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Foreword
The advent of space vehicles which utilize cryogenic fluids for propellants has

greatly increased activity in the field of cryogenic engineering in recent years.

Large capacity gas liquefaction plants have become necessary to supply cryogenic

fluids in the amounts needed for rocket testing. With these plants and the rockets

themselves has come the need for associated cryogenic equipment such as valves,

pumps, liquid transfer lines, flov^ indicators, pressure switches, temperature and

level sensing devices, and, in fact, all the equipment used in handling liquids at

other more convenient temperatures.

Intelligent design of reliable cryogenic equipment such as this requires the

existence of data on the mechanical properties of structural solids at low tempera-

tures ; data which are all too scattered or too scarce to suit most designers. This

book, therefore, is issued to help fill the need for a compilation of useful design

figures.
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Mechanical Properties of Structural Materials

at Low Temperatures

A Compilation from the Literature

R. Michael McClintock and Hugh P. Gibbons

The tensile strength, yield strength, tensile elongation, and impact energy
of about two hundred materials, metallic^ and nonmetallic, are given graphically

as functions of temperature between 4° and 300° Kelvin.

Introduction

The designer of equipment which must operate at very low tempera-
tures is faced at some time in the design with the problems of making
material selections and of performing initial stress calculations.

This is no less true, of course, when a device is being designed for

use at other temperatures, but the dearth of data on the mechanical
properties of commercial materials at low temperatures must certainly

be disconcerting to the design engineer who is looking for a material

to act as a structural member in a cryogenic device. It is hoped that

this compilation of some of the mechanical properties of materials

will assist the designer by making available in one publication reliable

data which have appeared in the literature or which, in some cases,

have not yet been published.

The selection of a material for fabrication of a part can usually be
made in several ways, but very often the simplest method involves

the establishing of some figure of merit for the application at hand,
and comparing materials on the basis of this figure. For example,
double shell, vacuum insulated, cryogenic storage containers often
require tension support members for their inner shells. Since it is

desirable that such members conduct as little heat as possible into

the inner shell from the surroundings of the vessel, an obvious figure

of merit for the material to be selected is its yield strength divided by
its mean thermal conductivity. (The appropriate yield strength
figure is the lowest value for the material over the temperature range
in which it operates.) ^A^ien the most promising materials have
been compared on the basis of these figures of merit, then the more
qualitative aspects can be examined. These may include such things
as the ease of fabrication or the weldability of the material. In some
cases, it may even be desirable to assign arbitrary values to the qualita-
tive properties of the materials, and so to construct fairly complex
figures of merit for the purpose of material selection.

Following the choice of a proper material, the designer will make
initial stress calculations in order to get an idea of the size of the
structural components necessary to sustain the working loads. Here
again the mechanical properties of the materials must be known.

It is to assist these two phases of low temperature equipment design
that the present compilation of properties is especially presented.

The data are presented with the idea that an engineer who is mak-
ing initial calculations on equipment for operation at cryogenic
temperatures is more interested in obtaining quickly a definite figure

than he is in evaluating the experimental data given in several
detailed reports on the same material. The graphs and tables pre-
sented here, consequently, represent an attempt by the authors to
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perform an evaluation of data which have appeared in the literature

and to present the design engineer with the result. The curves

therefore appear as lines representing the mechanical properties

as functions of temperature, and not as bands representing maximum
and minimum values reported.

Such an evaluation process is bound to be somewhat subjective. If

it were not, the reduction of data to line graphs could better be per-

formed by the most convenient digital computer programed to provide

the best fitting polynomial of degree "n." Unless the data were
weighted judiciously, such a curve would be little more than a mathe-
matical delight and perhaps in poor keeping with the known or

suspected behavior of the properties of materials with temperature.

The curves in this book, therefore, have been constructed from data
which the authors found to be the best documented and the most
consistent with that of other investigators. In most cases whatever
errors remain after such an abridgement will be adequately compen-
sated by the designer's use of a "safety factor" in his stress analysis.

Where they are not, and greater confidence is required, the references

should be consulted for more detail.

The references will also disclose the fact that not all the available

materials have been included in this volume. Different metals or
different heat treatments of the same metal, for example, have in some
cases been omitted where it was thought that they were not the most
representative of currently available materials. Omissions were also

made in a few cases where the trend of a mechanical property as a

function of some metallurgical variable w^as thought to be adequately
demonstrated by those data selected for inclusion.

It should be remembered that any reduction of scattered mechanical
properties data to a smooth curve is an attempt to represent the "most
probable" relationship between ordinate and abscissa from among
the samples tested. Specific samples may lie above or below the curve,

however, and the discrepancies caused by commercial variation in

chemical composition, heat treatment, dimensional and experimental
errors, etc., are normally condensed into a "safety factor" by the de-
signer, whereby he sidesteps costly quality control, or more com-
plicated mathematics in the case of complex devices. The use of a
safety factor is properly the province of the design engineer since he
knows the use to which the equipment will be put, and the reliability

desired. It should therefore be subject to the designer's complete
knowledge, and not, as is sometimes the case, be applied to experi-
mental data by the authors of such reports as this and the results

presented as a table of "permissible stresses". This not only mis-
places the responsibility for safety or reliability, but in complex cal-

culations the safety factor can be compounded unintentionally. The
point of mentioning this is merely that the data in this book should
be used with caution for designs in which safety factors must be small
(as in cases of restricted weight or size) , since low temperature prop-
erties are often sensitive to variations in thermal and mechanical his-

tory and chemical composition which are allowable within commer-
cial specifications.

In addition to these variations, limitations in experimental accu-

racy may account for some of the apparent inconsistencies which
appear in graphs in this book. For example, the tensile strength of

annealed type 803 stainless steel, which appears on page 98, lies
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slightly above that of the same material which has been cold drawn
10 percent ; and at 20° K, the same effect reappears in types 310 and 316

stainless steels. It is conceivable that such an effect is real, but the

authors' first inclination is to ascribe the difficulty to differences in

strain rate between observers, or to other experimental limitations.

In any event, having no better knowledge, the authors have thought
it best simply to include the curv^es derived from the experimental

results and to let the apparent inconsistencies stand for the present.

The same philosophy applies to the graph of the strength of tita-

nium alloys on page 74, although the drop in tensile strength of the

two alloys at 20°K can probably be attributed to experimental error

in this case. The elongation of these two alloys is zero at 20°K, and
brittle materials are extremely sensitive to accidental surface imper-
fections or other stress raisers, even such as the radius commonly
present at the ends of the reduced section of a tensile specimen.

The mechanical properties presented in this compilation as func-

tions of temperature are tensile strength, yield strength at 0.2 percent
offset (unless otherwise noted), elongation, and impact energy. In
a few instances the reduction of area of a tensile specimen is presented

as an indication of ductility. The first three properties were ob-

tained from short time tension tests of smooth specimens which were
generally cut from bar or plate one-eighth inch thick or thicker.

Thinner sheet material is noted on the graphs. Some investigators

report "yield point'' (usually obtained by the "drop of the beam"
method) rather than yield strength. In these cases the graphs are

so noted, and the upper yield point is the one referred to.

The impact energy is the energy absorbed by a standard specimen
in breaking under an impact load. In every case the type of impact
specimen is indicated on the graph by a note wliich identifies it with
one of the specimens described in test method E23-56T of the Amer-
ican Society for Testing Materials. The notation "Charpy V" re-

fers to the type "A" specimen having the V-notch, "Charpy K" refers

to the type "B'' specimen with the keyhole notch, and "Charpy U"
refers to the type "C" specimen with the U-shaped notch. Izod speci-

mens are type "D" in the ASTM specifications.

The Kelvin temperature scale is so Avidely used in cryogenics that
all data have been converted to these units for consistency. For the
convenience of those to whom a Fahrenheit temperature means more,
extra scales have been included on pages ix and x. These may
be cut out and held along the abscissa to allow interpolation as well
as direct reading in degrees Fahrenheit. The extra scales also con-
tain divisions corresponding to the ordinate mechanical properties
for interpolation.

Adjacent to each curve are several numbers in brackets. These
numbers correspond to the references in the bibliography at the end
of the graphical section and indicate the sources of data from which
the curve was constructed. On graphs where two or more curves
appear for the same material, the reference numbers given for one
curve apply to the rest. Because of the scarcity of published data,

some of the references quoted are from unpublished records.

In most cases smooth curves are used to represent the behavior of
the mechanical properties as functions of temperature. These curves
represent interpolation between experimental data points as men-
tioned before. In some cases, however, the data are joined by
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straight lines, and intermediate or end points are indicated. Where
this occurs, it is because either a scarcity of data or a doubt on the

part of the authors cautioned against drawing a smooth curve.

The authors have tried to use nomenclature which is consistent with
etforts of the various technical societies and manufacturers' asso-

ciations to classify and standardize metal specifications. When am-
biguities might still exist, nominal or reported compositions have
been used in addition to the name of a material. In a few cases pro-

prietary names have been given when they have become so commonly
used that other designations might be confusing.

Throughout the book several abbreviations are used on the graphs.

These correspond with usual metallurgical practice in this country

:

stress is given in psi (pounds per square inch), impact energy in ft-lb

(foot-pounds), and tensile elongation in percent in 4D (four diame-
ters) where this ASTM recommendation Avas adhered to. The per-

centage of cold drawing or cold reduction given on many of the
graphs refers to reduction of area rather than reduction of diameter.

"OQ & T" means "oil quenched and tempered", "WQ & T" means
"waterquenched and tempered", "AC" means "air-cooled", "RB" and
"RC" mean "Rockwell B hardness" and "Rockwell C hardness",
respectively. Heat treating temperatures are given in degrees Fahr-
enheit, which is common in metallurgy in this country. Also w^henever
the metallurgical condition of the specimens was stated in the litera-

ture, it is appended to the curves. It is surprising, by the way, to

find in the literature data derived from material described only as

"soft yellow brass" or "soft bronze". An attempt was made to extract

meaning from these data, but for the most part the value of such
information is not great. Laboratory analysis of the materials tested

and careful control of the thermal and mechanical history of the
materials investigated would help immensely to establish the reliability

and the usefulness of mechanical properties data.

Probably the first thing learned by a newcomer to the cryogenic

field about the properties of materials is that some materials become
brittle at low temperatures and are therefore miusable in many struc-

tural applications at these temperatures. The literature is studded
with accounts of spectacular brittle service failures which would not
have occurred at higher temperatures. There are certain applica-

tions, however, in which it would be a mistake to apply the ductility

criterion in the selection of a material for low temperature service.

Springs are an example. The authors are aware of an instance in

which the most suitable material for a low temperature coil spring
was not considered because it would be brittle at the service tempera-
ture. The ductility criterion should not generally be applied in such
cases since a smooth coil spring having no re-entrant comers is care-

fully designed to act as an elastic member and usually need not pos-

sess any ductility for its satisfactory service. Professor Collins at

the Massachusetts Institute of Technology, for example, has success-

fully used carbon steel valve springs in expansion engines for the

liquefaction of nitrogen and helium.

For most structural applications, however, the engineer would like

some assurance that the material he selects will not be brittle at the

service temperature. If it were, his hardware would be liable to

catastrophic failure in the event of accidental impact or vibration loads

at a point where local stresses occurred in excess of those for which he
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has allowed. "Ductile" materials, of course, are capable of redistribut-

ing local stresses in excess of their yield strength by the mechanism of

plastic floAY. One great difficulty, however, has been that of devising

a laboratory test which will predict satisfactorily whether a material

will behave in a ductile or a brittle manner in service. The plastic

elongation of a tensile specimen is not a satisfactory index, since many
materials which show plastic deformation in a tensile test at a given

temperature have been known to fail in a J>rittle manner in service at

the same (or even higher) temperatures. Ordinary low carbon steel,

for example, which Eldin and Collins ^ find to be completely brittle in

a tensile test only below 65°K, has a record of many service failures at

temperatures only moderately below room temperature. Obviously
the behavior of a material under the conditions of uniaxial stress

present in the usual tensile test does not provide a sufficiently good
prediction of its behavior under multiaxial stress conditions.

The beam impact test, in which a standard-size bar is subjected to a

high-velocity blow, while popular because of its convenience, is also

deficient in some respects as an index of performance of a material in

ser\dce. A correlation has been obtained between service performance
and impact energy for steels by Jaffee et al.,^ but such a correlation

applicable to all materials has not yet been found. One difficulty seems
to be that light metals pay an unjust penalty in the impact test. Mag-
nesium alloys, for example, exhibit low impact strength, but have been
satisfactorily used in the aircraft industry in structural applications in

which they receive impact loads. So whereas the tensile elongation
of a material seems to be too optimistic an indication of service

ductility, the energy absorbed in an impact test seems in some cases to

give information which is too pessimistic.

The energy absorbed in an impact test can be deceptive for still

other reasons. For example, the energy value is affected considerably
by incomplete breakage of a very ductile specimen. When this occurs,

a portion of the energy recorded in a Charpy test is the result of forc-

ing the specimen through the supports of the machine. Consequently
this occurrence, along with other supplementary information such as

the character of the fracture surface, is sometimes of even greater

importance than the absolute value of the energy absorbed.

As a simple laboratory test which will provide a suitable analogy
to the service performance of a material, the notch tensile test is gain-
ing acceptance for some purposes. The test is performed either at low
strain rates in tensile equipment or at high strain rates, usually in

impact machines which have been modified for this use. "Notches"
almost always exist, of course, in any manufactured part in the form
of weld craters, rivet holes, re-entrant comers, or simply accidental

scratches ; and the notch-tensile test provides an indication of the abil-

ity of a material to sustain working stresses in the presence of such
stress raisers. A properly designed notch-tensile specimen also con-

tains an area of bi-axial or tri-axial stress as well, so information can
be gained about the performance of the material under these

conditions.

There are other types of laboratory tests which have been devised
to predict the performance in service of structural materials, each a

1 See reference 29.
2 Jaffee, Kosting. Jones, Bluhm, Hurlich, and Wallace, Impact tests help engineers

specify steel, SAE Journal, March 1951.
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compromise between simplicity and universality on the one hand, and
degree of applicability to the service requirement on the other. For
the most part, airframe and component manufacturers make the com-
promise in the latter direction. Their test specimens consequently
consist of subassemblies, complete components, or even entire complex
assemblies. In industries in which weight is not a prime considera-

tion, and larger safety factors can be used, the tendency is toward the
simpler tests. Obviously, economic considerations make the simple
experiment the more desirable, and until a simple test is devised which
is a reliable index of service performance, most design engineers will

content themselves Avith the less desirable information provided by
the usual tensile and impact tests in the first stages of design.

The greatest amount of information in the literature which indi-

cates something about the ductility of a material is in the form of

tensile elongation or impact data. Therefore, while not the most sat-

isfactory indications of ductility, these two mechanical properties are

reported in addition to yield and tensile strengths in this book.

The authors take pleasure in acknowledging the assistance of L. J.

Ericks in the preparation of this book. His careful drafting is re-

sponsible for the final appearance of the graphs.
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72

190x10^-

\
~1

1 \ \

INTERSTITIALSlC+OtHtN) =.30% (NORMAL)=^
INTERSTITIALS(C+0+H + N) = .l27o (LOW) O

ALL SPECIMENS ANNEALED

COMMERCIAL GRADE RS-70 (.032"SHEEtT

100 150 200
TEMPERATURE, **K

STRENGTH OF UNALLOYED
TITANIUM

300



73

CM

45

40

35

30

25

4- 20
c
0)
o
^ 15
0)
Q.

10

/0[3I]

1
• [32]

/ \ COMMERC
(.032" SH
r'GAGE L

:iAL GRA
EET),
.ENGTH

DE RS-7

ALL SPECIMENS ANNEALE D

• INTERSTITIALS (C+O +H+N) = .30

O INTERSTITIALS (C + O+H+N) = .12
1 1 1

%
%

50 100 150 200
TEMPERATURE, ^'K

250 300

ELONGATION OF UNALLOYED TITANIUM

20

15

10

5

coMr
INTE

^ERCIALL
RSTITIAL

Y PURE
S NOT Gl VEN

0[3I]^

[8S

J . A M M C A 1 cn

• [32]^
— CHARPY V

— CHARPY K

^ 50 100 150 200 250 300
TEMPERATURE, °K

IMPACT ENERGY OF UNALLOYED TITANIUM



280 X 10

270

260

250

240

230

220

^ 210
CO
UJ
cc
I- 200

190

180

170

160

150

140

130

120
100 150 200 250 300
TEMPERATURE, K

STRENGTH OF TITANIUM ALLOYS



30

25

20

c

\_

Q.

10

7o IN 2 INCHES
% IN I INCH

% IN !/2 INCH

75

3V-'ll Cr -SAi [7l](.032" SHEET)-\^
4 Al - 4 Mn [12]

6 Al - 4 V [19]

100 150 200
TEMPERATURE, °K

ELONGATION OF TITANIUM ALLOYS

300

35

30

25

^20

^ 15

10

NON-STD. CHARPY V SPECIMENS
.788" WIDE X .197" THICK I

NOTCH WAS STD. SHAPE. BUT V2 STD. DEPTH
I

I

0

l3V-IICr- 3 Al,"

ANNEALED [19]

4 Al -4 Mn , ANNEALED [|2]

50 250 300100 150 200
TEMPERATURE, °K

IMPACT ENERGY OF TITANIUM ALLOYS





280 X 10^-
77

270

260

TEMPERATURE,
STRENGTH OF 5 Al -2.5Sn TITANIUM



280 X !0^

270

260

250

240

230

220

Q-210

CO

[3200
cr
h-
^ 190

180

170

160

150

140

130

120

78

\\
\\U-
\\

V-
\

\

^HEAT TREATED [l9],

yy 1725 op,
1 HOUR, WQ,

<r / AGED 1050 °R 2 HOURS
J

\ \

X
\ \

1 COOLED.

\ \
\ \
\

^—
\

: V-
V v

X

i \
A X-\
\ \
\—

V

\ >v
ANNEALED-

|[65]
•

\ >
\
\

{ 064 SHEE T)

\ ^
\

N—
\

V >
^ X,

\ \
^ \

s
\

>v \

'' TENSILE

YIELD
1

50 100 150 200 250 300
TEMPERATURE, K

STRENGTH OF 6 Al - 4V TITANIUM



Magnesium Alloys

79

90x10

80

70

°- 60

(/)

Ijj

a:
h-
cn 50

40

30

20

1

3

63, AS E)(TRUDED
1
64]

-
s^y^QA

"TA 54 [4
AS EXTR

MIA[42
HARD R(

2]. ^
]• ^
3LLED-^

\
\
N

^•^

MIA/

OMMERCIA
AS EXTRU

_LY PURE
DED [8l]

— TE

YIE

^JSILE

LD

0 50 100 150 200 250 300

TEMPERATURE, °K

STRENGTH OF MAGNESIUM AND
SOME MAGNESIUM ALLOYS



80
40

35

30
cn
a>

OJ

c 20

c
<^

i 5
V.
<D
Q.

10

5

4, AS EX"FRUDED ^2]\ J

COMMER
AS EX-

CIALLY P
FRUDED [i

UREa

\MIA, h;\RD ROLL
1

ED [42]

50 250 300100 150 200
TEMPERATURE, *K

ELONGATION OF MAGNESIUM AND
SOME MAGNESIUM ALLOYS

10

L 5

CHARPY K

^COMMERCIALLY PURE,
AS CAST [49]

COMMERCIALLY PURE,
AS EXTRUDED [49]

0 50 100 150 200 250 300

TEMPERATURE, °K

IMPACT ENERGY OF MAGNESIUM AND
SOME MAGNESIUM ALLOYS



81

60

50

20

10

1

3

^AS EXTRUDED [ 25,64,81, 03]

[71]

HOT ROLl
^LATE)[

.ED

42]y

HC T ROLLED

AS EXlRUDED^

•«««•^

MINIMI /r Ai en /

TE

YIE

hJSILE

LD

50 100 150 200 250 300
TEMPERATURE, "K

STRENGTH OF AZ3I B
MAGNESIUM ALLOY



40

35

30

^ 25o
c

CVJ 20
c

? '5

o
V.

CL 10

82

ANNEALf:D L7lJ

I^S EXTRUDED [2 5,81,103]

^ '\ HO" ^ ROLLED,(PLATE)[42]
1

50 100 150 200 250
TEMPERATURE, ^'K

ELONGATION OF AZ 31 B
MAGNESIUM ALLOY

300

10
CHARPY V

CHARPY K

ANNEALED [7l]

'\"aS extruded [49, 103]

50 250100 150 200
TEMPERATURE,

IMPACT ENERGY OF AZ3IB
MAGNESIUM ALLOY

300



83
90x10"



84
90x10^

80

70

_ 60
i/i

CL

- 50
O)
(/)

LlI

a: 40

cn

30

20

10

80-T5I [i]
,

EXTRUDED AND
1

AGED

-T5[42]
<UlJtD ANLAS EXTRU

[42,8!]-

DED^.>Sn^

/AZ. OU
^4^EXTF

1

) AGED

^
^"^^

A 7 0Mac U" 1 o

:>-
AS E xtruded/

1 /A7 Qn.Tc;i/

/

TENSILE
YIELD

50 200 250100 150

TEMPERATURE,
STRENGTH OF AZ80
MAGNESIUM ALLOY

300

20

o 15c

CVJ

c 10

-—

en 5
o
\-
<D
Q.

AZ 80--

EXTRUC
r5 [42],

)ED AND A

AS E

GED\

:XTRUDED y
'^I 80-

EXTRU[
T5I [i],

)ED AND AGED

50 100 150 200
TEMPERATURE, °K

ELONGATION OF AZ 80
MAGNESIUM ALLOY

250 300



85

50

10

1 V
3 \

HM 3IA- F, AS EXT

[25,

RUDED
71]

HM 31 A
AS EX1 /rRUDED/

^^^

1

HM 21 /

^HM 21 A-T8

1"ENSILE

riELD

50 100 150 200 250 300
TEMPERATURE, "K

STRENGTH OF THORIUM -MANGANESE
MAGNESIUM ALLOYS



86

/ HM 31

/ AS e:

A-F [25
KTRUDED

JHM 21 A T8 [71].

50 100 150 200 250 300
TEMPERATURE,

ELONGATION OF THORIUM-MANGANESE
MAGNESIUM ALLOYS

10

T 5

CHARPY V

/HM 3

/ AS E

1 A-F [71

XTRUDEC
],

)

/
SPECIM

A-T8[7l]

EN I STD. WIDTH

1

^ 50 100 150 200 250 300
TEMPERATURE , "K

IMPACT ENERGY OF THORIUM-MANGANESE
MAGNESIUM ALLOYS



87

70x10

60

50

^ 40

UJ
q:
I-

30

20

10

3

^HK 31 )

\ ANNEA LED [71]

/HK 31 iA-H24 [25]

HK 31 A

[71]

HK3I /\-H24/^

^HK3 lA, ANNEALED

U 1^ "7
t /rn\ 0 1 AV - TCAID

TE

YIE

MSILE

LD

50 100 150 200 250 300
TEMPERATURE, 'K

STRENGTH OF THORIUM -ZIRCONIUM
MAGNESIUM ALLOYS

540232 O - 60 - 7



88

1 HK ^1 A AMf
Si/ 1

J
1
jCAi pn \l ll

HK3IA-I-i24 [25]

0 50 100 150 200 250 300

TEMPERATURE
,

ELONGATION OF THORIUM-ZIRCONIUM
MAGNESIUM ALLOYS

T 5

CHAfRPY V

\hK3I A , ANNEAL ED [71]

^HK 31 A-T6[7l]

50 100 150 200 250 300

TEMPERATURE, "K

IMPACT ENERGY OF THORIUM-ZIRCONIUM
MAGNESIUM ALLOYS



70 X 10^

CO
if)

60

50

q: 40
I-
(/)

30

20

-T5, EXTRUDED [SS]

TENSILE
YIELD

$ 30
o

J 20

c
10

C
0)
o
0) 0
Q.

50 100 150 200
TEMPERATURE,

STRENGTH OF Z K 60 A
MAGNESIUM ALLOY

50 250100 150 200
TEMPERATURE, °K

ELONGATION OF ZK 60 A
MAGNESIUM ALLOY

250 300

1

1

1

I
-4

EXTRUDE D [65]

300

100 150 200
TEMPERATURE,

IMPACT ENERGY OF ZK60A
MAGNESIUM ALLOY

300



90

60

20

10

r-
3

5^E 10 XA-HII [7 ]

lOXA-HI 1

TEf

YIE

sISILE

LD

0
, 50 100 150 200 250 300

TEMPERATURE, °K

STRENGTH OF ZINC-RARE EARTH
MAGNESIUM ALLOYS



91

(0

U
c

CVJ

40

35

30

25

20

c 15

o

t 10

^7 F 10 - H 1 1 r 7 r
^ nil L '

/

50 250100 150 200
TEMPERATURE,

ELONGATION OF ZINC -RARE EARTH
MAGNESIUM ALLOYS

300

10

I 5

CHAF?PY V

^ZE lOXA HI0[7i]

50 250 300100 150 200
TEMPERATURE, **K

IMPACT ENERGY OF ZINC -RARE EARTH
MAGNESIUM ALLOYS



60 X I

50

1 40

CO

a 30

(/) 20

10

"1

ALL SPEC IMENS ANNEALEC
REF. [95]

V AT d~7C
) AT o7o 0 c

r

^ 4 % Li

6% Li

\ Ck*. /

% Li
'

T ENSILE

lELD

0 50 100 150 200 250 300
TEMPERATURE, K

STRENGTH OF LITHIUM - MAGNESIUM
ALLOYS

50

^ 30

-II % Li

j-Q % Li

^4 % Li

1

AL.L SPECIMENS ANNEALED
REF. [95]

1
1

AT 675*'F

0 50 100 150 200 250 300
TEMPERATURE, "K

ELONGATION OF LITHIUM - MAGNESIUM
ALLOYS



Austenitic Stainless Steels

100 150 200 250 300
TEMPERATURE,

STRENGTH OF AISI 200 SERIES
STAINLESS STEELS

60

50

« 40

CM
30

c 20
o

Q. 10

2(D2, ANNE/! LED [62,

"^^^
^201 , CO
^ [IS

LD REDUC
)]

ED 40% ( HARD)

50 250 300100 150 200
TEMPERATURE, ^'K

ELONGATION OF AISI 200 SERIES
STAINLESS STEELS



94

340x10"

320

300

280

260

240

_220

(^200

LU
tt: 180

160

140

120

100

80

60

40

1

•70I-M n0\J\ l\J LULU KULL
SHEET) [is

c r\L U /30I CO

/ (SHE
LD ROLLE
ET) [19]

) 65 %,

301 AN

[2,4

NEALED-
]

301 {

HAL
:OLD DRA
F HARD [:

WN, —
^41]

301 C OLD DRAW N, HALF I- ARD^

TENSILE
YIELD

^301 AN NEALED

50 250 300100 150 200
TEMPERATURE ,«K

STRENGTH OF AISI 301 a 301-N
STAINLESS STEEL



95
70

COLD ROLLED 60%,( TO U.T.S. 231,000 psi) [59] /

50 100 150 200 250 300
TEMPERATURE

,

ELONGATION OF AISI 301

STAINLESS STEEL

100
^ANNEALED [2,4l]

^COL.D DRAWN , HALF HARD [2,41]

IZOI)

50 100 150 200 250 300
TEMPERATURE ,

°K

IMPACT ENERGY OF AISI 301
STAINLESS STEEL



96

300x10

280

260

240

220

200

180

c/Tieo
if)

140

120

100

80

60

40

20

1

COLD DR/QWN,{7I % R.A.)[63]

/COLD DR>

.HALF HA
\WN
RD [59,60

/COLD DR

V [63]

AWN (49 *Vr^ R A.)

ANNE/i LED[2,I8
59,6

.21,41 ^
0,63] ^

s

V^ANNEALE D [2,18,2 ,41,63]

N
\
\

TENSILE
— YIELD

50 100 150 200
TEMPERATURE, <»K

STRENGTH OF AISI 302
STAINLESS STEEL

250 300



97

1

\NNEALED

1

1

[2, 18,21

,

59,60.6>3] \>
r
V.

[63]

IKl l^Q O/ C .A.)\^

^COLD DR/
^RD [60]HALF H/

1

OLD DRAV

[63]

/N,(7I%RC

50 100 150 200 250 300
TEMPERATURE ,«K

ELONGATION OF AISI 302
STAINLESS STEEL

\ ANNEALEC

/ANNEALED [84]

•

'^COLD DRAWN, HALf- HARD [5£•]

IZOD

---CHARPY K

50 250 300100 150 200
TEMPERATURE ,*>K

IMPACT ENERGY OF AISI 302
STAINLESS STEEL



98

280x10

260

240

220

200

180

v>
Q.
^160

UJ 140
q:

(/)
120

100

80

60

40

20

1

\NNEALED [41]

10% COLD DRAWh [71]
^

\/I0% COLD DRAWrl[7l]

MSB^ ANNE ALED [41]

TENSILE

YIELD
1

50 100 150 200
TEMPERATURE ,*»K

STRENGTH OF AISI 303
STAINLESS STEEL

250 300



120

60

/(.28% S),ANNEALED [41]

A (.34%Se+.l ^t7oP),AN SIEALED

IZOD

50 100 150 200 250 300
TEMPERATURE, "K

IMPACT ENERGY OF AISI 303
STAINLESS STEEL



100

280

260

240

220

200

w 180
Q.

[2160
(T
I-
(/) 140

120

100

80

60

40

20

1

/COL ) DRAWN,

l[89]

TO UXS. 2 10,000 psi)

EALED [2,
A 1 CO 71

1,
,DO, J l,96J ^

\j\Jl-U u

(TO U.T. 3. 210,000 psi)

^ANNE/^LED

**

TENSILE

-YIELD
1

50 100 150 200
TEMPERATURE, *>K

STRENGTH OF AISI 304
STAINLESS STEEL

250 300



01
70

60

50

40

0)

o
c

c

*. 30
c
O

Q.

10

ANNEALEC [2,41,62,7

:OLD DRAV/N,{TO U.T S. 210,000 psi)[89]

DRAWN,(TO U.T.S. 161

1

,000 psi)

[59]

COLD DRAWN,/
(TO UTS. 192,000^ psi) [59]

50 100 150 200
TEMPERATURE , K

ELONGATION OF AISI 304
STAINLESS STEEL

250 300

140

120

100

^ 80

60

40

20

— CH
~IZ(

ARPY K

^ ANN EALED [2 41,96]

y ANN EALED [6 D, 62,84]

COLD DRA\^N,(TO U.T.;3.210,000 F)si)[89]

50 100 150 200 250 300
TEMPERATURE ,»K

IMPACT ENERGY OF AISI 304
STAINLESS STEEL



280x10^

240

-200
Q.

102

120

80

40

^ / 15 To COLD Dl
n A \kt k 1 ["TilxAWN L'

U

.I5%CC)LD DRAWr 1

TENSILE
YIELD

1

50 100 150 200
TEMPERATURE, *»K

STRENGTH OF AISI 308
STAINLESS STEEL

250 300

^ 60

\l5% COL D DRAWN [71]

50 100 150 200 250 300
TEMPERATURE, °K

ELONGATION OF AISI 308
STAINLESS STEEL



103

280x10*

240

220

200

180

160

if)

liJ 140

in
120

100

80

60

40

20

1

/COLD DRAWN,( 7

[71]

0 U.T.S. 95,000 psi)

ANN tALt

[71]

V

N CULU U <AWN ^ ^

a

-^ANNEAL

"--^
ED

TE— Yl£

NSILE

:ld

50 100 150 200
TEMPERATURE,*»K

STRENGTH OF AISI 310
STAINLESS STEEL

250 300

540232 O -60 -8



104

ANNEALED [7l],
\

INCH GAGE LENGTH)

COLD DRAWN.dO UTS. 95,000 psi)[7l],

(I '4 INCH GAGE LENGTHt-

COLD ROLLED

COLD ROLLED,( TO UTS. 159,000 psi) [59]

50 100 150 200
TEMPERATURE,

ELONGATION OF AISI 310
STAINLESS STEEL

250

ANNEALED [59]

50 100 150 200 250 300

TEMPERATURE, ^'K

IMPACT ENERGY OF AISI 310
STAINLESS STEEL





106

rANNEALED [2,^H,7l]

\COLD Dl

( 1 INCH

RAWN 25°/

GAGE LEN

'o[7l],

GTH)

50 100 150 200 250 300
TEMPERATURE , «K

ELONGATION OF AISI 316
STAINLESS STEEL

^AfJNEALED [2,41]

^ANNEALED [59]

— CHARPY K

IZOD
1

50 100 150 200 250 300
TEMPERATURE, "K

IMPACT ENERGY OF AISI 316
STAINLESS STEEL



107

280x10^

260-

200

180

if)

CLI60

CO

(2l40
tr
I-

<^I20

100

80

60

40

20

)

)

/ANNEA .ED [41,6 3,71 ,98]

'ANNEALE D [41.63, 71,98]

v

'
*

,

YIELD
1

50 100 150 200
TEMPERATURE

STRENGTH OF AISI 321
STAINLESS STEEL

250 300



50 100 150 200 250 300
TEMPERATURE, °K

ELONGATION OF A I SI 321
STAINLESS STEEL

ANNE/S LED[4i] •

CHARPY V

DD

50 100 150 200 250 300
TEMPERATURE, "K

IMPACT ENERGY OF AISI 321

STAINLESS STEEL



109

300x10

280

260

200

180
V)
a.

140

120

80

60

40

20

1

0^

I. / COLD DRAWN l( ) %[7I]n^

V—
A MMP

[2.41 ,60,63,71] A

y COLD DRAWN 10 %» [711 N

ANNEicuIed'/^""
S0,63.7l][2,41.

(

——TENSILE
YIELD

50 100 150 200
TEMPERATURE,

STRENGTH OF AISI 347
STAINLESS STEEL

250 300



110
80

I
\ ] r-

70

50 100 150 200 250 300
TEMPERATURE,

ELONGATION OF AISI 347
STAINLESS STEEL

—T
^ANNEALE:D [2.41]

\anneaLED [79]

— CH
^IZ(

ARPY K

0 50 100 150 200 250 300

TEMPERATURE, "K

IMPACT ENERGY OF AISI 347
STAINLESS STEEL



Q.

CO
UJ
a:

200

180

160

140

120

100

80

60

40

20

10

xANN

\/ (S/s

EALED,

iME AS PAGE 96)

AIR COOLED FROM 1920 ^F,^
(SENSITIZED) [73],
(BRITISH SPEC. En 58a)

NEALED

SENSITIZED-^^
[73]

TENSILE

---YIELD
L

50 250 300100 150 200
TEMPERATURE,

EFFECT OF SENSITIZATION ON
STRENGTH OF AISI 302 STAINLESS

(0

o

c

80

60

40

20

AIR COOLED FROM 1920 °F
(SENSITIZED) [73]

,

.(BRITISH SPEC. En 58a)

ANNEALED,
(SAME AS PAGE 96 )

50 250 300100 150 200
TEMPERATURE, K

EFFECT OF SENSITIZATION ON
ELONGATION OF AISI 302 STAINLESS



12

100

90

80

^ 70
s-

S 60

LU

O 40

- 30

20

10

CH/\RPY K—— cc

cc

O/ AO Oil OIK k 1

)LD WORKED, THEN SENSITIZED

REF [84]

/

V

/
-0%

/

20%^

^20%

/

50 250 300100 150 200
TEMPERATURE ,*'K

EFFECT OF SENSITIZATION ON
COLD WORKED AISI 302 STAINLESS



113
\ 1

CHARPY K— CO^ CO
LD WORK
LU WUKK
100 HRS

ED ONLY, % AS $

ED, THEN SENSITI
AT 1020 ^'F

REF [84]

jHOWN.
ZED

yl 0 %

i

^10%

i

0%

/
/ /
>

/

50 250 300100 150 200
TEMPERATURE,

EFFECT OF SENSITIZATION ON
COLD WORKED AISI 304



'302

CHARPY K

ANNEALED
h- SENSITIZED AT

1000-1200 °F

50 250 300100 150 200
TEMPERATURE, '^K

IMPACT ENERGY OF SENSITIZED
WROUGHT STAINLESS STEELS



115

70

65

60

55

50

^ 45

^^40

tr
UJ 35

LLi

S 25

20

15

10

5

47

318.

347\

^

3

AM
c:harpy h

•

— SENSITIZED, 1350- 1650 ^'F

1
REF. [59]

1

50 250 300100 150 200
TEMPERATURE, ^'K

EFFECT OF THE SIGMA PHASE
ON WROUGHT STAINLESS STEELS



50

40

30

20

10

16

CHARPY K

REF. [50] 1250 °F-30MIN.^>^^

ANNEALED>

I035°F- ^OMIN.

l035°F-4£

I250°F-48HR.

50 250 300100 150 200
TEMPERATURE, **K

IMPACT ENERGY OF SENSITIZED
CAST ACI-CF-8T STAINLESS STEEL

90

80

70

60

50

40

30

20

10

5

CHARf
RE

K
:F [50]

1035 ''F - 30 Mlh

A^JNEALED^

1035 <>F - 3 MIN.\

1250 °F- 3 MIN.\

i

IO35OF- ^

1250 OF - ;50 MIN.^

1250 °F- 48 HR\^

50 250 300100 150 200
TEMPERATURE,

IMPACT ENERGY OF SENSITIZED
CAST ACI -CF-20 STAINLESS STEEL



117
I 200x10
i

180

cl

if)

en
UJ
or

80

60

40

20

10"

)

)

)

^ .ANfSIEALED [5 1]

I

)

/ANNEAL ED
) ^
I

)

TENSILE

YIELD

50 250 300100 150 200
TEMPERATURE,

STRENGTH OF CASTACI-CF-8
STAINLESS STEEL

8 60

20
\annealED [51]

50 100 150 200 250 300
TEMPERATURE, "K

ELONGATION OF CAST AC! -CF 8
STAINLESS STEEL



118
80

70

60

50

40

30

20

10

rWARPV

RE

' K

F. [50]

ANNEALE

l035°F-3

I035°F- 2

OMIN.—

^

\ MIN.^

1 250°F-30

I250°F - 3 MIN.-^
I250°F -48HR^^

I035°F -48HR--^

50 250 300100 150 200

TEMPERATURE, ^'K

IMPACT ENERGY OF SENSITIZED
CAST ACI-CF-8 STAINLESS STEEL

50

40

30

20

10

CHARPY K

REF [50] 1250 OF- 30 MIN.~

1035 OF - 30 MIN.^y^^^^^

100 150 200 250 300
TEMPERATURE, <»K

IMPACT ENERGY OF SENSITIZED
CAST ACI-CF-8C STAINLESS STEEL



540232 O - 60 -9



Ferritic and Hardenable Stainless Steels
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Miscellaneous Alloys and Pure Metals

160

METAL
ANNEAL

TEMR,**R

TENSILE STRENGTH
p s i

7o ELONGATION,

.79"GAGE LTH.

300 *»K 90 K 300 ^'K 90*»K

Ag 147 2 30,900 40,700 23.0 38.0

Cd 392 6,500 20,600 42.0 18.0

Co 2012 61,100 104,400 4.0 5.0

Mo 2012 76,100 108,500 20.0 0.2

Sn 302 5,400 15,800 52.5 3.6

Tl 302 1,120 3,170 56.0 32.0

Zn 302 16,500 14,200 44.0 0.6

REF. [26]

STRENGTH AND DUCTILITY OF SOME
COLD WORKED AND ANNEALED

PURE METALS
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