 328248 299.9 53978 28.3 1314. 31 1191 0 1 N36 15 79 SA6 .10.226 11.S74 221.6 42108 104.3 SCORPION 7 2 19807 49.3 40.5 12 0 IST. VINCENT 1 0.0471 2.3591 14.9831 5.189 9.794 11.166 319.4 6367 5.6 113 Is 107.81 1 21 1W4EETGOCOS1 040881 1.6531 16.2561 50605 10.55 12.311 219 21462 101.4 9935 47.6 70.61 EA 6 06' '704 CY d4 4' 4' ,41 'S4 Table 7: Summary data (mean) concerning the oyster populations and physical -chemical habitat analyses. Table 8: Correlation matrix of variables taken in the oyster analysis of the Apalachicola system. Correlation Matrix for Variables: XI ... X2 7 SAL ST... Sart of .... n( I+ x) ... Sart of .... n( I +x) ... In( I +x) ;'I +x) ... n( I +x) SAL STA.., I &.(V A Sqrt of N... -.047473 1 SA-L@ InO +x) o... .4840785 -.294005 1 Sqrt of M... -.395867 -.331259 -.0039541 1 In(I-x) o... .7505899 -.419228 .5121432 -.107206 1 InO +x) o... -.637017 -.016938 .110091 .397113 -.335788 1 InO +x) o... .400962 .2775017 -,338076 .0188892 .0573892 -.65005 1 InO +x) o... .4831361 -.224267 .5023724 -.265622 .182987 -.087727 -.091096 1 FJO InO +x) o... -.067042 -.383803 -.157768 -.146952 -.163847 .1410447 -.037658 .57847861 P04 InO -x) o... .4302783 -.371241 .7634251 -.101403 .4761731 .1005724 -.25604 .7790691 To w InO +x) o... .5062782 -.3368761-7302363 -.094895 4980402-.002932 - -.099464 .7870447 I'Vrj 1W +x) o... .5171795 -.29516 .6363405 -.223831 .3421081 -.049408 -.120182 .9579537 Tw InO +x) o... -.168263 -,509584 .0804546 .1575633 .4496344,1966462 -.247962 -.392235 -ro P InO +x) o... -.288719 -.430527 -.284335 .1551771 .290272-?.1007648 -.183844 -.6670651 T? InO+x) o... ..502502A.630782 -.314513,-.567988,.079795,4 -.557927 .636554 -.1122461 PO C. InO +x) o... 1-.5874341.09479871.012408()1.6403581 -.178778 .75025 Correlation Matrix for Variables: XI ... X27 SAL ST... Scart of ... W +x) ... Sart of n( 1 + x) n(I +x) ... ln(l+x) ... n(l+x) )n(i +x) o... -.366833 -.190283 .2000299.3641389 .2391648 .627894 -.471957 -.498009 In(I +x) o... -.616661 .1776857 -.04754 .6832689 -.298576 .7372751 -.182992 -.552636 06C InO +x) o... -.851752 .0120825 -.047618 .51 13434 -.464246 .821117 -.560506 -.474136 To C. InO +x) o... -.798205 .4563377 -.6567251.0837406 -,861111 .5419846 -.147134 -.2514171 InO +x) o- -.785644 .2740835 -.380178 .0437151 -.544185 .717299 -.556785 -.228061 InO +x) o... -.61834 -.074147 -.036824 -.087582 -.282873 .7645421 -.861963 -.0 19922 InO +x) o... -.564363 -.030318 .0496275 -.0401 -.136791 .7298797 -.826927 -. 10 8 6 9 6 InO +x) 0... .1965475 -.557643 .6177477 -.175593 .6191595 .226108 -.720763 .2273657AA4- InO +x) 0... -.8046 1j. .41618591-.457206 .2865056 -.810661 .534802 -.216913 -. 178272 LAAVkt ln(I-x) o... .227895 -.3095971.1514202 -.217923 .1186855 .1067495 -.30633 .3660204 & P-C@ InO +X) o... 1 .22696651.046796 -. 181987,-.456226,.3461891 -.431873 -.050401 Art. SO CORRELATION NATRIX OF TRANSFORNED OYSTER FINAL DATA Correlation Matrix for Variables: X1 ... X27 In( 1 +x) .... n( 1 + x) .... n( 1 + x) .... n( 1 + x) ... InO +x) .... n( I +x) .... n( I +x) .,.. W +x) ... InO + ,x) o... 1 3" W03 W 1 +x) o... .3169852 1 N* Ir)(1 +x) o... .3219193 .9872982 1 T40 N In(I +x) o... .4987553 .9225138.9297315 1 T&f Tvp 1W +x) o.,. -.048364 .159097 .1222552 -.163072 1 cpf TN InO +x) o... -.113867 -.325402 -.365982 -.551706, 8468642 1 qxt6, TP In0+x) o... -.158091 -.39368 -.302925 -.210022 .407326 -.190347 1 InO +x) o... -.3600671 -.159101, -.202057 -.4405181,[email protected],1-.41528911 J P04 TO 'r V- tj TP -r 6P -T for Correlation Matrix for Variables: X1 ... X27 InO +X) - InO +X) .... W +x) .... n( I + x) .... n( I +x) .... n( I +x) ... In( I +x) ... In( I +x) ... InO -x) o... -.31613 .0754437 .0027423 -.288273 .793082A.6510848 -.46597 .8302228 TC InO +x) o... -.347518 -.220881 -.251378 -.456932 .2800724.2318908 -.371259 .9844057 flrc InO +x) o... -.194955 -.157678 -.250801 -.395786 .3584691.3043506 -.64083 .8635731 T06 InO +x) o... .263235 -.452114 -.486386 -.373858 -.232992 -.0753291-.04822 .3416524 InO +x) o... .1312449 -.144076 -.23769 -.23438 .1429883 .148786 -.344189 .4901537 44 IJ a ,A In(I +x) o... .258735 .1120385 -.025074 -.00258 .2951867 .2527623 -.506416 .35 4528-19.1*10.. InO +x) o... .053851 .1949175 .0654394 -.014768 .4495438 .3138421 -.537382 .480188 InO +x) o... .0106796 .5695267 .4659568 .3715822 .5632622 .36789 -.453195 .0175241 InO +x) o... .050967 -.252337 -.29255 -.245665 -.22913 -.211191 -.308877 .430358: InO +x) o... .429812 .0151756 -.033092 .2100949 -.2672591-.0460241.1057375 -.364701 561" InO +x) o... -.0289321-.3522151-.4324861-.2230151-.4514921-.1883151-102981,4.Olg7725J:RH4 o.ftv,( TVPJ T-N 't-0 T- p IP c C, Tc CORRELATION MATRIX OF TRANSFORMED OYSTER FINAL DATA Correlation Matrix for variables: X1 ... X27 n( 1 +x) ... 1W +x) .... W +x) .... n( I +x) n( 1 +x) n( I +x) w I +x) W +x) In(I +x) o... I T, In(I +x) o... .719225 1 Do( In(I +x) o... .7159703 .8505597 1 'tu c InO +x) o... .011597E .42252031.5359011 1 Alt^- tJ V-v InO +x) o- .4071521 .4827193.7134918 816198 1 InO +x) o.., .492014-e .2917027 .6439238 .529418 .8556566 1 r ov 4w 4-,Af D w InO +x) o... .655965,e..3917317 .6953003 .4125966.8482675 .9473025 1 k In(I +x) o... .5040283 -.137378 .095453 -.488183 .0353075.4804718 .5442161 1 A.Lm,) 54 2A In(I +x) o... .0701523.5146478 .6467873 .8754397 .8163225 .4827383 .468145- -,4251061 A-u v i Atv#- IPA 4 InO +x) 0... -.251025 -.37608 -.301201 -.101388 -.184395 .1708261 -.083398 of--; In(I +x) o... -.118535 .06091241.20831521.318313 .16417 .3265447 .1122123 C, To r_ ALVA j., A- A,+ Correlation Matrix for Variables: X1 ... X27 ln(l+x) of M... n(l+x) ... Wi+x) n(l+x) 1 In(I +x) of S... -.39367811 1 10*4 op-tri InO +x) of S... .1083031.634592511 1AAA uts" A B c D E 1 DEPENDENT VARIABLE INDEPENDENT R VALUE P VALUE SIGN 2 3 MEAN OYSTER NUMBERS STAN. DEV. SALINITY 0.8 0.01 NEGATIVE 4 TEMPERATURE 0.66 0.05 NEGATIVE 5 TURBIDITY 0.86 0.003 NEGATIVE 6 7 TOTAL OYSTER NUMBERS STAN. DEV. SALINITY 0.79 0.01 NEGATIVE 8 CHLOROPHYLLA 0.77 0.01 POSITIVE 9 Toc 0.71 0.03 POSITIVE 10 11 MEAN OYSTER AFDW CHLOROPHYLLA 0.77 0.01 POSITIVE 12 NH3 0.86 0.003 NEGATIVE 13 Toc 0.64 0.05 POSITIVE 141 151 TOTAL OYSTER AFDW CHLOROPHYLLA 0.73 0.02 POSITIVE 161 NH3 0.8 0.01 NEGATIVE 17 Toc 0.7 0.04 POSITIVE 18 19 OYSTER MEAN SIZE NH3 0.66 0.05 NEGATIVE 20 21 1 MEAN NUMBER OF LARVAE STAN. DEV. SALINITY 0.8 0.009 NEGATIVE 22 TURBIDITY 0.81 0.008 NEGATIVE 23 Toc 0.65 0.05 POSITIVE 24 25 SPAT # (OPEN) 1261 271 SPAT # (CLOSED) Pagel FIGURES Figure 1: Location of the oyster bar stations (January-December, 1990). Figure 2: Apalachicola and Georgia (Columbus) rainfall patterns (20 year at monthly intervals). Figure 3: Apalachicola and Georgia (Columbus) rainfall patterns (10 months at monthly intervals). Figure 4: Apalachicola River flow at Blountstown (mean flow, maximum flow, minimum flow: monthly means) from November, 1970 through October, 1990. Figure 5: Apalachicola River flow at Blountstown (mean flow, maximum flow, minimum flow: monthly means) from January, 1990 through October, 1990. Figure 6: Temperature data (OC) at two stations in the Apalachicola estuary from February, 1990 through November, 1990. Figure 7: Salinity data at stations in the Apalachicola estuary from January, 1990 through November, 1990. Figure 7a: Habitat maps of sediment distribution and oyster bar distribution. Figure 8: Chemistry data at stations in the Apalachicola estuary from January, 1990 through November, 1990. Figure 9: Regression of log oyster ash free dry weight vs log oyster length data based on samples taken from the Apalachicola estuary over the period of study. Figure 10: Oyster spatfall data taken in the Apalachicola system from February-June, 1990. Mean numbers per sample are given for the various developmental stages. Figure 11: Total numbers of oysters taken at the various stations in the Apalachicola estuary from February, 1990 through September, 1990. Figure 12: Numbers of oysters per sample taken at the various stations in the Apalachicola estuary from February, 1990 through November, 1990. Figure 13: Ash-fre'e dry weight biomass of oysters per sample taken at the various stations in the Apalachicola estuary from February, 1990 through November, 1990. Figure 14: Mean size of oysters taken at the various stations in the Apalachicola estuary from February, 1990 through November, 990. Figure 15: Oyster spat data by replicate taken bimonthly in the Apalachicola system from June-September, 1990. Figure 16: Mean number of oyster spat taken at stations in the Apalachicola estuary in open and closed baskets over the study period. (J une-September, 1990). Figure 17: Habitat maps of variables that have statistical significance (Table 9) with respect to important oyster bar features and characteristics. 5a R3 G3 X x Cat Point x Paradise 1 2 sweet X Platfo x Scorpion x North Spur Goodson x Eas x Dry Bar-Little Gulley ic A7 la x St. Vincent Figure 1: Location of the oyster bar stations (January-December, 1990). Slat LocationDescr Latitude Longitude SC Scorpion Bar, St. Vincent Sound, S of ? 294174 851102 PA Paradise 294171 850732 DB3 Dry Bar - Experimental Site #3 294097 850347 DB2 Dry Bar - Experimental Site #2 294083 850347 DB1 Dry Bar - Experimental Site #1 294066 850351 SV St. Vincent 293874 850309 NS North Spur 294121 850355 S3 Sweet Goodson 294313 845374 CP Catpoint Bar 294276 845288 PL Platform 294201 $44922 84 East Hole 294089 845224 -UtFt- 7V51achicola Bay (White Point) 294150 850075 002 Apalachicola Bay (river mouth) 294266 845868 004 East Bay (East Bay channel, west) 294387 845654 OIA Apalachicola Bay (near West Pass) 293854 850546 0113 Apalachicola Bay (Sikes Cut) 293760 845833 OIC Apalachicola Bay (east) 294083 845403 05A East Bay (east, marsh) 294695 845379 OAI Apalachicola Boat Basin OA7 Apalachicola River-Bay (intracoastal) 293999 845793 OA9 St. George Boat Basin 293995 845191 OG1 East Point breakwater, Green Point West OG3 C.C. Land's @ gas pump, Green Point East OR3 Scipio North Boat Dock 60 APA rain (cm) CGA rain (cm) 50- 40- 30- 20-- IT 10 !JI it 0 =Z@Hux LOWN 000) 0 M M CO OD OD 00 00 00 a) YEAR Figure 2: Apalachicola and Georgia (Columbus) rainfall patterns (20 year at monthly intervals). cm cn JANUARY FEBRUARY MARCH APRIL 0 ::r 0 MAY m<, 0 z de r+0 JUNE JULY 0 AUGUST co SEPTEMBER OCTOBER 0 6000 APALACHICOLA RIVER FLOW e APA mean flow (cms) MAX flow (cms) MIN flow (cms) 5000 4000 3000 2000- 1000 0 Y A R E I Figure 4: Apalachicola River flow at Blountstown (mean flow, maximum flow, minimum flow: monthly means) from November, 1970 through October, 1990. CUBIC M/SEC (a C3 JANUARY FEBRUARY MARCH > APRIL 100 MAY 0 z 0 JUNE 0 rjQ JULY o El AUGUST o 0 cr o:C- SEPTEMBER K \0 0 140 :30 OCTOBER 910 0 :3 0 ou cl Cl m C) al 0 m 0 CA .... .... .... 2/28/90-5 2/28/90-S rQ 3/20/90-S 3/21/90-S 3/22/90-S 4/13/90-S 4/13/90-S 4/14/90-S 4/14/90-S- 5/28/90-S 5/29/9o-S 5/30/90-S 5/30/90-S 6/23/90-S 6/22/90-S 6/27/90-S 6/27/90-S 7/14/90-S 7/13/90-S 7/25/90-s cn 8/8/90-S 8/8/90-S ------- ------- 8/23/90-S 0 8/23/90-S 9/5/90-S CD 9/5/90-S- < 11/28/90-S 9/25/90-S 11/28/90-S z 1/22/90-M 1/22/90- > 7/25/90-M CD 0 -4 CD 2/28/90- 9/25/90-M M 3/20/90- m 2/28/90- 3/22/90- 3/21/90- 4/13/90- 4/13190-B 4/14/90- 5/29/90- 4/14/90-B 5/30/90- 5/28/90-B 6/23/90- 5/30/90-B 6/27/90- 6/22/90-B 7/14/90- 6/27/90- 7/25/90- ---- 7/13/90-B 8/8/90-B 8/2190-B 8/8/90-B 915190-B 8/23190-B 0 9/25/90-B 9/5/90-B 9: 11/28/90-B 11/28/90-B OQ 0 W 0 0 < W co Gn 0 El O..A. (71 CD m CD > m > 0 m 0 B B L B B B B B B B B B PPT 1/22/90-B 1/29/90-s 1/22/90-S 11/28/90-S 11128190-B 2/28/90-s 11/28/90-S 3/22/90-s- 3/20/90-B 4/13/90-S 3/20/90-S 4/14/90-S- 3/22/90-B 5/29/90-S 3/22/90-S- 5/30/90-S 4/13/90-B ro/22190-S En 4/13/90-S 6/27/90-S- -B 4/14/90 7/14/90-S - 4/14/90-S 7/25/90-S - -B 8/23/90-S- 5/29/90 8/8/90- 5/29/90-S- 9/25190-S 5/30/90-B 5/3o/go-S 9/5/90-S Q. > > 1/29/90- 6/23/90-B 6/23/90-S- 11/28/90- m M 2/28/90-B 0 6/27/90-B 6/27/90-S 3/21/90-B 3/22/90-B 7/14/90-B 4/13/90-B 7/14/90-S 4/14/90-B 7/25/89- 5/29/go-B 7/25/90.B 5/30igo- 0 8/23/90,B .. ....... =--:INN 6/22/9o-B < 0 8/23/90- 6/27/90-B CD 0 8/8/90-B 7/14/90-13 s w 818190-S 7/25/90-B cr 9/25190-B 8/23/9o-B 0 9/25/90-S 8/8/90-B 9/5/90-B 9/25/go-B 9/5/90-s- 9/5/90-8- CD > 0 CD 0 > z CD ke 0 0 Lrl 0 Ul a 2/28/91-1 4/13/90- 3/20/90-s s 3/22/90-S 4/13/90-S- 4/14/90-S 5/29/90-S 5/29/90-S- 5/30/90-S- 6/22/90-S 6/23/90-S- 6/27/90-S- 7/14/90-S- 7/14/90-S 7/25/90-S- 8/8/90-S- =M 8/23/90- 8/8/90-S 9/5/90-S 9/25/90-S > 11/28/90- z 9/25/90-S 1/22/90- =:Am > 2t28tgO- 0 1 M 3/20/90-B m m 4/13/90-B 3/22/90-B z 4/13/90-B 5/29/90-B 4/14/90-B 5/30/90- 6/22/90-B 6/23/90-B 6/27/90-B 7114/90-B 7/14/90-B 7/25/90 8/"/90B 8/23/90:B 8/8/90-B 9/25/90-B 9/25/90-B 11/28/90-B 79=- mm PPT 0 tn (n c ... .... .... 2/28/90-S 1/22/90-M 3/21/90-S 4/13/90-S 2/28/90-M 4/14/90-S 5/28/90-S 3/21/90-m 5/30/90-S 6/22/90-S 4/13/90-M 6/27/90-S 7/13/90-S 4/14/90-M 8/8/90-S- 8/23/90-S- 5/28/90-M 9/5/90-S- 11/28/90-S 5/30/90-M 1/22/90-M 6/22/90-M 7/25/90-M > 9/25/90-M 6/27/90-M m 2/28/90-B 3/21/90-B Cl) 7/13/90-M 4/13/90-B 4/14/90-B 7/25/90-M 5/28/90-B 8/8/90-M 5/3Ot9O- 6/22/90- 8/23/90-M 6/27/90- 7/13/90-B 9/5/90-M 8/8)90-B ......... 8/23/go-B ......... 9/25/90-M 9/5MO-B 11/28/90-B 11/28/90-M 0 CA 0 0 Ul 0 0 Ul 1/22/90-S 2/28/90-S 2/28/90-S- 3/20190-S- /19/90-s- 3/22/90-S 3/22/90-S 4/14/90-S 4/12/90:9 4/14/90 5/25/90-S 5/25/90-S 5/30/90-S 5/30/90-S- 6/23/90-S 6'23/90 6/27/90-S 6/27/90:1 7/13/90-S- M 2/90- 7/25/90-S- 7125/90- 86/90-1 8/6/90-S 8/22/90-S 8/22/90-S 9/5/90-s- 9/26/90-S 9/26/90-S- 11/28/90-S 11/2 8/90-S 1/22/90-M 1/22/90-B 9/5/90-M 2/28/go-13 2/28/90-B 3/19/90- 3/22/90- 3/20/90-B 4/12/90-B 3/22/90-8- -::::M 4/14/9o- m 4/14/90-B 5/25/90- 5/25/90-B sf3o/90- brioluo-13 6/23/90- 6/23/90-B 6/27/90-B 6/27/90-B 7/12/90 7/13/90- 7/25/90- 7/25/90-B 8/6/90- 8/22/90- 8/6/90-B 915/90 8122/90-B 9/26/90 9/26/90-B 11/28/90 11/28/90-B B -B PPT N 0 cn 0 0 Cl M 0 0 c 1/22/90-S 1/22/90-5 2/28/90-S 2/28/90-S 3/19/90-S 3/19/90-S 3/22/90-S J1;e;e19u-5 4/12/90-S- 4/14/90-S 4/14/90-S 5/25/90-S 5/25/90-S- 5/30/90-S 5/30/90-S- 6/13/90-S 6/23/90-S I 6127190-S 6/27/90-S- 7/12/90-S 7/12/90-S 7/25/90 7/25/90-S 8/6/90:9 8/6/90-S-- 8/22/90-s- 8/22190-S r- 9/5/90- 9/5/90-S > 9/26190- 1/22/90-B > 11/28/90- 2/28/90-B -q 1/22190- M 2/28/90-B 3/19/90-B 0 3/19/90- 3/22/90-B 3/22/90- 4/12/90- 4/14/90- 4/14/90- 5/25/90-B 5/25190- 5/30/90- 5/30/90-B 6/13/90- 6/23/90- 6/27/90-B 6/27/90-B 7/12/90-B 7/12/90- 7/25/90-B 7/25/90- 8/6/90-B 8/6/90- 8/22/90-B 8/22190-B 9/5/90-B 9/26/90mB 9/26/90-B 11/28/86-- 11/28/90-B B B B B Figure 7a: Habitat maps of sediment distribution and o bar yster distribution. memator Projectiort Scale 1:M000 at "t. 29*34' INTRACOASTAL WATERWAY he prudent maroner Use charts 11393. 11402. and 11404. ori any single aid 10 na North American 1927 Datum afl,, or, tloat,ng aids The proW depth is 12 leet IrOm Carrabefle. G@a,C L-ghl List anc L) SOUNDINGS IN FEET Florida to New Orleans. Louisiana cela'is. The coni oling depths are published periodically Guard Local Notice to mariners. (to W AT GULF COAST LOW WATEH DATUM (.een.,(eT) in th" U S For Symbol$ and Abbrevurborks am Chair NO. I ..... ................................. COLREGS. International PAgulabont; lor PrevenbrV Collawns at Sea. 1972 21 DerharrAbOn Wft at* shown thus: A, P..'a 149 to 10 n5al Amom STS ftw __,- . 2 6 5 Ither ibis. miles SU I N, D' - ----- E IV 545 5 MHz r C 0',r 4 5 3 3 78 --------- 10 2 .:On 5 20 21L 5 yo@ 5 2410 3 2 4 .13 0 11 7 2 1 O's is it@ 17. 11 23 20 17 15 it 2v 8 9 '6 AA NOTE B LAN 7 27 23 CAUTION 21 The soundoVs and buoys 3. 4. 5 and 6 on V* 7 26 17 8 Waist Pan bar Channel are not chanted because the 9 channel is chanIleable and subject! to shoolaV. % 31 9 7 2. 14 599 25 3, 30 13 6 .... ..F 9 8 35 32 27 21 t7 115 10 4"1 413 9 30 32 51 23 16 14 9 36 5 26 20 31 40 35 79 - 15 '9 221 17 -3 22 34 25.. 15 17 00W 217 p. PA 13Qpa a 1 6In 516 3' 32 2, M9, 2a 3 36 It, 35 0 15; 15 15 t5 6 30 37 36 9 34 32 29 0 M lip .0 1,S 34 "_ 1 5 913 19 36 27 27 2, ?a 26 14 'a 8 13 16 14 14 15 13 83. 32 13 14 15 11 29 25 25 26 24: 3 2' 30 2S - 21 16 20 19 le 197 7'6 14 30 2a 27 29 2' 27 .312 30 26 29 '.2'5@5 22 23 20 27 19 1. f 714 29 31 28 26 27 26 31 28 26 26 20 19 17 31 29 29 29 29 26 24 20 19 30 3 27 23 23 Capt. St G :4, 29 30 30 25 20 33 31 3, 20 3 27 _26- ____r4_ 29 .13 19 30 26- AREA to rd OYSTER BARS SEDIMENTS W _j ME DENSE IV SAND N MODERATE 0SHELL SPARSE FRAGMENTS 2 MARTIFICIAL BARS A, SILTY-SAND BOUNDARIES UNCERTAIN 0LOOSE LLEASED BARS SILTS AND z NPREVIOUSLY UNREPORTED CLAYS 0 05, 10, _=Fil NOTE A TIDAL 111FORMATION eg.lat-ohb are P. (GICILWO) Maw maw Low Ewwfw Chapter 2. U S Coast Pilot 5 Nowast, TwLwm 4 Notice to f;Aailiners whi&. -clo evvv,,d regulations inlo-altor, 4 0.0 -2.0 6 6 31, it the regulations may be 1.3 0.9 0.0 -10 15 rvi' 6 4 P " 6r Office of the District Eng-e- N1111 "t- Engineers in Mobile AlAbeima NM T 4 5r 11 k'*@' 6 6 Marsh, Ani horage feRUlal-tin@ -a., U@ :om Low WSW Oftan 4 at the Office of lh, fifiliale Gillett (CIOLWO). is corn- C. am Low 4 5 5 4)@ Marsh 111h ft larm MW Low WOW (MLW) - 1111111 -*"" . G.a,d D-st,,(t -n M,an-- Fl- 4-f 4 4 Guard District in Ne,ov Oilea- to to taffift in to ww%*Qk N low - for ob." awon of oft 0 W0 I Vv, , I % < Refe, to s.rt:ur, --b-, 6 3 Jes.enai,on 2 CAUTION 3 Aw- allows by bldws bus 3 5 9 pulloulally at ft edges. &* 3 2 ire It 2 4 March CAUTION 3 in Oft to niall- of 1 4 3 % % -on ft Chert. 6 Y_ -' Marsh 3 3 v- Aat;h aw DS TO NAVIGATION 2 A. cow (kwd Ligm uss for .6 Marsh., 19 soft. coilicernkslif aft lo 19 3 red in 40 UNITED STATES GULF COAST oTwv fhe mw be -y JEPA). FLORIDA 3A offices. [1COLA BAY TO CAPE SAN BLAS Tilt o bitarcistor Projection Sc&le LK000 sit Let. 29'34' INTRACOASTAL WATERWAY 71e Druo-e-1 -a, A North Arnierican 1927 Disturn Lose charts 11393. 11402. and 11404. o, any s-gle a.c ill:, or. 1:011"Ic i.tipt SOUNDINGS IN FEET The project depth ts 12 feet from Carrabelle, 5-1 Florida to New Ofiews. Louisiana The controfting depths aft pubk Periodically (titivinevill AT GULF COAST LOW WATER DATUM (fieve note T) in the V.S@ Coast Guard Local Notice to Manners. f'.. th. C'st" For Syrriocils and Abbreviations am Chan No. I COLREW.InwneboneiRequaWmiorPomto CallworwileSes.1972 ..... ....... ............. ............. f Dernaroathn Met we slow fte: .. . ....... 3 Iola 0500000 )CASTS so Af 1 6 5 0 At' on listed 6 3 8 6 6 5 6 4 variable. Tbirteartarnile -------- 3 40 rivides #s 4 5 5 U- Ar, D6 0F*V 6 '.55 MMzr 30 4 6 -3 3 S 3 3 ------------ 16 7 0 2 2 2 Adi pool -14 ----- --- "10 3 2 '02 4 2 . ... ...... AREA 2 tattoo OYSTER BARS SEDIMENTS 3= DENSE V SAND N W,,- MODERATE 0 SHELL .a : SPARSE FRAGMENTS M ARTIFICIAL BARS A SILTY-SAND f- BOUNDARIES UNCERTAIN 0 LOOSE LEASED BARS SILTS AND z N PREVIOUSLY UNREPORTED CLAYS 2 2Q ' 11 0 6 2 APALACHICOLA 2 22 NG 2 2 AIRPORT R 2.-%. 17* t. See j S C.@a,: J,S, Coas@ P@,,)! !o@ go., 5 a -00 CL 3. " S XANK a 5 @fiil CL 16 11 I. TANK "-V o", .APAJIA co -@z -:', z'. b .-b- It.' CL 24 mica* To Ok FIG 17 6 5 2 6 4 ------------ ------ 81 100 rr At Y 2 .- iI. . 1 1, % wi 6 6 L 4 3 3 It s;; 3 3 3 G_. 5 L 'L , . 4-01 it 4 '8 '. 7 or' 4 7 11.1 CIP, 5 6 6 4 4 .41 .. it . 2 6:: -2' 4 26 Iit 6 C7 7 7 9 7 10 5 67 77 J.pperAnchoraqe 9 ,: 10 9 %Ae 6 El so" 7 9 6 C C65 6 7 6 4w q 9 10 9 f I L A'i7H @ IC 0 "'L A 10 e6 10 10 a3 9 8 9 10 10 97 El 9 1 22 BA Y 10 10 CPt 9 3 2 2, 9 10 0 10 10 s 16 26 '25 2' to 'C 9 11 10 10 -8 31 32 11 26 to 10 E 1.1 G 6.- 16f,F 23 24 25 11 25 21 ilo 9 21 19 0 12 27 31 21 22 2v 9 'o Q@ Ff G 20f, q 23 17 G '3' 15 22 29 32 ,A 27 to 99 1 .'%" . 27 2- 9 it9 3 13 20 26 26 29 33 14 20 3 26 5 12 9 3 26 27 36 3@@ v_ 3 5 5A 31 30 25 26 27 32 27 9 13 20 25621 23 31 3, 33 27 29 49 *lW 29 34 11 S2 22 32 32 15 22 26 26 29 30 38 30 25 36 28 34 20 26 t19 37 3 is 26 591 4v 18 33 35 3 1, 9 15 21 at > 7 '9 26 17 19 2.231 27 33 3, '6 17 - 16 22 28 32 27 42 4 6 44 21 2C sso 23 25 35 33 36 71 126 26 29 26 32 32 31 ".1 37 14 .9 2A 41 A.R E A 3 OYSTER BARS SEDIMENTS _j ON DENSE 7 SAND W,,,' MODERATE El SHELL _j FRAGMENTS C SPARSE M ARTIFICIAL BARS A, SILTY-SAND :I'- BOUNDARIES UNCERTAIN 0 LOOSE L LEASED BARS SILTS AND N PREVIOUSLY UNREPORTED CLAYS 55' FFpq I I I I I I I RAW REFLECTORS -t, I-tll,hed Reder OftCSM hrA boom plemod on many ft"nQ gift ID n@%. IndrOduall radar A M ' I an fleft G105 hast b�W of 60M 11tis Chem POLLLFTION REPORTS 2 0, Repos @A wft ol oll arid hamardom wbow=s to sto 1, 01 It 1, - Rospono*ConwvimSO0424-8=(wMw).or v 10 1110 rAM60 U.S. Coast Guard MeRy If Islop'smis, Cam. t., TIM014callon in Wnpossiblo (33 CFA 163). le Wooded w..'. -j 81 h C. MIT) 1 106 MON CLI'l l"r 1. VINT CL Is IT 2 0 ma'st, wood" 4L. Marsh FIXED sascifit u NOJI CL 40 IT 1 3 VINT CL 13 IT 32 I Is 4 1 v 19 2 - ----- I af 33 3 6 Marsh marsh Marsh 4 4 2 3 3 CII -------- 2 .04 04 V@lrr L marsh t. -3 0 2 2 2 2 0 6 2 M-k. III 13. 1 9 > APALACHICOLA 2 2 24!,, 'A, 04 22 Fantpoint AIRPONT FI R [email protected] IQ 6,'d e ------ !c JO"O cc_. -It 00-1 IIISS-Gi % it's. a A, TANX c... .-APALAC CO E ok I, G 170 3M 'T&r 6 4 01013, G , p 6 S 2 0''. . a @.: 1 6 ------------- a " v , , 4 ..... ........ 12- P_ ma,.h % JJ L A 31 3 6 F P, f- s:; it NO I. A. c... 5 - ,L .I,(.1 '1 3 7 I , ,"00 4 4 F 3,p.- we 4 _. ::,;", 5 it 6 12.II%5 7 6 P, 6 -2- JOP 0 it W4 9 it :j i to 9 7 9 51, 'A 9 6, 1.@pper A I I 6 7 7 7 7 rL.Chorage ? .0 9 J, f.. c, a tr Al 6 -ON CL "S .59- .0, 6 7 9 9 9 C 65 AREA 4 OYSTER BARS SEDIMENTS Lu BE DENSE V SAND N W4 MODERATE E3 SHELL :*.%.,... SPARSE FRAGMENTS IIIIIIIII ARTIFICIAL BARS A SILTY-SAND BOUNDARIES UNCERTAIN 0 LOOSE - It C LEASED BARS z SILTS AND N PREVIOUSLY UNREPORTED CLAYS 2k' to 13- to3 109ms79.6a14 7, 13 12 14 It 109 to 15 ssh 9 914 10 o. Q 2 5- '7 79"ill"' 16"90592 12. _:.7PA a'96 a3 91097913 15 11 2' 713 107 20 19 79 sIt J4@,-2,-Io16,769931 10 14 91, 1,2 " P" f,9 9@2' 10912 129 4/ 3 57it9Is 9to 314 -.?,..3 I!Ass-25 J7 20 11 It 102... "@.l C... 0. it 12W.- . .- 'I"2 0- 21 22 9011, "'.3 9.... ...... - 1999r,.:::,3:20 25 It 8 a 118 24 S 9.-..::;@[email protected] o27 19 23 &'k sh to "199it54114 23 ld@12:4. A10 f 20C.71 1-1... 26 26 "4,.o@r_ 11 C"Jr to 10 20 1k:lb- 148413 29 24 It clis7 27 912 10 03 'JI to 9 C-,,-113,21 23 32 3- z 13 29 it 16 os'% so, 31 16 sh .33 AM 29 29 27 11'Ell, C, 50 Il 316 . 1.- .i..'.I- ." 22 19 23 25W 34 4 pt 17 19 '1@"23 32 31 - -33 31 20 15 16-28 11 15-15- 21 20.-17 27-27- 39 A'l S 23 '5 .1 20 24 3 22 12 19 33.- 30 33 7 5 21 Id Is 23 O's 49 .7 ISq24 20 Z3 43 2 t22 188313 26 28d24-14 21 41 22 26 24 28 32 27 22 22 25 19 23 26 30 34 37 4' aw 29- 40 2 26f_ 6, S21S 2 27 27 32 'w 19 30 36 25 2' 25 27 31 26.-17 1. 23 24 23 26 30 35. 32 31 29 @3 IS 34 45 48 &6 31 32 32 25 29 33 21 27 31 46 25 27 34 27 29 32 31 37 31 33 24 33 387 1 33 30 ?7, S29 3 750 5,0- 9, 21 19 32 35 37 31 31 33 26 32 s 32 26 27 29 36 -3 34 Sh 43 49 5 24 Av 31 33 33 22 2e 49 5, 29 27 3e 1. 37 3341 6 29 -28 34 34-44-36 41 36 30 35 36-If Wk 31 _w 32 36 41 46 5, 5' 31.1 38 4, 34 37 40137 5K 4_ 36 3436 _42 36 0- 9, 547 36v..10019 b'A sh 5 17 29 32 43 35 alks42114_10 44 51 34 3@ :,.V, i7 38..38 36AJ0 49 54 30 32 42 .36 37 36-.\40 3j 48 45 49 vo Av 36 33 34 51);?;a so 1@2 48 3514(t,' 30 41 .1 11-. @10 52 , \' 43 3, v 53 Y,, \IA PG N ffj(@'6S 56, 63 37 39 17 / , 36 47 49 46 62C5, @.2 36 39 38 67 5, 49 AREA 5Coll OYSTER BARS SEDIMENTS MW DENSEVSAND N wl@l MODERATE El SHELL _j -9rSPARSE FRAGMENTS 2ARTIFICIAL BARS A, SILTY-SAND BOUNDARIES UNCERTAIN0LOOSE LEASED BARS SILTS AND zNPREVIOUSLY UNREPORTED CLAYS 0 8404& rim r,,1l 12 cakv Ft 1 9 2 2 2 3 A 3S Woodelf 2 10 3 3, 2 R.Y.1 81.1f 60 ma'sh 10 013. 2 2 )71ii7 3 s 13 04,7 6 91111. 4 10 3 9 511 13 2 mix-h pf 2 7 179 913 130 16 .8 of I-,. 1 6 1 'k 9 0 4 10 13 16s20 22 5 Orean 11 10 14 Ib 16 to 4 0 11 11 10 to 10 676kK I?ft -6. 149 W d *Two 2 1 9 11 14 13 14 tz 44 139 9 2 10 lz 13 103 9 7'3 60 7 14 7 13 13 '2 14 It ms 11 10 9 9 17 15 z14 to 9 9 122PA 9 1595 4j@ . -3- 0 lz 9 10 'q 7 9 7 13 15 11 9 9 120 10 9 s 6 7 149 3 6 7 9 1 10 s '12 2 7 9 C 9 10 42 12 114", 15 91.219 /1 13 4 P., 9 6 10 1 215 J7 s 11 10 9 22 20 -7 0 cl. I "'N 20 21 9 104 3 3 9 6 20 25 9 3 to 24 S LL ............ 19 C, 27 14 2 0 01 @-;23 b" sh 9 4 14 7 13 11, 23 'o 2t, 26 10 10, 20 13 28 24 P, 2 c -is 7 26 27 97 2 to 13 j I 21 23 10 23 32 10 13 29 613 @_ 6,- 31 s .... .. ...... ..... -F,;[ 0 moc;( '\ .. .1 :.. A, gz@:@ @ 105 sh %11 is it b'k sh 29 33 29 31 . . . .............. 9 53 .0. c ll, I ,s27 '0 1, 16 16 23 30. 34 22 19 25 5 6 16 *7 19 23 33 31 10 -10 15 16 32 3j_ AREA 6 OYSTER BARS SEDIMENTS w ME DENSE VSAND N W,,,' MODERATE 0SHELL SPARSE FRAGMENTS ARTIF!CCIAL BARS A, SILTY-SAND BOUNDARIES UNCERTAIN 0LOOSE L LEASED BARS SILTS AND z N PREVIOUSLY UNREPORTED CLAYS 0 TAN. A TANK A, . 44#.. Tim SIGN. 4 UPC 0 0 3 c -0 Go F, 41 9 v it Q to J4 It 15 c Ic 13 1? I 12 01 9 3 79 g 13 1 IF I - I , I : . i @ 18 22! 9 7 713 2 IF, s 19 19 111 - . ) 7 If A,' 9 s7 :10. 17 17 PJ7 19 Is 14 to , Is- - 20 22 -r 10 3 24 1399 9 3- 2C tl 22 15 2;, 1* 23 :H 14 2r, 19 jr 2 S IA -28 21 3, 33 20 19 15 21 27 33 33 2% 2 _e 14 J7 AREA .7 co OYSTER BARS SEDIMENTS w I= DENSE V SAND N MODERATE 0 SHELL j r, SPARSE FRAGMENTS IIIIIIIII ARTIFICIAL BARS 1 SILTY-SAND n BOUNDARIES UNCERTAIN 0 LOOSE .9 L LEASED BARS SILTS AND z N PREVIOUSLY UNREPORTED CLAYS PENINSULA POIN- C"AN The chahhe. na%a'ep0ne0co,t,oa.,g a anil is MSfke(I b '0-ateif ma,14 neo u@,t S.a@o Ca.ton-cima4i s,,D,,ct to 0 f .0 A, 4 A It A, 41 14 IC v A .4 16 F 2 1 e to 121 16 1 17 t6 2 3 14 I o, 17 24 1 13 15 2' to '3 to I r t9 13 1, It 2 3 16 3 13 1 E, ;e 17@, 1, ,09 2@ 12 t3 16 it; 6 19 c 2, 17 06 it t6 '4 .9 7. 1 2- 21 46 1-1 18 17 21 13 13 5 17 6 3 @ .4 . -1 .... .1 1 2' 21 19 24 19 C, 13 to .5 15 13 17 15 It. 27 j7 15 14 is 21 4 '6 14 119 17 13 to it 22 11 18 21 0 19 193 23 23 17 .%. 2' 2- to 17 3 14 21 21 24 16 17 1936 3r, 21 19 C, .1 24 to tT_22_2-2--t9 To t9 2 21- 6 22 19 3C to. ib 1, 13- 23. 2c 12 ij 7 4big .1a14 3(7 (4 06-1 11 21 20 3r b10 239 67 13 0it 4 1 2 19 78 3, 3? 9 14 317 2? 16 11 27 31 3 3' 17511 16 16 17 6 2' 2, 24 10 19 9 .9 28 2' 2' 2e .. 20 0 19 W 21 19 22 25 .0.31 34 31 2@ 45 20 19 21 3F. R- 13 19 to 22 25 3.3 31 i9 24 15 2@1 33 31 2- 4. 20 21 21, 33 34 39 36 71 .11 34 33 30 27 27 2- C. 23 23 27 30 3c 3F 37 36 39 :., @.. 27 27, 3 c 26 3 137 34 39 34 3 30 31 20 3, 36 36 31 21 33 30 36 32 31 33 33 31; 4-, .... .. AREA 8 OYSTER BARS SEDIMENTS BE DENSE V SAND N W,,l MODERATE (3 SHELL TS SPARSE FRAGMEN lk SILTY-SAND 2 ARTIFICIAL BARS OOSE BOUNDARIES UNCERTAIN 0 L SILTS AND LEASED BARS z N PREVIOUSLY UNREPORTED CLAYS @j IN,. -7- L@@ , A % 9 4 Will-.... P. 2 W-d-1 12 3 9 Th I-land t 10 14 SurC 12 MI;0 5 1TA'@' 2 1Q3 26 1--- 1 . @&-"`*@ PC lot 2 1; 4 9 99 15 1i It" ,74 2r 2 113 11 3 3!313 73131 NOTE C 12 12 4 65412 --l-rd "P.'I-'" ' 15 13 5Q7 nce 6 12 -Ih -d -- , -1- 2 h-11 lh-,.@ 0. hn(lloni, "Q08il I .0. C, 4 Ih, S.,- l,ripp, R.- JoXouT OWER 14W ;.j t2 A N D IS PENINSULA POINT CHANNEL The channel has a reported coniroffingdepthol 6 feel 1974 and is marked uy privately ma,nta,hea 0aybeaccris I thr, 26 wil- P-h Caulion-Channef subtecl to pe(100,c Shriamg 3 7 '4 7-1- 7 60, 3 2 e u 4k 2.17 @.g 6 7 2 @tI 2 0 3 1 3 It 15 t 17 6 2 5 2 ti T"- 9 17 J4 A,43 7 14 16 '3 13 10 Ic. 7 5._2 4 2 114 121 16 7 14 12 65 2 3 ',,1 .'3 3 10 14 16 .1 17 17 12 It to It. ""lf 27 119 to 17, 15 8 13 9 24 17 ji 19 21 24 14 It 2 14 5 13 15 21 15 21 < 18 7to 5 1 10 24 is 10 @4 15 3 13 19 21 24 13 14 11 3 13 14 21 13 16 21 11 10 14 ll 14 .4 17 21 1 m 103 19 -6M 9 7 11 12 15 .12 15 10 14 19 IC 2. 17 13 17 06 19, 19 'q 2' 45 21 25 1; 21 16 13 7-43 13 131ig 17 21 -... -i 25 14 .1 19 21 36 24 27 21 16 12i 5 14 to 19 19 0 17 16 P 15 27 14 '9 19 13 15 14 19 21 37 7 519 25 7 14 17 17 14 27- 1 22 15 -9 13'q 27 19 44 19 IQ 3x AREA 9 in OYSTER BARS SEDIMENTS UJI RM DENSE V SAND N Wo MODERATE E3 SHELL _j SPARSE FRAGMENTS A SILTY-SAND ARTIFICIAL BARS BOUNDARIES UNCERTAIN 0 LOOSE LEASED BARS SILTS AND z NPREVIOUSLY UNREPORTED CLAYS 0 -A MGP/L 0 a a 0 0 CD 6 6 b b a " 4h- M W 1/28/90- 1/2 2/26/90-: ............... 2/2://:00:: 3/21/90-S 3/21/90-S ...... 4/13/90-S 4/13/90S ........ 00 0 5/29/90-S 5/29/90:s 6/26/90-S 6/26/90-S ... .... ... ......... 7/24/90-S 7/24/90-S CD -M PLl 8/21/90-S 8/21/90-S 9/4/90-S 9/4/90 ......... .... . .............. 1/28/90-B 1/28/90:SB CL 2/26/90-B 2/26/90-B low 4/13/90-B 4/13/90-B 5/29/90-B 5/29190:B ................... .......... 0 6/26/90 B 6/26/90-B 7/24/90-B 7/24/90-B - 0 8/21/90-B 8/21/90-B ...... 0 9/4/90-B 9/4/90-B 4 P-- co :3 5 , cr =, CD > 0 0 -u 0 M 0 cn k19 m - MGC/L 0 K) -P6 0) co 0 rQ 1/28/90-S 1/28/90-S ----i-- - ------ I mmwmm@@ --- 2/26/90-S ... .. ... .... ........ ...... .......... 2/26/90-S .......... ... ....... 3/21/90-S . ....... 3/21/90-S 4/13/90-S 4/13/90-S 5/29/90 .......... ----- ....... 5/29/90-S- ............ 6/26/90:so ** . .. ..... 6/26/90-S- 7/24/9 ..........................- 7/24/90-S -IMMIN o:s ........ ..................... 8/21/90 8/21/90S -s-IMMIN 9/4/90-S 9/4/90-S .............. 1/28/90-B 1/28/90-B ............-.... ........................ 2/26/90-B 2/26/90-B ...... . ......... ........ 4/13/90-B 4/13/90-B 5/29/90-B . ................ 5/29/90-B 6/26/90-B 6/26/90-B 7/24/90-B 7/24/90-B 8/2)1/90-B 8/21/90-B 9/4/90-B .......... 9/4/90-B. El 0 0 0 0 0 0 0 MGP/L 0 0 CD 0 0 C) m co 4h. o') a CA 1/28/90 1/28/90-s 2/26/90:,,, 2/26/9 ........... 3/21/90:ss .. .... .. 3/21/90-S o 4/13/90-S 4/13/90-S 5/29/90'S 5/29/90-S 6/26/90-S 6/26/90-S 7/24/9 S 7/24/90-S 0 8/22/9o:s 8/22/90-S 9/4/90-S 9/4/90-S 1/28/90-B 1/28/90-B 2/26/90 B 2/26/9o-B 3/21/90:B 3/21/90-B 4/13/90-B 4/13/90-B 5/29/90-B 5/29/90-B 6/26/90 O:B ..... ... ..... .... -k 6/26/9 B - ------- - - - -- - - ---- 7/24/90:B 7/24/9 B 0 8/22/90-B I I LA 8/22/90-B 9/4/90-B ....... --- ---- . 9/4/90-B 0 0 0 0 cn v .............. ........ ......... MGC/L 0 N3 4@- 0 0 0 1\3 -Pi. 0 0 cn - --------------------------- 1/28/90-S ............. 1/28/90-s 2/26/90-S ............... ........- 2/26/90-S 3/21/90-S ......I...... ........ 3/21/90-s 1/13/:Oo 4/13/90-s q/ :S S ..... .. 5/2 ...... 5/29/90-s .......... 6/26/90-S --------------- 6/26/90-S 0 ............. ........... 7/24/9 -S .......... 7/24/90-S 8/22/90-S 8/22/90-S- 9/4/90-S 9/4/90-S 1/28/90-B ....... -- .................. 1/28/90-B 2/2 B .... ...................... ..... 2/26/90-B O:B 6/:0 3/2 3/21/ 1/90-B 4/13/90-B ............. ......... 4/13/90-B 5/29/90-B 5/29/90-B 6/26/9 -B 6/26/90- 7/24' -B ....... ........ 7/24/90- ............... ....... -,A.- - 8/22/: _B 8/22/90 ------------------------------- 9A/90-B ---------- ---------------- 9/4/90- 0 0 0 0 0 0 B B B B MGP/L C:)OOOCDoaoo w -sh.. CA 0 -,j m (D 1/28190-S 1/28/90 . ........... ............ 2/25/90-S 2/25/90- ................... 3/21/90-S 3/21/90 . .................... 4/13190-S 4/13/90-S .... . . ... ... 5/29/90-S 5/29/90 6/26/90-S 6/26/90:ss ............... 7/24/90-S ........ . 7/24/90-S 8/21/90-S 8/21/90S 9/4/90-S 9/4/90:S 1/28/90-B 1/28/90-B 2 /2 5/9 0 - B 2/25/90-B 3/21/90-B 3/21/90-B 4/13/90-B 4/13/90 5/29/90-B ... 5/29/90: ........................ 6/26/90-B 6/26/90- ............... 7/24/90-B ---- --- 7/24/90-B 8/21/90-B 8/21/90-B - ------- -------- 9/4/90-B rlmT I H 9/4/90-B 0 0 0 ch u s s s MGC/L 0 " -ch. m w C@ -Ak m 0 K) CA 1/28/90 ................................ ...... 1/28/90-S 2/25/90:ss ......... .... ..... 2/25/90-S 3/21/90-S ........ 3/21/90-S 4/13/90-S ... 4/13/90-S ....-........ ... 5/29/90-s .., .............. ... .... .... 5/29/91D-S 6/26/90-S . ....... 6/26/90-S 7/24/90-S 7/24/90-S -.4 8/21/90-s 8/21/90-S 9/4/90 .......... .! ......... .......... 9/4/90-S 1/28/90:SB 1/28/90-B 2/25/90-B .. ... . ..... 2/25/90-B 3/21/90-B ... .... .. 3/21/90-B :==30 4/1 O-B ... ........ ....... 4/13/90-B 3/:0 ......-........4... 5/29/ -B 5/29/90-B 6/26/90-B 6/26/90-B 7/24/90-B 7/24/90-B 8/21/90-B 8/21/90-B 9/4/90-B .......................... 9/4/90-B . . . 0 0 0 0 0 0 MGP/L p CD cn o K3 1/28/90-S 1/28/9 ............ 2/25/90-S ............. 2/25/9 ........ 3/21/90-S 3/21/9 ....... -.1 ............... 4/13/90-S 4/13/90-S .............. 5/29/90-S 5/29/90-S 6/26/90-S 6/26/9o-s 7/24/890-S 7/24/890-S 8/24/90-S 8/24/90-S 9/4/90-S 914/90-S 1/28/90-B 1/28/90-B 2/25/90-B ................. 2/25/90-B 3/21/90-B 3/21/90-B 4/13/90-B 4/13/90-B . . . . . .--- .................. . 5/29/90-B 5/29190-B 6/26/90-B 6/26/90-B 7/24/90-B 7/24/9 B 8/24/90:B 8/24/90-B 0 9/4/90-B 9/4/90-B ... ..... 0 0 0 u m 0 (n u MGC/L 1/28/9 -S . ... ....... 1/28/90-S 2/2,/ .... ............... ............ 2/25/90-S:MMM 3/2, /: I ... I-- ........I....I 3/21/90-S ZION 4/13/90S ........ ....... . ...... ............- 4/13/90-S 5/29/90: S 5/29/90-S 6/26/90-S ....... ................. 6/26/90-S 7/24/890-S ......-... 7/24/890-S; 8/24/9 -S ....* ' 8/24/90-S 9/4/9 -S ............. 9/4/90-S -==M 1/28/9 -B ........... 1/28/90-B . 2/25/90-B 2/25/90-13 :MME 3/21/90-B 3/21/90-B _MOM . ...... ........ .. ....... ............... 4/13/90 B 4/13/90-B 5/29/90-B ....... ................ 5/29/90-B 6/26/90-B ..... - I 6/26/90-B 7/24/90-B .................. 7/24/90-B 8/24/90-B 8/24/90-B ..................................... 9/4/90-B 0 0 0 0 0 0 MUM CD C) b 6 01 ob-brobwa-o'b m w 0 -N m 0 CD K) 1/28/90-S 1/28/90-S .... .............. 2/26/90-S 2/26/90-S 3/21/90-S 3/21/90-S 4/13/90-S 4/13/50-S 5/29/90-s-: 5/29/90-S 6/26/90-S 6/26/90-S 7/24/90-S- 7/24/90-S- 8/22/90's- ............ . 8/22/90: 9/4/90-S -------- 9/4/9 1/28/90-B 1/28/9 - ............ 2/26/90-B -MEMO 2/26/9 :B ..... 3/21/90-B 3/21/90 B 4/13/90-B 4/13/90-B 5/29/90-B 5/29/90-B ....... ... ... 6/26/90-B 6/26/90-B 7/24/8290-B 7/24/8290-B 8/22/90-B 8/22/90-B 9/4/90-B 9/4/90-B 0 0 0 cn MGC/L w 0 K) 4h. 0 o 1/28/90-S ........... ............ 1/28/90-S 2/26/90-s ----- --------------- 2/26/90-S 3/21/90-S ....... 3/21/90-S MEN ----------------- 4/13/90S ---------- 4/13/90-s:mm 5/29/90 : S 5/29/90-S 6/26/90-S ........ .... 6/26/90-S 7/24/90- 7/24/90-S s 8/22/90-S ............................................ 8/22/90-S- ME 9/4/90 ..... 9/4/90-S -MME 1/28/90:S,, ............. ...... .... 1/28/90-B ................................... ...........I........... I.. 2/26/90-B 2/26/90-B 06@ 3/21/ /:OO:B . ...... 3/21/90-B MINE 4/13 B 4/13/90-B -=ME ..... .... . ...i"' ""','"' 5/29/90-B ... ................................ 5/29/90-B 3 6/26/90-B ..... 6/26/90-B 7/24/8290-B ....I...... 7/24/8290-B 8/22/90-B 11 .. =. 8/22/90-B Pmmw ----------- ............ 9/4/90-B 9/4/90-B C= m El m --1 0 T 0 0 0 0 0 0 MGP/L 0 N 4@1 m w r1a 41. 1/28/90-S .... 1/28/90 2/26/90-s 2/26/90: 3/21/90-S 3/21/90- 4/13/90-S 4/13/9 1 5/29/90-S 5/29/9":Ss 6/26/90-S 6/26/90-S 7/24/90-S 7/24/90-S 8/21/90-S 8/21/90-S 9/4/90-S 9/4/90-S 1/28/90-B 1/28/90-B 2/26/90-B 2/26/90-B 3/21/90-B .. .... ................... ..- 3/21/90-B 4/13/90-B 4/13/90-B 5/29/90-B 5/29/90-B 6/26/90-B 6/26/90-B 7/24/90-B 7/24/90-B 8/21/90-B _H 8/21/90-B 9/4/90-B 9/4/90-B 0 U 0 u o 0 cn .......... MGC/L -A " " --& " N) r\) t@, m w C) .06 0) co C) 0 CA 1/28/90-S ---------------- 1/28/90-S- 2/26/90-S .......... -.-- ------ - 2/26/90-S ----I 3/21/90-S 3/21/90-S 4/13/:OO:S 4/13/90-S 5/29/ S 5/29/90-S 6/26/90-S 6/26/90-S 7/24/90-S 7/24/90-S 8/21/90-S ..... . ........ 8/21/90-S 9/4/90-S 9/4/90-S 1/28/90-B 1/28/90-B 2/26/90-B ... -.... .......... ......-..... 2/26/90-B 3/21/90-B ......-.... 3/21/90-B 4/13/90-B 4/13/90-B 5/29/90-B 5/29/90-B 6/26/90-B ............... 6/26/90-B 7/24/90-B 7/24/90-B 8/21/90-B ...... 8/21/90-B 9/4/90-B .......... 9/4/90-13 0 0 0 0 0 0 MGP/L 0 Cl C@ a 0 0 CD 0 0 P3 W th- M 0 -4 W W 1/28/90-S . ........ ...-........ 1/28/9 -S ............... 2/25/90-S 2/25/90 s ... 3/21/90-S 3/21/90 :s 41131:0 4/13/90-S q/ O:S 5/2 S 5/29/90-S 6/26/90-S 6/26/90-S .............. ............ ... 7/24/90-S 7/24/90-S 8/21/90-S 8/21/9 ON 9/4/9 O-S 9/4/9 ............ W, ---------- - - - - ----- 1/28/90-B 1/28/9 2/25/90-B .......... 2/25/90-B L 3/21/90-B 3/21/90 4/13/90-B 4/13/90: 5 /2 9 /9 0 - B 5/29/90 . ......... 6/26/90-B 6/26/90-B 7/24/90 B - - ---- 7/24/90-B 8/21/90-B 8/21 /90-B 9/4/90-B 9/4/90_B 0 0 u 0 0 cn u m MGC/L c) (.n 0 1/28/90-S ......... 1/28/90-S 2/25/90-S 2/25/90-S 3/21/90-S 3/21/90-S -310N 4/13/:O-S ---- ---- 4/13/90-s -301N 5/29/ O_S 5/29/90-s -ZIMIN 6/26/90-S 6/26/90-S -=:ME 7/24/90-S ... ......... . ............ ...... 7/24/90-s =IME .................... 8/21/90-S 8/21/90-S :ZIMIN 9/4/90-S ..... . ........ 9/4/90-s -:MEN 1/28/90-B --- ... --- 1/28/90-B 2/25/90-B . ... . ...... .. ................. . ....... .. ........ 2/25/90-B 3/21/90-B ... ....... 3/21/90-B 4/13/9 -B 4/13/90-B 5/2://: :B ..... 5/29/90-B 6/2 B 6/26/90-B in 7/24/90-B 7/24/90-B 8/21/90-B I...... 8/21/90-B 9/4/90-B ......... .......... 9/4/90-B ---------- li!@ .. ., ........... .. . ...... .............. 0 0 0 0 0 0 MGP/L 0 0 a C) b @o 1/29/90-S 1/29/9 ....... 2/26/90-S 2/26/9 3/22/90-S 3/22/9 4/14/90-S 4/14/90-S 5/30/90-S 5/30/90-S 6/27/90-S 6/27/90-S 7/25/90-S 7/25/90-S 8/22/90-S 8/22/90-S 9/5/90-S 1/29/90 B 1/92/://:OO:SB 2/26/90:B 2/26/90-B 3/22/90-B 3/22/90-B 4/14/90-B ....... 4/14/90-B 5/30/90-B 0 ......................... 5/30/90:B ............. 6/27/9o-B 6/27/9 B 7/25/90-B 7/25/90-B 8/22/90-B 8/22190-B 9/5/90-B 9/5/90-B 0 0 0 0 cn 0 s s s m MGC/L N) CA) 0 CA 0 al C) 0 0 0 C) 1/29 -S 1/29/90-s 2/26 -S ....... 2/26/90-S 3/22 -S 3/22/90-S 4/14/90-S 4/14/90-s 5/30/90-S ...... 5/30/90-S 6/27/90- 6/27/90-s s 7/25/90-S 7/25/90-s::Imm 8/22/90-S ... .. 8/22/90-S _30M 9/5/90-S ......... 9/5/90-S 1/29/9 -B 1/29/90-B 2/26/9 :B .......... ........................ .................. ..... 2/26/90-B 3/22/9 B ................ ........ .. 3/22/90-B 4/14/90-B .......... 4/14/90-B 5/30/90 B 5/30/90-B 6/27/90:B ............... 6/27/90-B 7/25/90-B ............ 7/25/90-B 8/22/90-B ..... 8/22/90-B 9/5/90-B 9/5/9o-B -u 0 0 0 0 0 0 MGP/L 0 0 CD 0 0 6 6 6 b 6 0 0 CD K En m Z-4 w w - o i'a :C@- 1/22/90- ............................... 1/22/90- .......... 2/27/90- 2/27/90- 3/22/90- -;4V"MM 3/22/90- 4/14/90- 4/14/90 9 /30/& rr7"--Nm 8/30/9 /27 90- --4;@Mm /27/98- 7/25/90- ---In - 7/25/90- 8/22/90- -MMM - 8/22/90- 9 9/5/90- 1/29/9 1/29/90- 2/26/90- 2/26/90-M 3/22190-M 3/22/90-m 4/14/90-M -=-M 4/14/90- 30/98-M 5/30/90- R; 7/9 6/27/90- 7/25/90-M 7/25/90- 8/22/90-M -MMMM@ 8/22/90- 9/5/90-M 915/90- 1/22 ................ 1/22/90 2/27/?900-- m 2/27/90: 3/22/90-B --T--low= 3/22/90- 4/14/90-B - --mm 4114/90-B 9/90- - ---- -7777@ 5/30/90-H R//R /90- 6/27/90- 7/25/90- ...... ........ 7/25/90-B 8/22/90- 8/22/90-B I I 9/5/90- 9/5/ cc 0 T 0 T 0 u m m m m m -B B B B 0 u m MGC/L -L m C) (n C) C) cn 1/22/90- 2/27/90- 1/22//9901:1 3/22/90- 2/27 4/14/90- 3/22//9100: 5/30/90- 4114 6/27/90- 5/30/9110- 7/25/90- 6/27/90- 8/22/90- 7/25/90- 8/2 9/5/90- 22/90- 1/29/90 1 /92/95//9900--M 2/26/90:mm 2/26/90-M 3/22/90- 3/22/90 4/14/90-M 4/14/90- 5/30/90- 30/90- 6/27/90- QH7/90- /25/90- 7/25/90- 8/22/90-M 8/22/90- 9/5/90-M 9/5/90-M 1/22/90- 1/22/90-B 2/27/90-B 2/27/90-B 3/22/90- 3/22/90- 4/14/90- 4/14/90-B 5/39/90-B RMS: 6/27/90- 7/25/90-B 25/90-B 8/22/90-B --------- 89//22/90-B 9/5/90-B 9/5/90-B M El M --q 0 -0 0 C) 0 0 0 01 m m B B B B MGP/L 0 0 0 0 CD b 9 b p b p 0 p b 0 0 c 0 0 " 0 " C> a 4h. CD 0 0 cn f\) cn co -A. 0 cn o K) .... J4" I . I. I I I . I pe-A ........ 1/22/90-S 1/22/90-s 2/27/90-S 2/27/90-S 3/22/90-S 3/22/90-S 4/14/90-S 4/14/9 ........... 0: ss 5/30/90-S 5/30/90 6/27/90-S 6/27/90-S ....................... 7/25/90-S 7/25/90-S 8/22/90-S ... .. ........... 8/22/9 0: ss 9/5/90-S 9/5/90 1/22/90-B 1/22/90-B 2/27/90-B -MENNEN_ 2/27/90-B 3/22/90-B -1 ................... . 3/22/9 ............ 4/14/90-B -"!r@77rrm m 4/14/9 : ..... 5/30/90-B 5/30/9 - 6/27/90-B 6/27/90-B 7/25/90-B 7/25/: ... . ........ B ANIMMIN O:B 8/22/90-B 8/22/ 0 9/5/90-B 9/5/90-B ....... ..... 0 0 u 0 lu 0 cn a m MGC/L --L N) 0 CA 0 cn 0 cn (n 1/22/90-S ....... 1/22/90-S ...................... 2/27/90-S 2/27/90-S 3/22/90-S .............. 3/22/90-S 4/14/90-S .......... 4/14/90-s 5/30/90-S 5/30/90-S 6/27/90-S ................. 6/27/90-s- 7/25/90-S ...... 7/25/90-s 8/22/90-S ....- 8/22/9o-s :=A 9/5/90-S 9/5/90-S 1/22/90-B 1/22/90-B 2/27/90-B 2/27/90-B 3/22/:0 / O:B ..... ----- - --------- ------- 3/22/90-B 4/14 B 4/14/90-B 5/30/90-B ......... 5/30/90-B 6/27/90 B ............. 6/27/90-B 7/25/90 :B ...... LL .......... ............................. 7/25/90-B 8/22/90-B - I I 8/22/90-IB 9/5/90-B .. .. .............. 9/5/90-B 0 -u 0 0 0 0 0 CD K) ............ 1/29/90-S ....... 1/29/9 0 2/27/90-S 2/27/90:ss .................. 3/22/90-S 3/22/90-S 4/14/90-S ....... 4/14/:00 S -- --- -------- 5/30/90-S 5/30/ :S 6/27/90-S 6/27/90-S 7/25/90-S 7/25/90-S 8/22/90-S ..... ....... 'Ir ..... ..... 1@ .......... . . . . . . . . . . . . . . 8/22/9 9/5/90:ss 9/5/90-S o 1/29 ............. 1/29/90-B /90-B ---- 2/27/90-B 2/27/90-B 6.1 1 1 3/22/90-B 3/22/90-B 4/14/90-B 4/14/:0 5/30/90-8 5/30/ 0:: 6/27/90-13 6/27/90-B 7/25/90-B 7/25/90 B ..... .. 8/22/90-B 8/22/90:B ........... 9/5/90-B 9/5/90-B 0 0 U, 3: 0 0 (n 0 MGC/L 8 0 4@w M 0 0 4@k- a) co C) 0 cn 1/29/90-S .... ......... ....... 1/29/90-s -@imm 2/27/90-S 2/27/90-S --m 3/22/90-S - - ------------- 3/22/90-S 4/14/90-S ..... 4/14/90-S ........... .............. 1/30/:O-S 5/30/90-S :Z3- 7/ O_S .............. 6/2 6/27/90-S _=3 7/25/90-S 7/25/90-S =1= 8/22/90-S 8/22/90-s . .............. 9/5/90-S . ...... 9/5/90-S 1/29/90-B ... .................... 1/29/90-B 2/27/:OO:B . . .. .... .. ....... .................... ........ 2/27/90-B 2/ B ........ 3/2 .......... . .......... ... 3/22/90-B 4/14/90-B 4/14/90-B 5/30/90-B 5/30/90-B 6/27/90 B 6/27/90-B 7/25/ :B 7/25/90-B-7-7-i 8/22/:OO-B 8/22/90-B 9/5/ 9/5/ 0 0 0 0 MGP/L 0 C3 0 0 0 CD 1/29/9 1/29/90-S ..... O:s ........... ....... 2/27/90S 2/27/90 3/22/90-S 3/22/90:ss ..... . 4/14/90-S 4/14/90-S ........ ..... 5/30/90-S 5/30/90-S 6/27/90-S 6/27/90-S 7/25/90-S 7/25/90-S 8/23/90-S 8/23/90-S 9/5/90-S 9/5/9 -S 1/29/90-B 1/29/90-B ............. ............ 2/27/90-B 2/27/9 B O:B 3/22/90-B 3/22/ 0 4/14/90-B 4/14/:O-B 5/30/90 B 0 5/30/90:B ............ ........... 6/27/90:B 6/27/9 B 7/25/90-B 7/25/90-B 8/23/90-B 8/23/90-B 9/5/ 90-B 9/5/90-B 0 U 0 u 0 u m 0 (n u MGC/L " -L " --& " 0 w 0 r\) -r-lb. 0 w 1/29/90-S ... ............ 1/29/90-S 2/27/90-S 2/27/90-S 3/22/90-S 3/22/90-s 4/14/90-S ....... 4/14/90-S 5/30/90-S ............ 5/30/90-S 6/27/90-S 6/27/90-S .. ...................... 7/25/90-S . . ................... . 7/25/90-S 8/23/90-S .............. 8/23/90-S 9/5/90-S 9/5/90-S- 1/29/90-B 1/29/90-B 2/27/90-B ....... 2/27/90-B . ........... 3/22/90-B ........ 3/22/90-B 4/14/90-B ... 4/14/90-B 5/30/90-B 5/30/90-B 6/27/90-B 6/27/90-B 7 0 7/25/90-B /25/90:B 8/2319 B 8/23/90-B .......... 9/5/90-B 9/5/90-B T 0 0 0 0 0 0 MGP/L C) 0 0 cn cn N) cn w o K3 4,@ 1/21/90-S ........... 1/90-S 1/21/90:ls . .. ..... 2/26/90-S 2/26/90 3/21/90-S .... 3/21/90-S . ... . .... 4/13/90-S 4/13/90-S ..... . 512:1 /:0 O:S 5/29/90 S 6/2 S 6/26/90:s 7/24/90-S -........ 7/24/90-S .... . ..... ............ .. ........ 8/21/90-S ... 8/21/90-S 9/4/90-S ......... ..... ................... .......... ..... 9/4/90 ............................ 1/21/90-B 1/21/90:SB 2/26/90-B 2/26/90-B 3/21/90-B 3/21/90-B ....... 4/13/90-B 4/13/90-B 5/29/90-B 5129/90-B 6/26/90-B 6/26/90-B ........................ ..... ........... 7/24/90-B -------- 7/24/90-B 8/'21/90-B .... W, 8/21/90-B .. . .............. 9/4/90-B ............. 9/4/90-B m ED m --1 0 0 T 0 0 (n u m MGC/L --A, " -A -L P. 0 w 0 m ArIll CD 1/21/90-S ---------- 1/21/90-S 2/26/90-S .. .......................I....... 2/26/90-s 3/21/90-S ........................................... 3/21/90-S =MM ......................... 4/13/:0 S ------- 4/13/90-S 5/29/ O:S 5/29/90-S .......... 6/26/90-S 7/24/90-S 7/24/90-S :==M ............ 8/21/90-S ....... .... ...... 8/21/90-S =MM 9/4/9v 9/4/90-s 1/21/90:OB 1/21/90-B 2/26/90-B .. . ... . .......... 2/26/90-B .......... 3/21/90-B ...... .. 3/21/90-B 4/13/90-B ......... .......... ............................. 4/13/90-B 5/29/90-B 5/29/90-B ........... ....... 6/26/9 -B 6/26/90-B 7/24/9 -B ......... 7/24/90-B 8/21/9 -B ........... .. ....... .... 8/21/90-B 9/14/90-B ........... j 9/4/90-B 0 0 0 0 0 0 MGP/L C3 K) C3 C) C3 N) C3 @13. 1/21/90-S 112 1/90-S ............ ...... 2/26/90-S 2/26/90-S ................ 3/21/90-S 3/21/90-S . ........ ....... ......... 4/13/90-S 4113/90 5/29/90-S 5/29/90:ss 6/26/9 -S . ........ .. . . . ......... 6/26/90-S 7/24/90-S ....... ........ .... .. 7/24/90-S 8/21/90-S 8/21/90-S 9/4/90-S' ... .... 9/4/90-S 1/21/90-B 1/21/90-B 2/26/90-B 2/26/90-B 3/21/90-B 3/21 /:OO:B 4/13/90-B 4/13/ B 5/29/90-B 5/29/90-B 6/26/90-B ........ .......... ....... ... 6/26/90-B 7/24/90 - 7/24/90-B 8/21/90-B .............. 8/21M B 9/4/90-B ....... 9/4/90-B ---- - --- m El 0 --4 0 0 0 0 (n kVkUU/L -.A --L --& " " C@ r\:, .1@1. m w 0 N) -D, 0 w 0 cn 1/21/90-S .............- 1/21/90-S 2 /90 ... -1- ....... ............. ........ ........... /26 -S ..... --- ........ ......... i 4 2/26/90-S- 3/21/90-S ........... ....... .. I.- ...... .............. 3/21/go-s 3MM ....... 4/13/90- 4/13/90:SS s 5/29/90 5/29/90-S 6/26/90-S 6/26/90-S 7/24/90-S 7/24/90-S 8/21/90-S ......... .... 8/21/90-S 9/4/90-S 9/4/90-S 1/21/90-B .... ......- 1/21/90-B 2/26/90-B ....... .......... 2/26/90-B 3/21/90-B . .... . ......... 3/21/90-B 4/13/90-B ........ 4/13/90-B 5/29/90-B 5/29/90-B 6/26/90-B 6/26/9()-B 7/24/90-B ........... 7/24/90--B 6/21/90-B I 8/21/90-B.!---@@- 9/4/90-B . ......... . ...... 9/4/90-B M El 0 --A 0 -0 0 0 0 0 0 0 MGP/L C) 6 p K) C3 1/21/90-S 1/21/90-S 2/26/90-S 2/26/90-S 3/21/90-S 3/21/90-S 4/13/90-S 4/13/9 -S 5/29/90-S 5/29/9 .... ... ...--4 O:s ... ....... 6/26/90-S 6/26/90S 7/24/90-S- i6m 7/24/90-S 8/21/90-S 8/21/90-S 9/4/90-S 9/4/90-S 1/21/90-B 1/21/90-B 2/26/90-B 2/26/90-B 3/21/90-B 3/21/90-B 4/13/90-B 4/13/9 5/29/90-B 5/2 ......... 6/26/90-B 6/2:1/: . ..... 7/24/90-B .........-................. 7/24/90-B 8/21/90-B 8/21/90-B %% ---- - -- 9/4/90-B 9/4/90-B 0 0 u 0 0 m 0 En ..............- MGC/L MG 1/21/9 -S .................. 1/2 2/26/9 -S .............. 2/26/90-S 3/21/9 -S .. .......... 3/21/90-S 4/13/90-S ......... .. 4/13/90-S 5/29/9" 5/29/90-S .................. 6/26/90 6/26Z:; -S 7/24/90-S ......... 7/24/90-S :3MMM F I 8/21/90-S 8/21/9o-s-=30= 9/4/90 ... .. ...................... 9/4/90-S 1/21/90:SB ...... ............... ... ..........- 1/21/90-B 2/26/90-B -.4 ..........- 2/26/90-B 3/21/90-B ......- 3/21/90-B _M 4/13/90-B 4/13/90-B 5/29/90-B . ...... 5/29/90-B 6/26/90-B .. .... ............ 6/26/90-B 7/24/90-B 7/24/90-B 8/21/90-B ------ 8/21/90-B 9/4/90-B 9/4/90-B 0 0 0 0 MGP/L 0 0 m 0 CA w 0 -All CD K) :o, -L.L" AA." 1/28/90-S 1/28/90-S . ...................... 2/26/90-S 2/26/90-S 3/21/90-S 3/21/90-S ....... ....... 4/13/90-S 4/13/90-S -........... 5/29/90-S 5/29/90-S 6/26/90-S 6/26/90-S ...... ......-...... 7/24190-S ...... 7124/90-S 8/22/90-S 8/22/90-S 9/4/90-S 9/4/90-S ....... 4M 1/28/90-B . .. .......... 1/28/90-B ........ 2/26/90-B 2/26/90-B 3/21/90-B 3/21/90-B 4/13/90-B 4/13/90-B 5/29/90-B 5/29/90-B 6/26/90-B 6/26/90-B 7/24/90-B ... ......... .................. 7/24/90-B 8/22/90-B 8/22/90-B 9/4/90-B 9/4/90-B lmi@- I 0 0 0 0 0 (n MGC/L 1/28/90-s ------------------ 1/28/90-S 2/26/90-S ........... .... . . 2/26/90-S 3/21/90-S .............. 3/21/90-S 4/13/90-S 4/13/90-S 5/29/90-S 5/29/90-S 6/26/90-S ....... -- . . . ..... ........ 6/26/90-S 7/24/90-S - ------p--------- L 7/24/90-s 8/22/90-S ....... .-I ......... 8/22/90-S 9/4/90-S ....I ........ ......... 9/4/90-S 1/28/90-B ............ ..-...... 1/28/90-B 2/26/90-B ..... ...k.. ....... 2/26/90-B 3/2' /90 ........ ........ 3/21/90-B-."=3M 4 /90:B ..........- ..... ...... -1- /13 B 4/13/90-B 5/29/90-B ............. .......... .......... 5/29/90-B 6/26/90-B ... 6/26/90-B 7/24/90-B 7/24/90-B 8/22/90-B ... 8122190-B U/14/UO-B ........ 9/4/90-B 0 0 0 0 0 0 MGP/L (A Ul 1/21/90-S 1/21/90 2/26/90-S ......-...........- 2/26/90: ........ 3/21/90-S 3/21/90 . ......... 4113/90 4/13/90-S ......... 5 9/90:S /2 S 5/29/90-S 6/26/90-S ... 6/26/90-S .............. 7/24/90-S ......... ...... 7/24/90-S 8/22/90S 8/22/90-S 9/4/90:s ........... . ........ 9/4/90-S 1/21/90-B 1/21/90:B 2/26/90-B 2/26/90 B .3/21/90-B 3/21/90:B 4/13/90-B 4/13/90 B 5/29/90-B 5/29/90-B 6/26/9 ............... 6/26/90-B 0:: ....................... -., 7/24/90 7/24/90-B 8/22/90-B 8/22/90-B ........... 9/4/90- B 9/4/90-B L6mm" m El m --1 0 0 u 0 u m 0 cn MGC/L -,L -,L -" -L 0 " -P, 0 w 0 Cl C" 1121190 ... ----------- - - 1/21/90-S ..... ..... 2/26/90:ss .......- ............ I-.-.-.-.-.-.-.-.-.-.-.:;:.!.=- =L. I2/26/90-S 3/21/90-S ....... ...........4........ 3/21/90-S 4/13/9 ........ 4/13/90-S 0: ss 5/29/90 5/29/90-s 6/26/90-S . ............ 6/26/90-S 7/24/90 ..... ... 7/24/90-S 8/22/90:ss ... ... .............. ............... 8/22/90-S- 9/4/90-S .. . . ...... 9/4/90-S 1/21/90-B 1/21/90-B 2/26/9 B ........... ....... ........ ............ ......-2/26/90-B O:B ..... ... 3/21/90 3/21/90-B 4/13/90-B .. . ..............- ..... 4/13/90-B 5/29/90 5/29/9 O:B ... ...........I...... O-B 6/26/9 B ....... 6/26/90-B 7/24/90-B 7/24/90-B ............... 8/22t9O-B 8/22/90-B 9/4/90-B 9/4/90-B 0 El 0 0 o 0 0 0 zm 0.4- ST. VINCENT 0.35-: NH3 : ORTHOPHOSPHATE 0.3-: 0.25- cc 0 0.2-: z 0.15-: 0.1 0.05 Ll lu 0 Ll L I I I I I I I cn co cn cn cn CD rn cn CD m co m m m in m m m c@66666666666666666 co Q m 01 M M M M c4n!z!!Z w 4 cm 't (D in co cm I C, C\j cv)v Z, ;c 04 w 1.4- I- I I t TN TP 0.8- 0 - Z 0.6 2 0.4- 0.2 0- 0 w m co co co m ca co Im ca &66666666666666666 @R Q Q Q Q Q Q Q Q Q Q Q M Q M CD cn Q CO m 01) co v cv V W cn C'D Z;4 @v c1\1 j"@ CQ m V LO CO r- CM V LO (D r- co MGC/L " __L " " 0 4s@ 0 1\3 1/21/82-S ....... ............ 1/21/82-S 2/26/90-S E 2/26/90-S 3/21/90-S 3/21/90-S 4/13/ 4/13/90-S 9/:0 O:S 5/2 S 5/29/90-S 6/26/90-S - ---------- - - 6/26/90-S 7/24/90-S 7/24/90-S 8/22/90-S ------ ----- ---------- 8/22/90-S- ............ 9/4/90-S ---------- -- ----- 9/4/90-S 1/21/90-B ---------- - 1/21/90-B 2/26/90-B ............... ....... 2/26/90-B 3/21/90-B m 3/21/90-B 4/13/90-B ........ ..... 4/13/90-B 5/29/90-B . ......... .-.... 5/29/90-B 6/26/90-B . ...................... .............. 6/26/90-B 7/24/90-B -_.k.-h.-W-6 ......... ........... 7/24/90-B !.......... 8/22/90-B ..... m 8/22/90-IB .......... 77i 9/4/90-B 9/4/90-B 0 E3 0 0 0 0 0 0 0 ... .... ..... .... ...... .. .. MGP/L 0 b 0 c al N) Ul 2/26/90-S 2/26/90-S 3/20/90-S 3/20/90-S .... 4/13/90-S 4/13/90-S ........... 5/29/90-S 5/29/90-S 6/26/90-S ------- ------------------- 6/26/90S ... . . ...... 8/22/90-S 8/22/90-S 9/4/90-S 9/4/90-S PM 1/21/90-S 1/21/90-S .............. 7/24/90-S 7/24/90-S' 2/26/90-B 2/26/90-B 3/20/90-B 3/20/9 -B 4/13/90-B 4/13/90-B 5129/90-B 5/29/90-B 6/26/90-B - --------- 6/26/90-B 8/22/90-B - ---------- - 8/22/90-B 9/4/90-B ...................................... 9/4/90-B 0 0 X --i m 0 0 M 0 cn u MGC/L 0 N .0, m w 0 Na P. m 0 2/26/90-S .. ...... ....... -.0h....... 2/26/90-S 3/20/9 .......... .....I...... 3/20/90-S -ZEN 0:: .................. 4/13/90 4/13/90-S 5/29/90-S 5/29/90-S ....... 6/26/90-S 6/26/90-S ...... 8/22/90-S ...... 8/22/90-S J 9/4/90- ..... .... ...... 9/4/90-S ... .......-...... ....... s 1/21/90-S .............. ... .......... ........ 1/2'1/90-S 7/24/90-S ..... . ... ... .................... 7/24/90-S 2/26/90-B .... 2/26/90-B 3/20/90-B ............ . . ..... ......... .......... .......... 3/20/90-B 4/13190-B -........... ----- -- 4/13/90-B 5/29 ................... ........ . 5/29/90-B ,:00:: 6/26/ 6/26/90-B .......... ......... 8/22/90-B ... .. 8/22/90-B 9/4/9o-B 9/4/90-B --1 0 T 0 0 0 0 0 0 MG N OR P/L J i [email protected] LLv -1, 1 - .Ll I A 1) 1 1 11 11 11. J.= AAAA. 1/21 /90S 1/21 190S 2/26/90S 2/26/gos 3/21/90S 3/21/90S 4/13/90S 5/29/90S 5/29/90S 6/26/90S I 6/26/110S /90S 7124/90S 7/24 8/21/90S 8121/90S 9/4/90S 9/4/90S --------- ------- 1/21/90M 1/21/90M 2/26/90M -MMMMMM 2/26/90M 3/20/90M 3/20/90M 4/13/90 4/13/9 5/29/90M om 5/29/90M 1/26/90M 6/26/90M 7/24/90M 7/24/90M 8/22/9010 8/22/90M 9/4/90M 9/4/90M 1/21/90B 1/21/90" 2126/90B 2/26/90B 3/21/9 3/21/900 OB 4/13/90B 4/13/90B 5/2MOB U29/90B 6/26/90B 6/26/90B 7/24/90B MEN- 7@24/90B 8/21/90B pw- i 8/21/90B 914/90B I I I 9/4/90B 0 z m M I w 3: 0 u M 0 Cf) u m C) 0 6 p i,.) cl a 1\3 o in 1/21190S r\3 2/26/gos 1/21190S 1/21/90S 3/21/90S 2/26/90S 2/26/90S 4/13/90S 3/21/90S 3/21/90S 5/29/90S 4/13/90S 4/13/90S 6/26/90S 5/29/90S 5/29/90S 7/24/90S 6/26/90S 6/26/90S 7/24/90S 8/21/90S 8/21/90S 7/24/90S 9/4/90S 8/21/90S 1/21/90M 9/4/90s- 9/4/90S 2/20/90M 1/21/90M 1/21/90M 3/20/90M 2/26/90M 2/26/90M 3/20/90M 4/13//90M 4/13/90M 3120/'OM 5/29MOM 4/13/90M 3/26/90M 5/29/90M 5/29/90M 6/26/90M 6/26/90M 7/24/90M 7/24/90M 3/22/90M 8/22/90M 7/24/90M 914190M 9/4/90M 8/22/gom 9/ / /9 1/21/90B 1/21/90B 4/ om 2/26/90B 2/26/90B 1/21/90B 3/21/90B 3all9OB 2/26/90B 4113/90B 4/13/90B 3/21/90B 5/29/90B 9/90B 4/13/90B 6/26/90B 512 5/29/90B 7/24MOB 6/26/90B 6/26/90B 8/21/90B 7/24/908 7/24/908 9/4/90B 8/21/90B 8/21/90B 9/4/90B u z -IN L-.--i ----------- y 2-6984542x - 11.527794, r2 = .8531152 2. 0 0 0 00 0 C?o 0 0 0 0 00 0 'A 0. ------ - - - -------- --- ------------- 00 0 0 0 0 CP CPO 0 cp c? Q)o 0 0 0010 0 0 0 ln(AFDW go 0 -2- 0 0 0 0 0 -3 0 0 0 0 0 Oyster length/weight data 0 -4. 0 0 . . . . . . . . . . . . . 2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5 4.75 5 Ln(len) 0 00 0 0 4e 001 0 40,0/ dp Figure 9: Regression of log oyster ash free dry weight vs log oyster length data based on samples taken from the Apalachicola estuary over the period of study. opAn ST G U:51/190 AVERAGE NUM. 8T 0 -4/90 Fm TNG-3/90 RT NG-2/90 i EOL MB-6/90 ;;QUMB-5/90 Qum 4/90 a X-3/90 UM -2/90 Y -6/90 EQ Y-5190 QY -4/90 Y -3/90 Y -2/90 -6/90 5/90 UM -4/90 UM -3/90- M -2/90-0 6190- -5/90- -4/90- -3/90- E Y 2/90 . . . . . . . . . . 0 500 1000 1500 2000 2500 MEAN NUMBERS PER SAMPLE PLATFORM 1-6/9 - -5/9 AVERAGE NUM. -4/90 N -3/90 N -2/90 6/90 --5/90 M -4/90 UM -3/90 UV -2/90 -6/90 Y -5/90 -4190 Y -3/90 IY -2/90 6/90 M -5/90 UM -4/90 UM -3/90 UM -2/90 Yj -6190 5190 -4/90 Y -3/90 Q Y -2/90 C) C> C) CD C) C) CD C) C) C) C) C) C) a C) CD C) U) Co LO CD LO C) LC) C) Y_ N C%I Cr) CO it EAST HOLE STHING-6/9 NM STHING-5/9 AVERAGE NUM. STHING-4/9 STHING-3/9 STHING-2/9 IEQUMB-6/9 IEQUMB-5/9 IEQUMB-4/90 IEQUMB-3/90 IEOUMB-2/90 IEQEYE-6/90 IEQEYE-5/90 IEQEYE-4/90 IEQEYE-3/90 IEQEYE-2/90 EOUMB-6/90 EOUMB-5/90 EOUMB-4/90 EOUMB-3/90 EOUMB-2/90 EOEYED-5/90 EQEYED-4/90 EOEYED-3190 EOEYED-2/90 T U IE U8 U B :%L@ M6 10@il Y I MB B B 0 50 100 150 200 250' 300 350 400 Figure 10: Oyster spatfall data taken in the Apalachicola system from February-June, 1990. Mean numbers per sample are given for the various developmental stages. DRY BAR I STHING-6/90 STHING-5/90 AVERAGE NUM. STHING-3/90 IEQUMB-6/90 IEQUMB-5/90 IEQUMB-3/90 IEQEYE-6/90 IEQEYE-5/90 IEQEYE-3190 EOUMB-6/90 EOUMB-5/90 EQUMB-3190 EOEYED-6/90 EOEYED-5/90 EOEYED-3/90 0 50 100 1 @o .... 20'0' 250 DRYBAR3 STHING-4/90 ro AVERAGE NUM. STHING-2/90 IECUMB-4/90 IEQUMB-2/90 IEQEYE-4/90 IEQEYE-2/90 EOUMB-4/90 EOUMB-2/90 EOEYED-4/90 EQEYED-2/90 8 10 12 14 ST. VINCENT BAR AVERAGE NUM. 0 50... 160 1@0 200 250 300 MEAN.NUMBERS PER SAMPLE SCORPION -6/90 AVERAGE NUM. 1/ 0 1/1 00: U -6 0- U -5/90 :41/E00 - floo - -6/ ot u -4/90-- -Mo - / 0 -6/ 0 L _5/?o L -4/90 L -1/ 0 0 0 /10 y -4/90-- Moo I 0, 0, 0 0 0 0 lq* (o (o C) co co PARADISE '-Hl G-6/90 AVERAGE NUM. ' '(0:45'900 --mi44/9 -3/90 -2/90 UA:6'90 U 5/90 U@-3/90 M -2/90- y -6/90- y -5/90- -4/90- 3/90- -2/90- -6/90- U -5/90 - U -4/90 - u -3/90- U -3/90- UM -2190- Y -6/90- Y -5/90- Y -4/90 Y -3/90- Y -2/90 0 20 40 60 80 100 120 NORTH SPUR 1 6191 1 :5/90 AVERAGE NUM. 18/90 IN' -3/90 IN -2/9 � M -6/90 M -5/90- 8M -4/90- UM -3190- -2/90- -6/90- Y -5/90- Y -4/90- Y -3/90- y :2/90 6/90 QU -5190 QU -4/90 u -3/90 UM -2/90 YJ -6/90 0 Y -5/90 Q 4/90 8R --3/90 Ey -2/90 -T R T B u u UB y 10 'm Y@ y y -Y y m m u 'y y (om (MB (MB .... 110 .... @0' 30 40 @O .... 6'0' 'iO SWEET GOODSON 1 6/9 -5/9 FE AVERAGE NUM. -4/9 -3/90 -2/90 -6/90- -5/90 -4/90 3/90 -2/90 6/90 y -5/90 y 4/90 -3/90 2/90 6/90 -5/90 -4/90 3/90 U -2/90- Y -6/90- y -5/90- -4/90- '3/90-- y -2/90-- 0 20 40 60 80 100 120 140 160 APALACHICOLA OYSTERS Total_N 8000- (2/90-9/90) 7000-- 6000-- o-% 0 5000-- Cl) M - LU W >- 4000-7 0 LL 0 Cl) cc - LU M 3000-- z 2000-- 1000-- 0-- C\1 CY) It LO (D r- 00 0) R R CC,., R R Q -C-) 0 C) 0 C> C=) C> C> C> C:> 0) M M M CD CD (D 0 11 IMI Figure 11: Total numbers of oysters taken at the various stations in the Apalachicola estuary from February, 1990 through September, 1990. 9 DATE `C!%/0q1'%/0& 0 9%/C 0%%/09 3000 3000- -2500 1-0 U1 2500- j CL Cn -2000 M Uj 2000 LU -1500 U) > 1500- 0 U. 0 1000 cc Ui CD 1000 V z -500 "R 10000 500 %: Rn n n 0- M" B n n 90/02- Vn B n S KIC SGn STATION DAT 0/ /0 An Figure 12: Numbers of oysters per sample taken at the various stations in the Apalachicola estuary from February, 1990 through November, 1990. 600 500 LU 0 400 1-00 LL 0 CO CY) U) 300 0 200 LL CO 100 n 0 (0 C@ @n 0 0, to . . . . . .I PO C) C> CA)0 -CA, to CO S n C> Figure 13: Ash-free dry weight biomass of oysters per sample taken at the various stations in the Apalachicola estuary from February, 1990 through November, 1990. J@+ r@iq "90/030,08 DATE 090/080,0;0,08 11-10 0/09 10-00 90- 1-10 80 - 00000 "'00 1101 -10000 1-00 70 lVil"". 01000 60 1000, W) xx*- 'X N 50- 10000 Z %R w I-0o 40 Co 30 0000- 20- X '.1 10 ............ ..... % % T5AOn N n 0 Cn n 9 R'B n /060/, D n 0/08 E n n 0/0 D B STATION DATE 0/0 608 0/09 SVh n Figure 14: Mean size of oysters taken at the various stations in the T?@ Apalachicola estuary from February, 1990 through November, 990. Figure 15: Oyster spat data by replicate taken bimonthly in the Apalachicola system from June-September, 1990. 10- 8- 6- LU M 2 N 6/14/90 M z 0 . .. ....... ....... ....... REPLICATE Data trom "SPAT 90 CG" 1.2- 0.8- w 0.6- 6/28/90 z 0.4- 0.2- 0.0 . ........................................................... N 0 zMc W REPLICATE Uata from "SPAT 90 CG" 3o- 20- ir w IM N 7/15/90 2 D z 10- o4 ........ I . ........ I....... I ccc : -- R9w-x-x)OOOuQO z ->>> I. ap@%@ tuiu-@ MROM . 05@ REPLICATE Data from "SPAT 90 CG" 1 - M w M 0 7/26/90 2 z 0 C -c-ccic @@Wxlflxl Elz�@@ REPLICATE I Data from "SPAT 90 CG" 30- I 20- cc LU M 0 8/9/90 2 M z 10- 0 1. ........................................... ... L REPLICATE Data from "SPAT 90 CG" 20- uj co 10- 8/23/90 z 0. ............... ........... ............ cpz5 K44 z REPLICATE Uata trom "SPAT 90 CG" 20- x w ca 10- m M 9/6/90 m z I 0 1.. I @ @ 111 11 z Z, P. I . @ - @@C%qx M13 x REPLICATE .Data from "SPAT 90 CG" 2o- LU 10- 9/26/90 z 0 ............... @l ........ .............. I.. 0 iz,W M.C12:4 REPLICATE Figure 16: Mean number of oyster spat taken at stations in the Apalachicola estuary in open and closed baskets over the study peri od.(June -September, 1990). CM OPL OPC OPA OM CEH 003 z OD2 0 OD1 CSV C9G CSC CPL CPC CPA CNS CEH CD3 CD2 CD1 0 10 20 30 MEAN SPAT F.igure 17: Habitat maps of variables that have statistical significance (Table 9) with respect to important oyster bar features and characteristics. R3 G3 x x Cat Point x Paradise 1 '1 51(VA)2 Sweet x Platfor ,xv S'e-01r, Ion .5 cq. o) x Nonh Spur Goodson, 17.0 0-1 0 u, .0 x Ea x Dry Bar-Little Gufty 1C 1-7 ,1 kl-'I) A7 A 18 x St. Vincent lb Mean salinity (standard deviation) (ppt) at oysier stations in the Apalachicola estuary. 5a R3 G3 x x Cat Point @I_x -SCO`r'ptlon x Paradise1 Sweet x.Platfor 11.4 x North S Goodson 1. 0 10"I ,pur x Eas x Dry Bar-Little Gulley ic t'l A7 A la x St. Vincent lb Mean turbidity levels (NTU) at oyster stations in the Apalachicola estuary. 5a R3 G3 1 6,-7 x x Cat Point Paradise I Sweet x Platfor _--,--x scorpion x x North Spur Goodson 5 -7 xE x Dry Bar-Little Gulley 1C as -7 A7 A la x St. Vincent lb Mean chlorophyll g levels (mg/1) at oyster stations in the Apalachicola estuary. R3 G3 1 L"!v x x Cat Po Int 2 sweet x Platfor x Paradise xv Scorpion (,y x North Spur Goodson 11116 11, j x Eas x Dry Bar-LIttle Gulley Ic H.G AT A la x St. Vincent i Ib Mean total organic carbon (mgA) at oyster stations in the Apalachicola estuary. 5a R3 3 .0 I x x Cat Point 5 "--@Vrnrl'plon x Paradise 2 Sweet x Platfor x Scor o44 x North Spur Goodson .045 x Eas x Dry Bar-Little Gulley Ic .o,43 A7 A la x St. Vincent 0-7 Ib Mean ammonia levels (mg/l)at oyster stations in the Apalachicola estuary. DAT*E DUE GAYLORD No. 2333 PRINTED IN U.S.A. i 111 11111 ll@@ 111 3 6668 14106 4396 ,