[Federal Register Volume 81, Number 140 (Thursday, July 21, 2016)]
[Rules and Regulations]
[Pages 47304-47309]
From the Federal Register Online via the Government Publishing Office [www.gpo.gov]
[FR Doc No: 2016-17268]
-----------------------------------------------------------------------
ENVIRONMENTAL PROTECTION AGENCY
40 CFR Part 180
[EPA-HQ-OPP-2015-0646; FRL-9948-28]
Cyprodinil; Pesticide Tolerances
AGENCY: Environmental Protection Agency (EPA).
ACTION: Final rule.
-----------------------------------------------------------------------
SUMMARY: This regulation establishes tolerances for residues of
cyprodinil in or on vegetable, tuberous and corm, subgroup 1C and
potato, wet peel. Syngenta Crop Protection, LLC requested these
tolerances under the Federal Food, Drug, and Cosmetic Act (FFDCA).
DATES: This regulation is effective July 21, 2016. Objections and
requests for hearings must be received on or before September 19, 2016,
and must be filed in accordance with the instructions provided in 40
CFR part 178 (see also Unit I.C. of the SUPPLEMENTARY INFORMATION).
ADDRESSES: The docket for this action, identified by docket
identification (ID) number EPA-HQ-OPP-2015-0646, is available at http://www.regulations.gov or at the Office of Pesticide Programs Regulatory
Public Docket (OPP Docket) in the Environmental Protection Agency
Docket Center (EPA/DC), West William Jefferson Clinton Bldg., Rm. 3334,
1301 Constitution Ave. NW., Washington, DC 20460-0001. The Public
Reading Room is open from 8:30 a.m. to 4:30 p.m., Monday through
Friday, excluding legal holidays. The telephone number for the Public
Reading Room is (202) 566-1744, and the telephone number for the OPP
Docket is (703) 305-5805. Please review the visitor instructions and
additional information about the docket available at http://www.epa.gov/dockets.
FOR FURTHER INFORMATION CONTACT: Susan Lewis, Registration Division
(7505P), Office of Pesticide Programs, Environmental Protection Agency,
1200 Pennsylvania Ave. NW., Washington, DC 20460-0001; main telephone
number: (703) 305-7090; email address: [email protected].
SUPPLEMENTARY INFORMATION:
I. General Information
A. Does this action apply to me?
You may be potentially affected by this action if you are an
agricultural producer, food manufacturer, or pesticide manufacturer.
The following list of North American Industrial Classification System
(NAICS) codes is not intended to be exhaustive, but rather
[[Page 47305]]
provides a guide to help readers determine whether this document
applies to them. Potentially affected entities may include:
Crop production (NAICS code 111).
Animal production (NAICS code 112).
Food manufacturing (NAICS code 311).
Pesticide manufacturing (NAICS code 32532).
B. How can I get electronic access to other related information?
You may access a frequently updated electronic version of EPA's
tolerance regulations at 40 CFR part 180 through the Government
Printing Office's e-CFR site at http://www.ecfr.gov/cgi-bin/text-idx?&c=ecfr&tpl=/ecfrbrowse/Title40/40tab_02.tpl.
C. How can I file an objection or hearing request?
Under FFDCA section 408(g), 21 U.S.C. 346a, any person may file an
objection to any aspect of this regulation and may also request a
hearing on those objections. You must file your objection or request a
hearing on this regulation in accordance with the instructions provided
in 40 CFR part 178. To ensure proper receipt by EPA, you must identify
docket ID number EPA-HQ-OPP-2015-0646 in the subject line on the first
page of your submission. All objections and requests for a hearing must
be in writing, and must be received by the Hearing Clerk on or before
September 19, 2016. Addresses for mail and hand delivery of objections
and hearing requests are provided in 40 CFR 178.25(b).
In addition to filing an objection or hearing request with the
Hearing Clerk as described in 40 CFR part 178, please submit a copy of
the filing (excluding any Confidential Business Information (CBI)) for
inclusion in the public docket. Information not marked confidential
pursuant to 40 CFR part 2 may be disclosed publicly by EPA without
prior notice. Submit the non-CBI copy of your objection or hearing
request, identified by docket ID number EPA-HQ-OPP-2015-0646, by one of
the following methods:
Federal eRulemaking Portal: http://www.regulations.gov.
Follow the online instructions for submitting comments. Do not submit
electronically any information you consider to be CBI or other
information whose disclosure is restricted by statute.
Mail: OPP Docket, Environmental Protection Agency Docket
Center (EPA/DC) (28221T), 1200 Pennsylvania Ave. NW., Washington, DC
20460-0001.
Hand Delivery: To make special arrangements for hand
delivery or delivery of boxed information, please follow the
instructions at http://www.epa.gov/dockets/contacts.html.
Additional instructions on commenting or visiting the docket, along
with more information about dockets generally, is available at http://www.epa.gov/dockets.
II. Summary of Petitioned-For Tolerance
In the Federal Register of October 21, 2015 (80 FR 63731) (FRL-
9935-29), EPA issued a document pursuant to FFDCA section 408(d)(3), 21
U.S.C. 346a(d)(3), announcing the filing of a pesticide petition (PP
5F8358) by Syngenta Crop Protection, LLC, P.O. Box 18300, Greensboro,
NC 27419-8300. The petition requested that 40 CFR 180.532 be amended by
establishing tolerances for residues of the fungicide cyprodinil, 4-
cyclopropyl-6-methyl-N-phenyl-2-pyrimidinamine, in or on vegetable,
tuberous and corm, subgroup 1C at 0.01 parts per million (ppm) and
potato, wet peel at 0.03 ppm. That document referenced a summary of the
petition prepared by Syngenta Crop Protection, LLC, the registrant,
which is available in the docket, http://www.regulations.gov. No
comments were received in response to the Notice of Filing.
III. Aggregate Risk Assessment and Determination of Safety
Section 408(b)(2)(A)(i) of FFDCA allows EPA to establish a
tolerance (the legal limit for a pesticide chemical residue in or on a
food) only if EPA determines that the tolerance is ``safe.'' Section
408(b)(2)(A)(ii) of FFDCA defines ``safe'' to mean that ``there is a
reasonable certainty that no harm will result from aggregate exposure
to the pesticide chemical residue, including all anticipated dietary
exposures and all other exposures for which there is reliable
information.'' This includes exposure through drinking water and in
residential settings, but does not include occupational exposure.
Section 408(b)(2)(C) of FFDCA requires EPA to give special
consideration to exposure of infants and children to the pesticide
chemical residue in establishing a tolerance and to ``ensure that there
is a reasonable certainty that no harm will result to infants and
children from aggregate exposure to the pesticide chemical residue. . .
.''
Consistent with FFDCA section 408(b)(2)(D), and the factors
specified in FFDCA section 408(b)(2)(D), EPA has reviewed the available
scientific data and other relevant information in support of this
action. EPA has sufficient data to assess the hazards of and to make a
determination on aggregate exposure for cyprodinil including exposure
resulting from the tolerances established by this action. EPA's
assessment of exposures and risks associated with cyprodinil follows.
A. Toxicological Profile
EPA has evaluated the available toxicity data and considered its
validity, completeness, and reliability as well as the relationship of
the results of the studies to human risk. EPA has also considered
available information concerning the variability of the sensitivities
of major identifiable subgroups of consumers, including infants and
children.
The major target organs of cyprodinil are the liver and the kidney.
Liver effects were consistent among male and female rats and mice in
both sub-chronic and chronic studies and typically included increased
liver weights along with increases in serum clinical chemistry
parameters associated with adverse effects on liver function (i.e.,
increased cholesterol and phospholipid levels). Microscopic lesions in
rats and mice included hepatocyte hypertrophy and hepatocellular
necrosis. In the kidneys, adverse effects were seen as chronic tubular
lesions and chronic kidney inflammation following sub-chronic exposure
of male rats. Chronically, cyprodinil caused increased kidney weights
and progressive nephropathy in male rats. Chronic effects in dogs were
limited to decreased body-weight gain, decreased food consumption and
decreased food efficiency; liver toxicity was not seen in the dog.
Although increases in thyroid weight and/or hypertrophy of thyroid
follicular cells were observed at higher doses in the rat 28-day oral-
toxicity studies and in the 90-day oral-toxicity study in rats,
treatment related changes in thyroid weights or gross/microscopic
observations were not observed in the chronic rat study or in other
studies.
A 28-day dietary immunotoxicity study in mice resulted in no
apparent suppression of the humoral component of the immune system. The
only effect attributed to cyprodinil treatment was higher mean
absolute, relative (to body weight), and adjusted liver weights for the
5,000 ppm group. There were no treatment-related effects on absolute,
adjusted, or relative spleen or thymus weights; no effects on specific
activity or total activity of splenic Immunoglobulin M antibody-forming
cells to the T cell-dependent red blood cell antigens. No dermal or
systemic
[[Page 47306]]
toxicity was seen following repeated dermal application at the highest
dose in a 21-day dermal toxicity study in rabbits.
An acute neurotoxicity study indicated systemic toxicity with signs
of induced hunched posture, piloerection, and reduced responsiveness to
sensory stimuli and reduced motor activity. Females were slightly more
affected than males per daily clinical observations, which disappeared
by day 3 to 4. A dose-related reduction in body temperature was seen in
all treated animals, thus hypothermia is considered a compound-related
effect in the highest dose tested and was found to be statistically
significant, whereas the lower dosed animals was not or only marginally
significant and was fully reversible in all groups. Clinical signs,
hypothermia, and changes in motor activity were found to all be
reversible by day 8. There were no histopathological findings to
support evidence of damage to the central nervous system, eyes, optic
nerves, or skeletal muscles. A sub-chronic neurotoxicity study showed
no treatment related effects on mortality, clinical signs, or gross or
histological neuropathology. Functional observational battery and motor
activity testing revealed no treatment related effects up to the
highest dose tested.
There was no evidence of increased susceptibility in the
developmental rat or rabbit study following in utero exposure or in the
two-generation reproduction study following pre- and post-natal
exposure. Fetal toxicity, manifested as significantly lower fetal
weights and an increased incidence of delayed ossification in the rat
and a slight increase in litters showing extra ribs (13th) in the
rabbit, was reported in developmental toxicity studies. In a rat two-
generation reproduction study, significantly lower pup weights for F 1
and F 2 offspring were observed. However, each of these fetal/neonatal
effects occurred at the same dose levels at which maternal toxicity
(decreased body weight gain) was observed and were considered to be
secondary to maternal toxicity.
Based on the lack of evidence of carcinogenicity in mice and rats
at doses that were judged to be adequate to the carcinogenic potential,
cyprodinil was classified as ``not likely to be carcinogenic to
humans.''
Specific information on the studies received and the nature of the
adverse effects caused by cyprodinil as well as the no-observed-
adverse-effect-level (NOAEL) and the lowest-observed-adverse-effect-
level (LOAEL) from the toxicity studies can be found at http://www.regulations.gov in document, ``Human Health Risk Assessment for
Registration Review and New Use Risk Assessment to Support the
Registration of Proposed Use on Crop Subgroup 1C'' in docket ID number
EPA-HQ-OPP-2015-0646.
B. Toxicological Points of Departure/Levels of Concern
Once a pesticide's toxicological profile is determined, EPA
identifies toxicological points of departure (POD) and levels of
concern to use in evaluating the risk posed by human exposure to the
pesticide. For hazards that have a threshold below which there is no
appreciable risk, the toxicological POD is used as the basis for
derivation of reference values for risk assessment. PODs are developed
based on a careful analysis of the doses in each toxicological study to
determine the dose at which the NOAEL and the LOAEL are identified.
Uncertainty/safety factors are used in conjunction with the POD to
calculate a safe exposure level--generally referred to as a population-
adjusted dose (PAD) or a reference dose (RfD)--and a safe margin of
exposure (MOE). For non-threshold risks, the Agency assumes that any
amount of exposure will lead to some degree of risk. Thus, the Agency
estimates risk in terms of the probability of an occurrence of the
adverse effect expected in a lifetime. For more information on the
general principles EPA uses in risk characterization and a complete
description of the risk assessment process, see http://www.epa.gov/pesticides/factsheets/riskassess.htm.
A summary of the toxicological endpoints for cyprodinil used for
human risk assessment is discussed in Unit III.B of the final rule
published in the Federal Register of August 17, 2012 (77 FR 49732)
(FRL-9359-7).
C. Exposure Assessment
1. Dietary exposure from food and feed uses. In evaluating dietary
exposure to cyprodinil, EPA considered exposure under the petitioned-
for tolerances as well as all existing cyprodinil tolerances in 40 CFR
180.532.
i. Acute exposure. Quantitative acute dietary exposure and risk
assessments are performed for a food-use pesticide, if a toxicological
study has indicated the possibility of an effect of concern occurring
as a result of a 1-day or single exposure. Such effects were identified
for cyprodinil. In estimating acute dietary exposure, EPA used food
consumption information from the United States Department of
Agriculture (USDA) National Health and Nutrition Examination Survey,
What We Eat in America, (NHANES/WWEIA). This dietary survey was
conducted from 2003 to 2008. As to residue levels in food, EPA utilized
the Dietary Exposure Evaluation Model software with the Food Commodity
Intake Database DEEM-FCID, Version 3.16 default processing factors and
tolerance-level residues and 100 percent crop treated (PCT) for all
commodities.
ii. Chronic exposure. In conducting the chronic dietary exposure
assessment EPA used the food consumption data from the USDA NHANES/
WWEIA dietary survey conducted from 2003 to 2008. As to residue levels
in food, EPA tolerance-level residues were used for most commodities,
and average field trial residues were used for pome fruit, head
lettuce, leaf lettuce, spinach, tomato, and grapes. 100 PCT assumptions
were used for all commodities. DEEM default and empirical processing
factors were used to modify the tolerance values.
iii. Cancer. Based on the data summarized in Unit III.A., EPA has
concluded that cyprodinil does not pose a cancer risk to humans.
Therefore, a dietary exposure assessment for the purpose of assessing
cancer risk is unnecessary.
iv. Anticipated residue and percent crop treated (PCT) information.
Section 408(b)(2)(E) of FFDCA authorizes EPA to use available data and
information on the anticipated residue levels of pesticide residues in
food and the actual levels of pesticide residues that have been
measured in food. If EPA relies on such information, EPA must require
pursuant to FFDCA section 408(f)(1) that data be provided 5 years after
the tolerance is established, modified, or left in effect,
demonstrating that the levels in food are not above the levels
anticipated. For the present action, EPA will issue such data call-ins
as are required by FFDCA section 408(b)(2)(E) and authorized under
FFDCA section 408(f)(1). Data will be required to be submitted no later
than 5 years from the date of issuance of these tolerances.
2. Dietary exposure from drinking water. The Agency used screening-
level water exposure models in the dietary exposure analysis and risk
assessment for cyprodinil and CGA 249287 in drinking water. These
simulation models take into account data on the physical, chemical, and
fate/transport characteristics of cyprodinil and CGA 249287. Further
information regarding EPA drinking water models used in pesticide
exposure assessment can be found at http://www.epa.gov/oppefed1/models/water/index.htm.
[[Page 47307]]
Based on the Pesticide Root Zone Model/Exposure Analysis Modeling
System (PRZM/EXAMS), Screening Concentration in Ground Water (SCI-GROW)
models and Pesticide Root Zone Model Ground Water (PRZM GW), the
estimated drinking water concentrations (EDWCs) of cyprodinil and CGA
249287 for acute exposures are estimated to be 34.8 parts per billion
(ppb) for surface water and 2.05 ppb for ground water. EDWCs for
chronic exposures for non-cancer assessments are estimated to be 24.7
ppb for surface water and 1.80 ppb for ground water.
Modeled estimates of drinking water concentrations were directly
entered into the dietary exposure model. For acute dietary risk
assessment, the water concentration value of 34.8 ppb was used to
assess the contribution to drinking water. For chronic dietary risk
assessment, the water concentration of value 24.7 ppb was used to
assess the contribution to drinking water.
3. From non-dietary exposure. The term ``residential exposure'' is
used in this document to refer to non-occupational, non-dietary
exposure (e.g., for lawn and garden pest control, indoor pest control,
termiticides, and flea and tick control on pets). Cyprodinil is
currently registered for the following uses that could result in
residential exposures: Ornamental plants. EPA assessed residential
exposure using the following assumptions: Only short-term inhalation
exposures to adult residential handlers from application to ornamental
plants. Though there may be short-term dermal exposures to handlers,
this was not assessed since no dermal endpoint was identified. Post-
application exposures to adults and children are not expected.
Intermediate or chronic exposures are not expected. Further information
regarding EPA standard assumptions and generic inputs for residential
exposures may be found at http://www.epa.gov/pesticides/trac/science/trac6a05.pdf.
4. Cumulative effects from substances with a common mechanism of
toxicity. Section 408(b)(2)(D)(v) of FFDCA requires that, when
considering whether to establish, modify, or revoke a tolerance, the
Agency consider ``available information'' concerning the cumulative
effects of a particular pesticide's residues and ``other substances
that have a common mechanism of toxicity.''
EPA has not found cyprodinil to share a common mechanism of
toxicity with any other substances, and cyprodinil does not appear to
produce a toxic metabolite produced by other substances. For the
purposes of this tolerance action, therefore, EPA has assumed that
cyprodinil does not have a common mechanism of toxicity with other
substances. For information regarding EPA's efforts to determine which
chemicals have a common mechanism of toxicity and to evaluate the
cumulative effects of such chemicals, see EPA's Web site at http://www.epa.gov/pesticides/cumulative.
D. Safety Factor for Infants and Children
1. In general. Section 408(b)(2)(C) of FFDCA provides that EPA
shall apply an additional tenfold (10X) margin of safety for infants
and children in the case of threshold effects to account for prenatal
and postnatal toxicity and the completeness of the database on toxicity
and exposure unless EPA determines based on reliable data that a
different margin of safety will be safe for infants and children. This
additional margin of safety is commonly referred to as the Food Quality
Protection Act Safety Factor (FQPA SF). In applying this provision, EPA
either retains the default value of 10X, or uses a different additional
safety factor when reliable data available to EPA support the choice of
a different factor.
2. Prenatal and postnatal sensitivity. In a rat developmental
toxicity study, there were significantly lower mean fetal weights in
the high-dose group compared to controls as well as a significant
increase in skeletal anomalies in the high-dose group due to abnormal
ossification. The skeletal anomalies/variations were considered to be a
transient developmental delay that occurs secondary to the maternal
toxicity noted in the high-dose group. In the rabbit study, the only
treatment related developmental effect was indication of an increased
incidence of a 13th rib at maternally toxic doses. Signs of fetal
effects in the two-generation reproductive toxicity study included
significantly lower F1 and F2 pup weights in the
high-dose group during lactation, which continued to be lower than
controls post-weaning and after the pre-mating period in the
F1 generation only. Reproductive effects were seen only at
doses that also caused parental toxicity.
3. Conclusion. EPA has determined that reliable data show the
safety of infants and children would be adequately protected if the
FQPA SF were reduced to 1X for non-inhalation routes of exposure and
retained at 10X for inhalation exposure scenarios for all population
groups. That decision is based on the following findings:
i. The toxicity database for cyprodinil is complete, except for a
90-day inhalation toxicity study required to reduce uncertainty
associated with the use of an oral POD for assessing risk via the
inhalation route. In the absence of a route-specific inhalation study,
a 10x FQPA SF factor for residential scenarios will be retained for
risk assessments involving inhalation exposure.
ii. As indicated by an acute neurotoxicity study in mice, clinical
signs, hypothermia, and changes in motor activity were all found to be
reversible and no longer seen at day 8. There were no treatment related
effects on mortality, gross or histological neuropathology. Reduced
motor activity, induced hunched posture, piloerection and reduced
responsiveness to sensory stimuli were observed and disappeared in all
animals by day 3 to 4. In a sub-chronic neurotoxicity study in rats,
there were no treatment related effects on mortality, clinical signs,
or gross or histological neuropathology. No clinical signs suggestive
of neurobehavioral alterations or evidence of neuropathological effects
were observed in the available oral-toxicity studies. Based on this
evidence, there is no need for a developmental neurotoxicity study or
additional uncertainty factors (UFs) to account for neurotoxicity.
iii. In the prenatal developmental rat and rabbit studies and in
the two-generation reproduction rat study, toxicity to the fetuses/
offspring, when observed, occurred at the same doses at which effects
were observed in maternal/parental animals. All of these fetal effects
were considered to be secondary to maternal toxicity. There is no
evidence that cyprodinil results in increased susceptibility in utero
rats or rabbits in the prenatal developmental studies or in young rats
in the two-generation reproduction study.
iv. There are no residual uncertainties identified in the exposure
databases. The acute dietary assessment was conservative and based on
100 PCT and tolerance level residues as well as DEEM default and
empirical processing factors. The chronic dietary assessment was
partially refined with average field trial residues for some
commodities and tolerance-level residues for the remaining commodities.
DEEM default and empirical processing factors were also incorporated
into the chronic dietary assessment. EPA made conservative (protective)
assumptions in the ground and surface water modeling used to assess
exposure to cyprodinil in drinking water. Based on the discussion in
Unit III.C.3, postapplication exposure of children as well as
incidental oral exposure of toddlers is not expected. These assessments
will not
[[Page 47308]]
underestimate the exposure and risks posed by cyprodinil.
E. Aggregate Risks and Determination of Safety
EPA determines whether acute and chronic dietary pesticide
exposures are safe by comparing aggregate exposure estimates to the
acute PAD (aPAD) and chronic PAD (cPAD). For linear cancer risks, EPA
calculates the lifetime probability of acquiring cancer given the
estimated aggregate exposure. Short-, intermediate-, and chronic-term
risks are evaluated by comparing the estimated aggregate food, water,
and residential exposure to the appropriate PODs to ensure that an
adequate MOE exists.
1. Acute risk. Using the exposure assumptions discussed in this
unit for acute exposure, the acute dietary exposure from food and water
to cyprodinil will occupy 8.6% of the aPAD for children one to two
years old, the population group receiving the greatest exposure.
2. Chronic risk. Using the exposure assumptions described in this
unit for chronic exposure, EPA has concluded that chronic exposure to
cyprodinil from food and water will utilize 86% of the cPAD for
children one to two years old, the population group receiving the
greatest exposure. Based on the explanation in Unit III.C.3., regarding
residential use patterns, chronic residential exposure to residues of
cyprodinil is not expected.
3. Short-term risk. Short-term aggregate exposure takes into
account short-term residential exposure plus chronic exposure to food
and water (considered to be a background exposure level). Cyprodinil is
currently registered for uses that could result in short-term
residential exposure, and the Agency has determined that it is
appropriate to aggregate chronic exposure through food and water with
short-term residential exposures to cyprodinil. Using the exposure
assumptions described in this unit for short-term exposures, EPA has
estimated the short-term food, water, and residential exposures. For
adults, oral dietary and inhalation estimates were combined using the
total aggregate risk index (ARI) methodology since the levels of
concern (LOC) for oral and dietary exposure (LOC = 100) and inhalation
(LOC 1,000) are different. The short-term ARI for adults is 70 which is
greater than 1 and is therefore, not of concern.
4. Intermediate-term risk. Intermediate-term aggregate exposure
takes into account intermediate-term residential exposure plus chronic
exposure to food and water (considered to be a background exposure
level). An intermediate-term adverse effect was identified; however,
cyprodinil is not registered for any use patterns that would result in
intermediate-term residential exposure. Intermediate-term risk is
assessed based on intermediate-term residential exposure plus chronic
dietary exposure. Because there is no intermediate-term residential
exposure and chronic dietary exposure has already been assessed under
the appropriately protective cPAD (which is at least as protective as
the POD used to assess intermediate-term risk), no further assessment
of intermediate-term risk is necessary, and EPA relies on the chronic
dietary risk assessment for evaluating intermediate-term risk for
cyprodinil.
5. Aggregate cancer risk for U.S. population. Based on the lack of
evidence of carcinogenicity in two adequate rodent carcinogenicity
studies, chemical name is not expected to pose a cancer risk to humans.
6. Determination of safety. Based on these risk assessments, EPA
concludes that there is a reasonable certainty that no harm will result
to the general population, or to infants and children from aggregate
exposure to cyprodinil residues.
IV. Other Considerations
A. Analytical Enforcement Methodology
Adequate enforcement methodology (AG-631 and AG-631B) are available
to enforce the tolerance expression. The method may be requested from:
Chief, Analytical Chemistry Branch, Environmental Science Center, 701
Mapes Rd., Ft. Meade, MD 20755-5350; telephone number: (410) 305-2905;
email address: [email protected].
B. International Residue Limits
In making its tolerance decisions, EPA seeks to harmonize U.S.
tolerances with international standards whenever possible, consistent
with U.S. food safety standards and agricultural practices. EPA
considers the international maximum residue limits (MRLs) established
by the Codex Alimentarius Commission (Codex), as required by FFDCA
section 408(b)(4). The Codex Alimentarius is a joint United Nations
Food and Agriculture Organization/World Health Organization food
standards program, and it is recognized as an international food safety
standards-setting organization in trade agreements to which the United
States is a party. EPA may establish a tolerance that is different from
a Codex MRL; however, FFDCA section 408(b)(4) requires that EPA explain
the reasons for departing from the Codex level.
The Codex has not established a MRL for cyprodinil in/on potato,
wet peel and vegetable, tuberous and corm, subgroup 1C.
V. Conclusion
Therefore, tolerances are established for residues of cyprodinil,
4-cyclopropyl-6-methyl-N-phenyl-2-pyrimidinamin, in or on potato, wet
peel at 0.03 and vegetable, tuberous and corm, subgroup 1C at 0.01ppm.
VI. Statutory and Executive Order Reviews
This action establishes tolerances under FFDCA section 408(d) in
response to a petition submitted to the Agency. The Office of
Management and Budget (OMB) has exempted these types of actions from
review under Executive Order 12866, entitled ``Regulatory Planning and
Review'' (58 FR 51735, October 4, 1993). Because this action has been
exempted from review under Executive Order 12866, this action is not
subject to Executive Order 13211, entitled ``Actions Concerning
Regulations That Significantly Affect Energy Supply, Distribution, or
Use'' (66 FR 28355, May 22, 2001) or Executive Order 13045, entitled
``Protection of Children from Environmental Health Risks and Safety
Risks'' (62 FR 19885, April 23, 1997). This action does not contain any
information collections subject to OMB approval under the Paperwork
Reduction Act (PRA) (44 U.S.C. 3501 et seq.), nor does it require any
special considerations under Executive Order 12898, entitled ``Federal
Actions to Address Environmental Justice in Minority Populations and
Low-Income Populations'' (59 FR 7629, February 16, 1994).
Since tolerances and exemptions that are established on the basis
of a petition under FFDCA section 408(d), such as the tolerance in this
final rule, do not require the issuance of a proposed rule, the
requirements of the Regulatory Flexibility Act (RFA) (5 U.S.C. 601 et
seq.), do not apply.
This action directly regulates growers, food processors, food
handlers, and food retailers, not States or tribes, nor does this
action alter the relationships or distribution of power and
responsibilities established by Congress in the preemption provisions
of FFDCA section 408(n)(4). As such, the Agency has determined that
this action will not have a substantial direct effect on States or
tribal governments, on the
[[Page 47309]]
relationship between the national government and the States or tribal
governments, or on the distribution of power and responsibilities among
the various levels of government or between the Federal Government and
Indian tribes. Thus, the Agency has determined that Executive Order
13132, entitled ``Federalism'' (64 FR 43255, August 10, 1999) and
Executive Order 13175, entitled ``Consultation and Coordination with
Indian Tribal Governments'' (65 FR 67249, November 9, 2000) do not
apply to this action. In addition, this action does not impose any
enforceable duty or contain any unfunded mandate as described under
Title II of the Unfunded Mandates Reform Act (UMRA) (2 U.S.C. 1501 et
seq.).
This action does not involve any technical standards that would
require Agency consideration of voluntary consensus standards pursuant
to section 12(d) of the National Technology Transfer and Advancement
Act (NTTAA) (15 U.S.C. 272 note).
VII. Congressional Review Act
Pursuant to the Congressional Review Act (5 U.S.C. 801 et seq.),
EPA will submit a report containing this rule and other required
information to the U.S. Senate, the U.S. House of Representatives, and
the Comptroller General of the United States prior to publication of
the rule in the Federal Register. This action is not a ``major rule''
as defined by 5 U.S.C. 804(2).
List of Subjects in 40 CFR Part 180
Environmental protection, Administrative practice and procedure,
Agricultural commodities, Pesticides and pests, Reporting and
recordkeeping requirements.
Dated: July 11, 2016.
Daniel Kenny,
Acting Director, Registration Division, Office of Pesticide Programs.
Therefore, 40 CFR chapter I is amended as follows:
PART 180--[AMENDED]
0
1. The authority citation for part 180 continues to read as follows:
Authority: 21 U.S.C. 321(q), 346a and 371.
0
2. In Sec. 180.532, add alphabetically the commodities ``Potato, wet
peel'' and ``Vegetable, tuberous and corm, subgroup 1C'' to the table
in paragraph (a) to read as follows:
Sec. 180.532 Cyprodinil; tolerances for residues.
(a) General. (1) * * *
------------------------------------------------------------------------
Parts per
Commodity million
------------------------------------------------------------------------
* * * * *
Potato, wet peel............................................ 0.03
* * * * *
Vegetable, tuberous and corm, subgroup 1C................... 0.01
* * * * *
------------------------------------------------------------------------
* * * * *
[FR Doc. 2016-17268 Filed 7-20-16; 8:45 am]
BILLING CODE 6560-50-P