
NATL INST. OF STAND & TECH NBS

PUBLICATIONS

A111D7 3^0062

NBSIR 83-2713

Time of Day Control and Duty
Cycling Algorithms for Building

Management and Control Systems

U S. DEPARTMENT OF COMMERCE
National Bureau of Standards

National Engineering Laboratory

Center for Building Technology

Building Equipment Division

Washington, DC 20234

June 1 983

Sponsored by:

Office of Buildings and Community Systems
U.S. Department of Energy
U*.S. Navy Civil Engineering Laboratory

U.S. Department of Defense

NATlONAt BT'-TAU
OF STANDARDS

IJBtARr

>
Hug i i

NBSIR 83-2713
GJ-O voO

TIME OF DAY CONTROL AND DUTY

'

<63- 3-113
i9*3

c ^
CYCLING ALGORITHMS FOR BUILDING

MANAGEMENT AND CONTROL SYSTEMS

William B May, Jr.

U S DEPARTMENT OF COMMERCE
National Bureau of Standards

National Engineering Laboratory

Center for Building Technology

Building Equipment Division

Washington, DC 20234

June 1983

Sponsored by:

Office of Buildings and Community Systems
U S. Department of Energy

U S. Navy Civil Engineering Laboratory

U.S. Department of Defense

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary

NATIONAL BUREAU OF STANDARDS. Ernest Ambler. Director

(V •

(

'

' •• •

- •

ABSTRACT

Software is an important component of building management and control systems
(BMCS). This report describes concepts, algorithms, and software used in BMCS
components developed in the NBS building systems and controls laboratory. The
concepts and basic algorithms for time of day (scheduled start/stop) control
and duty cycling of electrical equipment in building heating, ventilating, and
air conditioning systems are presented. Time of day control results in

control events occurring at predetermined times of the day on selected days of

the week. Duty cycling is the periodic turning off and on of loads .usually
electrical, to reduce energy consumption under part heating and cooling load

conditions. Considerations for use of duty cycling with other control
strategies such as demand limiting, selection of duty cycling parameters, and
dynamic adjustment of duty cycling, are discussed. All algorithms presented
were implemented in software on a specific BMCS, and the actual computer
programs used are presented as examples.

KEY WORDS: Building Management and Control Systems (EMCS.BMCS); Computer
Control; Control Algorithms; Control Software; Duty Cycling; Energy
Management; Heating, Ventilating and Air Conditioning (HVAC); Scheduled
Start/Stop; Time of Day Control.

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

2. TIME OF DAY CONTROL 2

2.1 Basic Concepts 2

2.2 Basic Algorithm 2

2.3 Time-of-day Control Considerations 4

2.4 More Complex Time-of-Day Algorithm 4

3 . DUTY CYCLE CONTROL 7

3.1 Basic Concepts 7

3.2 Basic Duty Cycling Algorithm 8

3.3 More Complex Duty Cycling Algorithm 9

3.4 Duty Cycling Used With Other Strategies 10

3.5 Selection of the Duty Cycling Phase Parameter 14
3.6 Selection and Dynamic Adjustment of Duty Cycle Off-Period

and Interval 15

4. EXAMPLES OF TIME-OF-DAY AND DUTY CYCLING ALGORITHMS 19

4.1 Example Field Interface Device Software Architecture 19
4.2 Example Time-of-Day Control Algorithm 21

4.3 Example Duty Cycling Algorithm 26

4.4 Example Duty Cycle Parameter Selection 32

5. CONCLUSIONS 3 5

6. REFERENCES 36

APPENDIX A - Time of Day Control Routines 37

APPENDIX B - Duty Cycling Control Routines 40

APPENDIX C - Duty Cycling Phase Allotment Algorithm 45

v

LIST OF FIGURES

Number Page

1 Basic algorithm for time-of-day control 3

2 More complex algorithm for time-of-day control 3

3 Parameters for duty cycling 7

4 Basic algorithm for duty cycling control 9

3 Improved algorithm for duty cycle control 11

6 Basic load controller algorithm for duty cycle control 13

7 Adjustment of duty cycling off-period as a function of an analog
parameter 16

8 Duty cycle algorithm incorporating dynamic parameter adjustment 18

9 Algorithm for time-of-day control used in NBS FID 24

10 Flow diagrams for example duty cycling task 28

11 Flow diagrams for phase allotment algorithm 34

A-l Flow diagram for the third pass of the phase allotment
algorithm 47

A-2 Flow diagram for the fourth pass of the phase allotment
algorithm 49

A-3 Flow diagram for the fifth pass of the phase allotment
algorithm 30

LIST OF TABLES

Number Page

1 NBS FID task table 20

2 NBS FID schedule table 22

3 NBS FID duty cycle table 26

4 Additions to duty cycle table for dynamic adjustment 29

vi

1. INTRODUCTION

A computer-based building management and control system (BMCS) relies heavily
on computer software to fully utilize the heating, ventilation, and air
conditioning (HVAC) equipment available in the building. Much HVAC control

software is available in proprietary or system dependent form, usually
supplied with a BMCS system purchased from a particular manufacturer.
However, if software source listings are not supplied, the HVAC designer or

BMCS owner will not know if the BMCS system is actually operating according to

the specifications of the designer or owner. Without knowledge of what
control algorithms the system is using, it is difficult to compare the

operation of one BMCS system to another. Even if source listings are made
available, there is little HVAC control algorithm software in the public
domain to use for baseline comparison purposes. This report describes
concepts and non-proprietary algorithms used in control software that was
developed at the National Bureau of Standards (NBS) for use in the NBS
building management and controls laboratory.

Building management and control system algorithms fall into at least two
categories. Direct control refers to strategies that control the building
equipment directly, implementing closed loop control of valves and dampers,
and replacing conventional pneumatic or electronic local analog control
methods. Direct control is most often used to maintain a building zone or
fluid stream at a setpoint temperature or humidity. Supervisory or management
control strategies control the building in a broader sense, managing equipment
as a function of variables such as electrical demand, time, weather
conditions, occupancy, and the overall state of the building in order to
maximize occupant comfort and minimize energy consumption and operating cost.

Modern building management and control systems are usually distributed among a

heirarchy of several physically separated control computers. Control
algorithms are usually aimed at operation at some particular level of the
system. For example, the tri-services specification defines four levels in a

tree-tree shaped hierarchy for a large BMCS [1]. In order from the highest
level, these are the central level (CCU), the communication controller level

(CCC), the distributed control level (FID), and the data gathering and
conditioning level (MUX). The distributed control level is occupied by

equipment given the name FID for field interface device or RPU for remote
processing unit. It is at this level that the software described in this
report is intended to operate.

This report is concerned with two types of supervisory control, commonly
called time-of-day control and duty cycling. These types of control are on
the low end of the scale as far as complexity of control are concerned.
However, their implementation is not necessarily simple. The basic concepts
and algorithms for these two types of control are presented in sections two
and three of the report. In section four, concrete examples of the two types
of control algorithms are given in the form of the computer software used in
an actual BMCS developed at NBS.

1

2. TIME-OF-DAY CONTROL

Time-of-day control is the starting or stopping of equipment or initiation of

events at predetermined times of the day on selected days of the week. The
absolute time that the event occurs (for example, 5 PM on Monday) must be
close to the predetermined time for the control strategy to be successful.
Timed control of events can also be relative, causing an event to occur after
a delay from the present time. Relative time control will not be discussed
here.

2.1 Basic Concepts

Events initiated by time of day control can be simple starting or stopping of

equipment such as pumps, fans, or compressors. This may be referred to as
scheduled start/stop. The loads to be started or stopped can be selected along
with the time of day and day of the week that the loads are to be turned off
or on.

Events to be controlled may also be more complex. An example of a complex
event might be a startup sequence which turns on ten fans with delays of five
seconds between the starting times of the fans. A time-of-day controlled
event might also consist of reading several meters, performing calculations
and sending the results to a printer.

Time-of-day control is usually applied to shutting down a building during
unoccupied periods in order to save the energy that would have been used to
keep fans and lights operating throughout the unoccupied period. The same
type of control can be used to turn on building equipment before the building
is to become occupied.

2.2 Basic Algorithm

The basic algorithm for time-of-day control is very simple, as shown by the

flow chart in figure 1. If an event is to be under time-of-day control, the
flow chart is entered and the desired time for the event is determined. Then
the current time must be determined. If the current time and the event time
are the same, then the event is caused to occur. Otherwise, no action is

taken and the algorithm is exited. This algorithm assumes that a means (ie.

software) is available to read a real-time clock/calendar device, that the
time for an event to occur can be obtained from a storage area in computer
memory or from an input device, and that a means exists to cause the event to

occur

.

The algorithm in figure 1, to be useful, must be executed periodically
throughout the day until the time for the event is the same as the current
time. The time between executions of the algorithm must be equal to the
allowable error between the event time and the real time. The allowable error

2

figure 1. Basic algorithm for time-of-day control

3

is usually one minute, so that an event scheduled for 9:45 might happen
anytime between 9:45 and 9:46. The algorithm, in this case, would be executed
once every minute. When the comparison between times is made, the term
"equal”’ is used loosely to mean that the difference between the two times is

less than the maximum allowable error.

2.3 Time-of-dav Control Considerations

The algorithm of figure 1 does not take into account many complications that

might occur in a real BMCS system. The most obvious of these is the need to
schedule several events to occur at different times on different days. To
improve the utility of the algorithm, the simple basic time-of-day algorithm
would have to be replaced by a more complex algorithm consisting of an
execution of the basic time-of-day algorithm for each event that was to be

scheduled

.

Another consideration for time-of-day control is that several concurrent
strategies might be attempting to control the same loads or equipment. The
event that the time-of-day control algorithm is scheduled to execute might
call for the activation of a fan that has been manually shut down for service.
A solution is to use a priority system for controlling equipment. This means
that each controller (including manual control) that can affect a load is

given a priority rating, and no controller of lesser priority can override a

controller with a higher priority.

If there is a problem with the BMCS remote equipment, it is possible that when
the time-of-day controller issues a command request to turn on or off a load,

the load might never be affected because a remote actuator is malfunctioning.
For this reason it may be necessary to include feedback capabilities in a

time-of-day control algorithm. This would mean waiting for a report or
indication that a load had been successfully controlled and if no report came,
causing an alarm to be displayed to the system operator.

In a large BMCS system, the amount of time required to execute the time-of-day
control software might become a consideration. If the software is executed
once per minute in a microprocessor-based controller, and the check of times
for a very large number of sheduled events approaches one minute, this would
not leave time for other system functions. It is possible to avoid this
problem by using a scheme which only executes the time-of-day control software
as often as necessary to control the scheduled events.

2.4 More Complex Time-of-day Algorithm

A more complex algorithm than the one in figure 1 is given in figure 2. Three
of the considerations mentioned in section 2.3 have been added to the
algorithm. The clock-reading function has been moved to the beginning of the

algorithm, as it is assumed that the algorithm can be executed rapidly enough

4

figure 2. More complex algorithm for time-of-day control

5

so that the difference between the real clock time and the clock time measured
at the start of the algorithm is negligible. The ability to schedule multiple
events has been added in the form of a cycle, once for each event, through the
basic comparison of the event time to the clock time.

In figure 2, The simple block labelled "cause event to occur" in the algorithm
of figure 1 has been replaced by a more complex chain of decisions, beginning
with a "request" for the event to occur. The occurence of an event is

assummed to be incomplete until some evidence of completion is available. The

control request is made with a priority level. The control software that
actually causes the event to occur should check the priority that the time-of-
day controller is using to request that the event occur. If the time-of-day
controller’s priority is too low, the request will be rejected. If the
priority is high enough, an attempt will be made to initiate the event. If

some feedback that the event has occurred is not made available to the time-
of-day controller within a certain maximum time interval, an alarm will be

generated. Otherwise, the algorithm continues checking for other events whose
times have come.

There is an alternative to verifying that an event has occurred within a

maximum time interval before moving on to the next event. The alternate
method is to delay the verification of event occurrence until after all events
times have been compared to the clock time. A logical loop, similar to the
one used to compare clock time to event times, can be used to verify that all

events have occurred. This method is preferable if the maximum time delay for

verification of events is large compared to the execution time of the time-of-
day control algorithm.

Some means must be used to store the information on what time the event is to

be initiated, what software is to be used to initiate this event, and other
information such as the identification of loads to turn on or off in the case

of scheduled start-stop. One method to accomplish this is the use of a

software table. In such a table, stored in computer memory, each row of the

table would represent an event. The columns of the table would contain the
times of day, days of the week, and other information associated with events.

The arrangement and method of retrieving information from the table will be

specific to a particular application.

An example of a complex time-of-day control algorithm is given in section 4.2,

illustrating the use of one arrangement of an event information table. The
example also uses a scheme for reduction of total algorithm execution time.

6

3. DUTY CYCLE CONTROL

Duty cycling is used to reduce energy consumption by equipment which may be

periodically shut down for short periods of time without degradation of the

building environment or critical building functions. This type of equipment

is usually associated with "operating energy", defined as energy consumed to

transport heat transfer fluids (such as air and water) around a building but

not to heat or cool these fluids. The equipment will usually be electrical in

nature with starting current requirements larger than operating current
values. Fans and pumps are typical duty cycled loads. If a duty cycled load

normally runs at a constant power input (e.g. single-speed fan) then the

amount of energy saved by duty cycling is approximately equal to the fraction

of total time that the duty cycled load is off, multiplied by the energy
consumption of the load if it is not cycled.

The use of duty cycling control is justified because HVAC systems are usually
not operated at peak design conditions. At off-peak conditions, the full flow
provided by a fan or pump may not be required to maintain space conditions.
To be used for duty cycling, a piece of equipment should have sufficent
capacity to return conditions to normal levels after any drift which occurs
when the equipment is off.

3 .1 Basic Concepts

There are five parameters which must usually be defined for any load to be

duty cycled. Three of these five parameters are illustrated in figure 3.

When a load is duty cycled, as for example load 1 in figure 3, the load, which
is on at the start of the interval shown in the figure, is turned off at a

certain point. After a delay, which is referred to as the off-period, the

off-

on LOAD 1

LOAD 2

OFF-PERIOD

on * PHASE' LOAD 3

of f ‘

<<<<<<<<< duty cycle interval >>>>>>>>>>>>>>

--TIME >

figure 3. parameters for duty cycling

7

load is turned back on again. This ”on-off-on" cycle is repeated continously
for duty cycling. The length of a single ”on-off-on" cycle is defined as the
duty cycle interval. The delay between the beginning of the duty cycle
interval and the turning-off of a load will be referred to as the phase for
that load.

If several loads are being duty cycled at the same time, such as loads 1, 2

and 3 in figure 3, they may or may not have the same off-period. When more
than one load is duty cycled, the most important consideration is to avoid
turning two loads back on at the same time. If two loads are activated
simultaneously, and the loads are electrical, then the high starting currents
will result in a large electrical demand peak which could be avoided if the
loads are not started at the same time. Therefore, it is desirable to
separate the turn-on times of equipment. Another consideration is that
certain loads may be interrelated, and it may be undesirable to have both
loads off (or on) at the same time. If the off-periods are specified for a

number of loads to be duty cycled, then the phase for each load can be

individually adjusted to prevent simultaneous activation of loads.

In addition to the three parameters in figure 3, a minimum on-period and a

minimum off-period may be specified. These times are primarily specified to

avoid damage to equipment due to excessive cycling. The minimum on-period and
off-periods must be in accordance with either manufacturers recommendations or
any applicable standards.

3 .2 Basic Duty Cycling algorithm

The basic algorithm for duty cycling a single load is displayed in figure 4.

The algorithm must be executed periodically at a frequency equal to the
inverse of the duty cycle interval. The phase and off-period values for the

load are obtained as the first step of the algorithm. There is then a delay
for a time interval equal to the phase. The method used to cause the delay
depends on the control system computer architecure.

After the phase delay, the load is turned off. A load to be duty cycled will
in most cases be controlled through a digital output, which can be used to

remove and restore electric power to the load. Application dependent software
is required to actually turn off the digital output. After the deactivation
of the load is another delay, equal to the off-period for the load. After
this delay the load is then turned on, and the single duty cycle is complete.

Some means must be used to store the information on what the off-period,
phase, and other parameters are for each load to be duty cycled. One method
to accomplish this is the use of a software table. In such a table, stored in

computer memory, each row of the table contains information for one load. The

columns of the table contain the duty cycling parameters for the load. The
structure of the table and the method used to store and retrieve information
in the table will be specific to a particular application.

8

figure 4. Basic algorithm for duty cycling control

3 .3 More Complex Duty Cycling Algorithm

The algorithm in figure 4 is useful for illustrating the basic concept of duty

cycling but would not be practical for use in a real BMCS. An improvement to

the algorithm is to allow a number of loads to be concurrently duty cycled.
This can be done by creating a software loop which executes an algorithm, such
as the one in figure 4, for each load to be duty cycled.

To extend the versatility of the duty cycle algorithm, the last four steps in

figure 4 can be replaced by a single step, which will be to make a request to

a software routine which will be called the load controller. The load
controller can be used to control the timing of the off-cycle for the load.
The load controller can be given the values of phase and off-period, along
with the load identification number. It will manage the book-keeping required
to turn the load off and on at the correct times. The exact structure and
actions of the load controller are dependent on the architecture of the BMCS
computer, but if properly designed, the load controller can be called several

9

times in rapid succession for different loads and will still turn all of the
loads off and on at the proper times in the future.

It has been assumed so far that duty cycle intervals, phases, and off-times
are expressed in units of absolute time. However, use of absolute times in

the algorithm can make it inflexible, for example, if the duty cycle interval
must be changed. An alternative is to express the duty cycle interval in

absolute time units and then express the phase and offset in terms of a

percentage of the duty cycle interval. This allows the duty cycle interval to

be changed without having to change the specifications for the phase and off-
period. The only penalty for this generalization of time is that the phase
and off-period must be converted to absolute time units when the duty-cycle
algorithm is executed by multiplying the percentage of the duty cycle interval
by the duty cycle interval time.

Figure 5 shows the revised duty-cycle algorithm incorporating the changes
discussed above. This algorithm is more useful than the algorithm of figure 4

but does not take into account complications existing in real BKCS systems.

Such complications are discussed in the following sections.

3 .4 Duty Cycling Used With Other Strategies

In most cases, a duty cycling algorithm will be required to control loads in

cooperation with other load control algorithms, such as scheduled start/stop,
optimum start/stop, and demand limiting. This requires that there be a

priority scheme for control of outputs, so that a load which has been turned
off for the night is not turned on by the duty cycler, or a load turned off by

the demand limiting software is not turned on again by the duty cycler before
the demand peak has been lowered.

The assignment of priority to control algorithms is somewhat application
dependent, but some generalized observations may be made. If a scheduled
start/stop algorithm is active at the same time as duty cycling control, the

scheduler algorithm should have the higher priority if a load is currently
off. During unoccupied periods, a scheduler will typically stop equipment to

conserve energy. It would not be desirable for the duty cycler to be able to

control equipment that had been stopped for such a reason. On the other hand,

when the scheduler has turned on equipment for the occupied period, then the

equipment could be duty cycled. This implies that the scheduler should have a

lower priority than the duty cycler when the load is currently on.

Demand limiting is another supervisory type of control that cuts off loads to

reduce electrical demand peaks. If a demand limiting algorithm were active at

the same time as the duty cycling algorithm, the demand limiting algorithm
could be attempting to control the same loads as the duty cycler is

controlling. Since the purpose of the demand limiter is to prevent electrical
demand peaks, and the purpose of the duty cycler is only to lessen operating
time of equipment, it is usually desirable to let the demand limiting

10

STARTC

Get Duty Cycle Interval

Set N = number of loads to duty cycle
Set I, load number = 1

figure 5. improved algorithm for duty cycle control

11

algorithm have priority in controlling a load currently being duty cycled.
Priorities can be used to arbitrate conflicts between the two control
algorithms so that the demand limiter always gets preference and can
accomplish its purpose. However, this raises at least three problems in the
design of the duty cycling algorithm.

The first problem with combination duty cycling/demand limiting that must be

overcome is assuring that the duty cycler will not turn off a load for the
full off-period if the demand limiting algorithm has already turned off the
load for some time period within the duty cycling interval. A solution to
this is to keep a record of the time interval since the load was last off and
the interval since the load was last on. When the load controller is

requested to duty cycle a load, it must first verify that the duty cycle
priority is greater than the priority under which the load was last
controlled. If the priority is low enough, and it is determined that the load
has been off for a certain time interval since the last duty cycle, the off-
period of the load can be reduced by the same interval. The off-period
reduction is accomplished by delaying the turning-off of the load, while
keeping the time at which the load is to be turned on the same.

A second consideration is that the demand limiting program may have just
turned back on a load that the duty cycler is about to turn off. Because most
equipment has a finite start-up time it may be undesirable to turn off a piece
of equipment just after it has been turned on [2], A minimum on-period may be

specified to avoid damage. The record-keeping scheme mentioned previously
must be implemented in order to know how long it has been since the load was
turned on. When the load controller is requested to cycle the load, if the
time interval since the load was turned on is too small, either the turn-off
time for the load may be delayed (reducing the off-period) or the phase may be

increased by shifting turn-off and turn-on times (off-period not changed).
The disadvantage of the latter approach is that the new turn-on time may
coincide with another load turn-on time.

Finally, a piece of equipment may also have a minimum off-period. A minimum
off-period check should not be needed often, because neither the demand
limiter or the duty cycler would turn on a load that the other control
algorithm had just turned off. The duty cycler could not turn on a load
turned off by the demand limit algorithm because of priority, and the demand
limiter would not normally override the duty cycler to turn on a load (the
demand limiter would normally override the duty cycler and turn off a load).

The minimum off-period check is needed if the duty cycle parameters are being
adjusted by another algorithm to prevent the off-period from becoming too
smal 1

.

Figure 6 presents a simple load controller algorithm, which can be considered
an expansion of the load controller block in figure 5. Values of phase, off-
period, priority, and load identification are passed to the load controller
from the duty cycler. The algorithm in figure 6 implements the priority.

1 2

figure 6. basic load controller algorithm for duty cycle control

13

minimum off-period, and minimum on-period checks previously described. The
exact implementation of the last block in the algorithm is dependent on the

control system architecture and multi-tasking utility software available.
Ideally, whatever is used should result in a minimum of overhead for the load
controller

.

3.5 Selection of t]}£ Duty Cycling Phase Parameter

Proper selection of the duty cycling parameters, phase, off-period, and
interval, is important to maximize energy conservation and comfort and avoid
equipment damage. The off-period and duty cycle interval for a load are very
system and application dependent. These two parameters are discussed in

section 3.6. Although it is important to consider the complete system when
selecting duty cycle parameters, it is possible to select the off-period and
interval for individual loads without regard to other loads being duty cycled.
The selection of duty cycle phases, however, must be made by considering all

duty cycled loads simultaneously, since the phase is the primary parameter
that is adjusted to determine the moment in time that the load is to be turned
on after being off. Indiscriminate activations of several loads at the same
time will cause high electrical demand peaks. When a group of loads are to be

duty cycled, their off-periods will usually be a function of the state and
type of the HVAC system. The phases, however, can be assigned almost any
value as long as the sum of the phase and the off-period is not longer than
the duty cycle interval.

If duty cycle parameters are selected at the central control unit (CCU) level,

the selection can be made manually by the operator or by computer software.
It is not absolutely necessary to use an algorithm to set up the duty cycle
parameters if the operator is willing and has the ability to carefully arrange
load turn-on times, taking into account any relationships between loads.
Otherwise, an algorithm which can automatically set up a table of duty cycle
parameters is necessary.

If the duty cycle parameters are modified, either by command from the CCU or

by a FID routine during FID operation, it is necessary to adjust the duty
cycle parameters to insure that a load turn-on time has not shifted enough to

coincide with another load turn-on time. At the FID level, no manual operator
adjustment of duty cycle parameters may be possible, and an algorithm is

definitely necessary if the parameters are to be adjusted dynamically. The
FID level algorithm may not have to be as sophisticated as an algorithm used
at the CCU level, since the FID will be adjusting the table, not creating it.

An algorithm used for determining phases for duty cycling loads can have any

level of complexity. A simple version might assign phases for a group of
loads so that the turn-on times for the loads are evenly spaced across the
duty cycle interval. More complex versions would take into account
relationships between loads. One relationship could be, for example, that two
individual loads should not be off at the same time. The algorithm could

14

assign phases to the loads to avoid causing the loads to be simultaneously
off. Another example of a relationship could be two loads that must be on at

the same time or off at the same time. An example of a fairly general
algorithm for assigning duty cycle phases is given in section 4.4.

3.6 Selection M Dynamic Adjustment fif Duty .C.y.c.l_£ flf frites ipi and Interval

Duty cycled devices can be equipment such as exhaust fans and utility pumps,

and for these applications, selection of duty cycle off-periods and intervals
is usually valid for all states of load of the mechanical system. Duty
cycling may also be used on fans and pumps associated with air handling
equipment supplying conditioned air to the building space. When air handler
equipment is duty cycled, the characteristics of the air handler must be taken
into account. It can be assumed that turning on and off an air handler fan
will cause oscillation in the space condition. The amplitude and phase of the

oscillation will be dependent on the air handler load, the system
characteristics and the amount of cycling. This oscillation of space
condition should be assummed to cause changes in the amount of ventilation air
as well as the wet and dry bulb temperatures. Problems with the closed loop
control of the heating and cooling coils might arise as the air flow through
the air handler fluctuated from zero to full flow. Due to these
considerations, it is desirable to match the amount of duty cycling to the
state of the air handling system and dynamically adjust the duty cycling
parameters as a function of air handler load, the quantity of outside air
entering the space, or some other parameter.

The problem of selecting off-periods and duty cycle intervals may be broken
into two parts: one being the determination of the best amount of duty cycling
at a specific design point, and the other being what variable to relate duty
cycling to and how to adjust the duty cycle parameters as a function of this
variable

.

There are a number of possible approaches to the determination of optimum duty

cycling for an air handler at a design point. A complete answer requires
experimental investigation or simulation of the air handler/space system which
is at present beyond the scope of this report. One simplified approach is to

consider a duty cycled air handler as being a crude implementation of variable
air volume (VAV). This is reasonable since duty cycling effectively reduces
the average amount of air entering the conditioned zones. A duty cycled
system, unlike a VAV system, would not provide zone-dependent volume control.
It would reduce the suppy air volume to all zones served by an air handler.
This approach implies that duty cycling is not a useful technique for use on a

true VAV air handler system and should only be applied to constant volume
systems. The question of whether this is true must be answered by more
detailed investigation.

If a duty cycled air handler can be considered to be a simplified VAV air
handler, then the required supply air volume is a function of space load, and

1 5

the off period of the air handler can be varied to give an average air flow
equal to the desired supply air volume. This average air flow volume should
be larger than the supply volume that an equivalent VAV system would supply
because of the possible oscillations in space temperature caused by the duty
cycling. Such oscillations reduce space comfort if allowed to become large.

A common method of adjusting HVAC system setpoints that should be determined
as a function of space conditioning load is to assume that the space load and

outside air temperature are proportional, and adjust the setpoint to follow
changes in outside air temperature. If the requirements for latent heat
removal, internally generated heat removal, and ventilation of the space are
steady enough to be considered constant, then the space load could be

considered to be approximately a function of outside air temperature. This
assumes that transmission and infiltration losses and gains are a linear
function of the in s i d e - ou t s i d e temperature difference. Using this
approximation, the off-period of duty cycling could be varied as a function of

outside air temperature for a given supply air temperature setpoint.
Alternatively, a method of determining the actual space conditioning
requirements could be used to vary the duty cycle off time.

If the design point for duty cycling is chosen as the condition of minimum
space load where the supply air requirement is lowest, then at this condition
the duty cycling off-period would be a maximum. At off-design conditions, the

off-period could be reduced as a function of outside air temperature (or some
ether parameter) to reach a minimum at large space loads. Large space loads

could be indicated by very high or very low outside air temperatures. Figure
7 illustrates the concept. The off-peri.od is modulated downward on either
side of the design point to zero at high and low limits. To create a one-
sided ramp rather than a two-sided one, either the low or high limit may be

made equal to the analog value at the design point. The advantage of choosing
the design point as the point of maximum off-period is that no algorithm to

ASSOCIATED ANALOG VARIABLE

figure 7. Adjustment of duty cycling off-period as a function of an analog
parameter

16

juggle duty cycle phases is required, since the off-period is only reduced in

size from the design condition. The phase may be increased and the on-time
remains the same.

If the duty cycle design point is chosen to be the condition of minimum space

load, and outside air temperature is assumed to be an indicator of load, there
is an outside air temperature where the load is a minimum. The duty cycle
design off-period can then be chosen for this condition. Care must be taken
in determining the design duty cycle off-period because at low supply air
volumes, the space requirements for latent heat removal and minimum
ventilation (outdoor air) may be dominant.

If duty cycling is used on a system which has a minimum outside air damper
which is normally fixed at a position based on a percentage of a constant
volume of supply air, the minimum outside air damper controls may have to be

modified. If they are not, then at low space loads when the duty cycle off-
period for the fan is a maximum, and the outside air is also at a minimum,
insufficient ventilation air may be reaching the space.

A design duty cycle interval must also be chosen. In practice, to simplify
the control algorithm, the duty cycle interval may be fixed at the design
value, and not varied with load. The duty cycle interval should be chosen to

minimize oscillation of space conditions. A duty cycle interval that is too
long will result in relatively long off-periods and on-periods. The long off-
periods may produce excessive drifting of space conditions. On the other
hand, a short duty cycling interval will cause more cycling of the equipment
and lack of ability to adequately modulate the off-period. For example, if a

duty cycle interval is five minutes, if the maximum off time for a load is two
minutes, and if the minimum on time is two minutes, then the load off-period
could only be varied between two minutes and three minutes (three minutes off
plus two minutes on totals five minutes). However, if the duty cycle interval
is fifteen minutes, the off-period could be varied between two and thirteen
minutes

.

Another approach to dynamic adjustment of duty cycling parameters would be the

use of a closed loop controller. If the amount of oscillation in space
conditions could be quantified, the duty cycle off-period could be adjusted
using a proportional-integral control algorithm, or equivalent, to select the
maximum off-period that would result in acceptable oscillation of space
conditions

.

Figure 8 shows the duty cycle algorithm of figure 5 with an additional block
for adjusting the duty cycle algorithm. The duty cycle parameters that are
retrieved for the load are the design values. These are adjusted using an
approach such as the two mentioned here. The load controller is then given the
modulated phase and off-time for the load.

17

figure 8. duty cycle algorithm incorporating dynamic parameter adjustment

18

4. EXAMPLES OF TIME-OF-DAY AND DUTY CYCLING ALGORITHMS

As part of the research program in building HVAC control at NBS, a prototype

BMCS has been constructed using "of f-the-shelf" components and microcomputer
circuit boards. The system is organized into a hierarchy of three levels:
central (CCU), distributed (FID), and data gathering (MUX). Custom software
has been developed for the system. The software includes routines for
supervisory control as well as direct digital control (DDC). The information
in this report is a product of the development effort. Testing of the
supervisory control software has been performed using an analog simulator
rather than an actual building system. The simulator uses LEDs to represent
digital outputs, switches for digital inputs, and potentiometers to represent
analog inputs. The time-of-day control software was able to turn LEDs on and

off at scheduled times and also initiate more complex events at predetermined
times. The duty cycling control software turned LEDs on and off as if they
were electrical loads. Tests of the software in an actual building are
scheduled to verify operation with a real HVAC system.

Since it is sometimes difficult to construct actual working programs from
general algorithms, a description of working time-of-day and duty cycling
control software from the NBS FID is included in this chapter. It should be

understood that this is one possible solution to implementing these control
strategies and is not necessarily the best solution. Other system
architectures are certainly possible and will require different
implementations of the basic control algorithms.

The software programs presented as examples are intended for operation in the

FID level of the BMCS with the exception of the software described in section
4,4 for selecting duty cycle parameters. As background information, section

4.1

will describe the basic architecture of the FID. The sections following

4.1

will describe the examples of software in detail.

4.1

Example Field Interface Device Software Architecture

The software to operate the FID is a complex computer program which is mostly
written in the high-level computer language, FORTRAN. A number of utility
routines are written in microprocessor assembly language, specifically for the
Z-80 microprocessor used in the FID.

The activities of the FID can be divided into two major categories:
communication with the CCU and execution of tasks. A task is defined as a

software procedure that has a specific purpose such as turning on a fan or
controlling a valve position and begins at a certain starting point in the FID
computer memory. In the NBS FID, a task is in the form of a FORTRAN
"subroutine” without arguments. Information is passed between tasks through
common data areas. When there is no communication from the central level,
tasks are executed with a "multi-tasking" scheme in which a number of software
tasks are each executed in a periodic fashion in conjunction with the other
tasks so that it appears that all tasks are operating simultaneously. The two

19

most essential types of tasks of the FID are collection and processing of data

and execution of control software (DDC, duty cycling, etc.) through the MUXs.

The time-of-day control software is a task which controls other tasks. The
time-of-day control task is concerned with making sure that various functions
which have been set up to execute at a specific absolute time-of-day are
started on time. Duty cycle software is also a task, which periodically shuts

off loads connected to the system to save energy.

Any "mult i- tasking** software system must have some sort of "task manager
software" to control when tasks will execute and resolve timing conflicts
between tasks. The task manager software used for the NBS FID was written in

assembly language and makes use of a hardware real-time clock issuing
interrupts to divide time into 0.1 second intervals. The task manager uses
this division of time to coordinate all tasks in the FID. The FID task
manager has three basic characteristics which are desirable for task control.
First, the task manager allows the periodic execution of multiple tasks and
has a priority scheme for use if two tasks are set to execute at the same
time. The period of any task may be changed during execution of the FID
software. Second, any periodic task may be stopped on demand. Third, any
periodic task which is stopped may be started after a variable delay which is

independent of the period of the task, or tasks may be set to execute only
once after a variable delay (such a task may be termed a "one-shot" task).

To control tasks, the task manager for the NBS FID uses a table of task
starting points and associated time intervals at which these tasks are to be

executed. This table will be referred to as the task table. Table 1 is a

facsimile of the basic task table in the FID. There is a row in the task
table for each task in the FID. There are two groups of columns (four columns
per group) used for timing purposes. One group of four columns is designated
the counter, and the other group is called the interval. The four columns in

a group hold values for hours, minutes, seconds, and tenth-seconds. Every one
tenth second, the task manager software executes. The counter for each task

Table 1 . NBS FID task table

COUNTER INTERVAL
task no. status code hr min sec ts hr min sec ts TASK NAME

01 1 00 00 60 00 00 00 60 00 CONTROL
02 1 00 00 01 07 00 00 02 00 DATA
03 0 00 05 25 09 00 10 00 00 INACTIVE
04 -1 00 01 30 00 00 00 00 00 ONESHOT
03 1 00 59 59 09 01 00 00 00 PERIODIC
06 1 00 00 00 00 00 00 20 00 ACTIVE
07 1 00 00 14 02 00 15 00 00 DUTCYC
08 1 00 48 08 00 01 00 00 00 SCHEDULR

20

is decremented each time the task manager is executed. If any counter becomes
all zeros, this indicates that the associated task is to be executed. After
the task is executed, the counter columns are reset using values from the
interval columns, and the countdown resumes. The interval is not changed by

normal operation of the task manager.

The first column in the task table contains the task number. This number is

also a priority (a lower number having a higher priority). All tasks are
given priorities and lower priority tasks will wait if it is time for a higher
priority task to execute. The second column of the task table contains a code

to indicate whether the task is stopped (0), set to execute once (-1), or set

to execute in a continuous, periodic mode(l). The last column contains a

symbolic name which represents the starting address of the task.

A ’’utility” routine, separate from the task manager routine, is used to change

the entries in the task table used by the task manager. This task table
editor routine can be called as a subroutine from a FORTRAN program. There
are three arguments which must be passed to the routine. The first argument
is the number of the task in the table whose table entries are to be edited.
The second argument is the value of the code to be loaded into the second
column for that row of the table. The third argument is equal to 1 if the
task intervals and the task counters for this row in the table are to be set
to the same new values. The third argument is set to 2 if only the task
counters are to be set to new values. The values to be loaded into the
counters and intervals are passed to the subroutine using data in a common
block.

Another utility routine is used to determine the current values of the entries
in the task table. The routine can be called as a subroutine from a FORTRAN
program. There are two arguments. The first argument is the number of the
task in the table whose table entries are to be checked. The second entry
will contain the value of the code in the second column of the table. The
values of the interval columns in the table will be stored in a common block
as four consecutive values representing the hours, minutes, seconds, and
tenths of seconds. The routine is very similar to the editor routine, but
data are ’’read” from the table rather than being ’’written” to the table.

4.2 Example Time of Day Control Algorithm

As an example of a time-of-day control algorithm, the algorithm in figure 2

was implemented on the NBS FID. The algorithm was developed in FORTRAN as a

software task (section 4.1). This task will be referred to as the ’’scheduler”

task. Appendix A contains a FORTRAN listing of the scheduler software.

In this example of time-of-day control, the events which are to be controlled
by the scheduler are actually tasks which are existent in the task table
(section 4.1). No additional events to be scheduled can be added after the
system is in operation since this would involve adding more tasks to the FID

21

software and lengthening the task table. The scheduler uses a number to refer

to tasks which corresponds to the position of the task in the task table.
This number is also the priority of the task. The first task is number 1, the

second. 2, and so forth.

The information that the scheduler task uses to control events (tasks) is

stored in a table in memory. This table, called the schedule table, contains
all the information needed to schedule tasks to start or stop at any time of

day on any day of the week. A representation of the schedule table is given
in table 2. The table is created or changed at the central level by the
system. The schedule table may then be loaded into the FID by the CCU
sof tware

.

There are 5 columns in the schedule table and a number of rows determined by

the maximum number of tasks to schedule, for example, 25. Each row is for one

task. Column 1 contains the number of the task to be scheduled. Column 2

contains a 1 if the task is to be started as a periodic task, 0 if the task
(formerly started as a periodic task)is to be stopped, or -1 if the task is to

be executed a single time. Columns 3 and 4 contain the hour and minute of the

day (in 24 hr notation) at which the task is to start or stop. The last
column is for the day of the week on which the task is to start or stop. The
schedule table, as it is loaded from the CCU, is sorted with the task set for

the earliest time on the earliest day of the week in the first row. The
second row has the task set for the next time on the same day or if no tasks
are set for the same day, the earliest task on the next day.

The simplest method of checking the schedule table for tasks to start or stop
would be to have the scheduler software execute once per minute. The entire
task table could be searched for times matching the current time. If the time

Table 2. NBS FID schedule table

task no control code
TIME OF DAY

hour minute day of week

10

05

06

05

06

05
27

06

05

06

05

06

0

-1

-1

-1

-1

-1

1

-1

-1

-1

-1

-1

06

09

17

09
17

09

12

17

09

17

09

17

15

30

00

30
00

30
00

00

30

00

30

00

2

2

2

3

3

4

4
4

5

5

6

6

22

matched, the corresponding task would be stopped or started. In the NBS FID
software a somewhat more complex scheme is used to minimize execution time of

the scheduler software. The scheduler, rather than executing once per minute,
only executes often enough to find all of the tasks which are scheduled to

execute. Also, rather than searching the entire schedule table, only that
portion containing tasks for the current day is searched (since the table is

sorted)

.

Whenever the FID is reset or started-up or when a new schedule table is loaded

from the CCU, the scheduler task is automatically executed. This first
execution of the scheduler ensures that the scheduler task will start any
tasks that are scheduled to execute within a short time, or if none are set to

start, ensures that the scheduler will continue to periodically execute,
checking the schedule table.

Figure 9 is a simple flow diagram describing the operation of the scheduler

software. The scheduler begins by reading the real time clock to get a day
number and determines the current day of the week. The day of the week
algorithm is a simple one based on what day of the week the first day of the
current year is. The day name for the first day must be entered manually.

After determining the current time of day and day of week, the scheduler goes

into the schedule table and positions a pointer at the first entry in the
table where the day of the week in the table is equal to or greater than the
current day of the week. If the table is empty or the end of the table is

reached (signified by a zero for the task ID) the scheduler task is set to re-

start 60 minutes later, and an exit is taken from the routine.

The next step for the scheduler task is to determine the time differential in

minutes between the current time and the time for the table entry at which the
pointer is currently set. Determination of the differential involves a

subtraction of the current day and time from the table time and day. Carries
are used if the current hour, minute or day is greater than the table hour,
minute, or day. If this differential is greater than zero, this means that a

task to start or stop is approaching in time. The magnitude of the
differential determines what is done next. If the differential is greater
than a minimum value (60 minutes) then the scheduler task is set to re-start
60 minutes later, and an exit is taken from the routine. The scheduler task
is given a fairly high priority to ensure that it will re-start on time.

If the differential between the table entry time and the current time is less

than the minimum value (60 minutes) and the table indicates that the task is

to either start for periodic execution or be executed once, the task is caused
to start after a time interval equal to the differential (actually, the
differential is adjusted so that the task will stop or start as close to the
beginning of the minute as possible). This is accomplished by using the task
table editor utility routine to change the counter (the current amount of time
until task execution) in the task table. The interval (the time between
successive executions of the periodic tasks) is not affected.

23

figure 9. algorithm for time-of-day control used in NBS FID

2 4

If the differential is less than the minimum, but the task is supposed to be

stopped, the task is handled differently than if it were to be started or

executed once. The task manager routine has no means of stopping a periodic
task after a time interval. Thus the stopping of the task must be done
directly by the scheduler at the exact time in the schedule table, rather than
indirectly by resetting the counter in the task table when the task execution
time draws near. Direct stopping of the task is accomplished by setting the

task table counter for the scheduler task to be equal to the adjusted
differential as calculated previously. The scheduler task ends, but will re-

start in time to stop the task. The task is stopped by checking the
differential (which will be zero for the task when the scheduler is re-
started) and directly stopping the task if the differential is zero.

If the differential between the table entry time and the current time is less

than zero, the task has already been executed. No task control action is

taken in this case.

If the schedule table pointer is set at a task which has a differential less

than the minimum and which is set to start or execute once, then after the
appropriate action is taken to schedule the task, the schedule table pointer
is moved to the next table entry. The differential for this entry is then
computed to determine if the task for this entry is also to be scheduled for
execution. If the differential for this task is small enough and the task is

to be started or executed once, then the task table entry for this task is

edited, and the the next entry in the schedule table is checked. The schedule
table is stepped through until either the end of the table is reached, the
differential for a table entry is over the minimum, or a task is to be
stopped. Then the scheduler task is set to re-start later, and the scheduler
routine ends.

The events listed in the schedule table can be used to cause a number of

possible results. An event consisting of a start-up or shutdown of mechanical
equipment can be easily implemented by programming the task to turn digital
outputs on and off. Sequences of turning digital outputs on can be programmed
with delays between starts to reduce high demand loads. Night-time setback of

control loop setpoints can be accomplished using a scheduled task to change
the value of control loop parameters.

The time-of-day control software worked successfully in the prototype BMCS.

In tests, scheduled events always executed within one minute of the scheduled
time. The main limitation of the example version of the FID scheduler
software is that a task to be executed one time cannot be scheduled to execute
more than once in an hour. If the time between executions of a task within an

hour is regular, the task can simply be scheduled to start periodic execution.

An obvious improvement to the software would be to add more columns to the
schedule table so that the period of a task (the task table interval) could be

assigned by the scheduler. Currently, a periodic task can only be started and
stopped

.

25

Another possible addition to the software is connected with possible power
failures or similar types of system failures. On re-start of the NBS FID, a

version of the FID software will be re-loaded from a bubble memory. This
version represents the state of the FID system at the time that a

configuration save (transfer of RAM to bubble memory) was last performed. If

a scheduled load has been turned off or on since the last save, its condition
will not be restored. A sixth column could be added to the schedule table to

specify a "configuration save" option when the task is started or stopped. If

this option were selected, the current FID parameters and selection of outputs
in the on state would be saved in non-volatile memory and could be restored
in case of system re-start.

A consideration in using the example software is associated with stopping a

task. Since a task cannot directly be set to stop after a programmable delay,
the scheduler must directly stop the task. If due to some reason the
scheduler task is delayed (not likely under normal circumstances since the
scheduler task is assigned a high priority) it is possible for the stopping of

a task to be missed. If the stopping function is critical, a special task
could be used to stop other tasks. This special task could be executed once to

stop a periodic task.

4.3 Example Duty Cycling Algorithm

Duty cycling control software which is an implementation of the algorithms in

figures 6 and 8 was developed for the NBS FID. The algorithm was written in

FORTRAN and implemented as a task (section 4.1). Eight support routines were
written in FORTRAN and made into tasks for a total of nine tasks related to
duty cycling. Appendix B contains the source code listings for the duty
cycling software.

The duty cycle parameters for the loads to be duty cycled are kept in a table

in the NBS FID referred to as the duty cycle table. A representation of part
of the duty cycle table is given in table 3. The values of the phases and
off-times in the duty cycling table are initially determined by software at

the central level for a set of loads and constraints. The table is then
transmitted to the FID. The FID then uses the off-period values from the CCU

as maximum design values (section 3.6).

table 3. NBS FID duty cycle table

LOAD no

.

phase of f-per iod inter

mux pnt

01 25

(%DCI) (%DCI) min-of

f

min-on cycle? lock

00 30 1 min 2 min YES 0

02 05 20 25 1 min 1 min NO 0

01 19 30 50 2 min 1 min YES 0

01 02 50 10 1 min 1 min YES 0

26

The duty cycling task has a row in the FID task table (table 1), and the task
table interval columns are adjusted to cause the task to execute at a

frequency which is the reciprocal of the duty cycle interval. The duty cycle
task is in the form of a FORTRAN subroutine which uses a heirarchy of four
lower levels of subroutines to execute the duty cycling functions. Each of

the levels calls a lower level with more primitive functions than the calling
routine. Figure 10 is a diagram of the duty cycling routines. The main
routine is shown at the upper left of the diagram with three levels of

subroutines displayed around it.

The main duty cycling routine reads parameters directly from the duty cycle

table. Each row of the table contains the digital output number representing
the load to cycle, the phase and off-time parameters, and a flag to indicate
whether or not the load should be cycled. The phase and off-time parameters
are expressed in terms of a percentage of the duty cycle interval. For
example, if the off-time is to be 5 minutes and the duty cycle interval is 20

minutes, then the off-time percentage is 25 percent. The duty cycle main
routine must convert the percentages into absolute times. To do this the duty
cycle interval must be known. A utility routine is used to determine the duty
cycle interval in the task table (table 1).

In the NBS duty cycling software a method of adjusting the duty cycle table
based on the technique of section 3.6 was implemented. It is assummed that
the off-periods in the duty cycle table (table 3) are maximums, determined for
a design point, and that the off-times are to be modulated downward as a

function of an associated analog value (outside air temperature, ventilation,
space conditioning requirements, occupancy, etc.). The points at which the
duty cycling off-period reaches zero are specified by low limit and high limit
values of the analog value. It is assummed that the magnitude of the
associated analog value at the design point lies between these two limits (see

f igure 7).

The actual implementation of the duty cycle table adjustment in the NBS FID
uses an algorithm to modify the duty cycling phase and off-period values,
taken from the table for a particular load, before the duty cycling task
requests the load controller to turn the load off and back on. For each load,

four additional table entries must be specified, in addition to the columns
shown in table 3.

Table 4 shows the additional entries to the duty cycle table required for the

adjustment of duty cycle off-period. An analog sensor point to be used as the
basis for adjusting the off-period must be specified by point number. This
could be a measurement such as outside air temperature or a calculated value
such as air handler load. Also the three analog parameters illustrated in
figure 7, the design point, low end point, and high end point, must be
specifed. These quantities must be entered in the units for the associated
analog value (such as degrees C for outside air temperature).

27

DUTY CYCLE ROUTINE

LOAD CONTROLLER

Subroutine DELAYD \
Place infor-
mation on
output to be
controlled
in table

edit task
table to call
on-off task
after delay

Q RETURN ^

On-Off Routine

figure 10. flow diagrams for example duty cycling task

Table 4. Additions to duty cycle table for dynamic adjustment

LOAD no. inter- associated analog design lo-end hi-end
mux pnt lock mux pnt analog analog analog

01 25 1 01 32 15.5 00.0 25.0

02 05 0 02 16 25.0 -10.0 35.0
01 19 1 01 02 25.0 20.0 30.0

.01 02 1 01 02 20.0 05.0 20.0

The algorithm to modify the duty cycle off- period uses the values shown in

table 4 to calculate the proper off-period and phase values. These
calculations are best represented by equations. The first step is to
calculate the difference between the current value of the associated analog
variable and the design point value of this variable:

D = (design point) - (analog value) . (1)

The next step is to calculate a value for the fractional reduction of the
maximum duty cycle off-time to be used at this level of the associated analog
value. If D is less than zero (right side of figure 7), then the fraction is

defined by:

F = B . (2)

(design point) - (high end point)

However, if D is greater than zero, then the following equation is used:

F = E . (3)

(design point) - (low end point)

The reduction in the duty cycle off-period is then given by:

R = (absolute maximum off-period) * F (4)

where ’absolute maximum off-period' is the design off-period value in minutes.
The absolute off-period is that portion of the duty cycle interval specified
by the design off-period in percent, taken from the duty cycle table for the
load currently being duty cycled.

The absolute phase, in minutes, to be used for this value of the associated
analog is calculated by adding R to the portion of the duty cycle interval
specified by the the phase entry in the duty cycle table (in percent). The
absolute off-period for this value of the associated analog is obtained by

29

subracting R from the absolute maximum off-period. Note that this method
results in the time the load is turned back on remaining the same, since:

(on-time) = [adjusted phase] + [adjusted off-period]
= [(design phase) + R] + [(design off-period) - R] (5)

= (design phase) + (design off-period)

Therefore, no algorithm is required to coordinate load turn-on times after
each adjustment of parameters. After the final values of phase and off-period
have been calculated, the main duty cycle routine then calls a subroutine, the

"load controller", to actually turn the load on and off.

The function of the load controller is to allow the main duty cycle routine to

request the deactivation of a given load for a specific time period (off-
period) after a specified delay (phase). The load controller subroutine has

five arguments. These are the load number, the phase (in minutes and
seconds), the off-period (minutes and seconds), a load control priority which
is arbitrarily specified as level five for the duty cycler, and a status
variable. The status variable returns the status of the load control
function. A zero indicates that the load control request was implemented
successfully. If the status variable is a one, this indicates that the
request for load control was rejected because the load is currently under
control by a higher priority function. Advanced versions of the FID might
have more status variable assignments and might take various actions on
receipt of certain statuses. After taking control actions for all of the
loads entered in the table, the duty cycler task ends. After a time period
equal to the duty cycle interval, the duty cycler task starts again.

The load controller is a general purpose routine that can be called by any
task or function which must request the turning off of a digital output for a

certain time after a delay. The routine would be used in particular by a

demand limiting function if it were implemented in the FID software. The load

controller routine does the following things: checks to see if the load which
is to be controlled is currently under control by a routine with higher
priority than the routine requesting control; determines if minimum off-period
criteria are satisfied; verifies that minimum on-period criteria are
satisfied; and calls the appropriate subroutines to cause the desired load to

turn off and then on, if all criteria are met.

To implement the concept of priority control of digital outputs, a priority
variable is used for each output. This number describes the priority level at

which the output is currently controlled. The higher the number, the lower
the priority. When a digital output is actuated, the routine setting the
output fixes the priority so that lower priority functions cannot take control
of the output.

The duty cycler software makes use of a battery of small nearly identical
routines, called *’on-off** routines, which are actually tasks entered in the
task table. The function of any of the on-off routines is to turn off or on a

30

digital output. Any on-off routine can control any load. Information on the

output that is to be controlled, whether it is to be turned on or off, and
the control priority, is located in a software data table which all of the on-
off routines can access. Each on-off routine has a row in the table which
always contains data just for that routine. The entries in the table may be

changed, making the on-off routine programmable. When an on-off routine
executes, it checks values in the table to determine the output to control.
On-off tasks (each with a unique task number) are set to execute by the duty
cycling software using the task table editor. Once a routine has been set to

execute at a future time, an entry in the table is used to mark that routine
as in-use.

Since a given on-off routine may have been previously assigned an in-use
condition, the load controller routine must use an algorithm to select unused
on-off routines before a load can be programmed for future start or stop. For
each load that must be turned off and then on again in a duty cycle interval,
two on-off routines are needed. One routine must turn off a duty cycle load,

and the other must turn the load back on. The load controller selects two
unused on-off routines by checking these in-use entries in the on-off routine
table. Then, to turn off the load to be duty cycled, the load controller
calls a subroutine (which directly controls the on-off tasks) to turn the load
off after a delay equal to the phase for that load. A second call is made to
the same subroutine to turn the load back on after a delay equal to the phase
plus the off-period.

Six arguments must be passed to the subroutine used to control the on-off
routines. They are: the identifier number of an on-off routine to use, a

digital output number, the priority used to control the digital output, a 1 or

0 to indicate if the load is to be turned off or on, and the number of minutes
and seconds before the digital output is to be controlled. The programmable
delay control routine sets appropriate values in the on-off routine table and
then calls the task editor to set the task table counter for the selected on-

off routine to be equal to the delay passed as an argument from the load
controller

.

When the on-off tasks execute, they check the table for the correct digital
output to control and then make use of a primitive digital output control
routine to physically control the digital output. After setting the output,
the in-use flag for that particular on-off routine is reset to zero, thus
allowing the routine to be used for control of another digital output.

The digital output control subroutine is also used by closed loop controller
tasks to turn on and off digital outputs used for damper and valve
positioning. There are three arguments passed: the output number, a 0 or 1 to

indicate off or on, and a priority value. Using the MUX commands and the FID-
MUX communication protocols, the digital output control routine then commands
the MUX to physically control the output. The digital output to be set is

passed as a two part variable which is made up from the MUX number (first
part) and the digital output number within that MUX (second part).

31

The digital output control subroutine has a special teature which provides a

solution to a problem which can arise in the operation of the duty cycler.
The problem can occur when an output which is currently being duty cycled is

turned off with a high priority by a task such as the scheduler (for example,
the scheduler turns off an air handling unit fan at the end of a day). If the

output is turned off by a high priority function when no on-off task has been
programmed to control that output by the duty cycler (a situation that might
exist near the end of a duty cycle interval for a load with a small phase and
a small off-time), the output will be turned off and a high priority will be

entered into the digital output priority variable for that output. When the
duty cycle interval begins again, the duty cycler finds that the output is

under high priority control and the output is not controlled. However, if the

output is turned off by a high priority function when on-off tasks have been
programmed to control the output (such as for a load with a short phase and a

long off time, near the beginning of a duty cycle interval), then when the on-

off tasks turn the output off and then on again, the high priority value of

the flag for the digital output will be over-written. This occurs because the

digital output control routine does not normally compare new priorities with
old priorities but unconditionally sets the output. If this were not
possible, no digital output priority could be set to a lower value once set to

a high value.

The duty cycle problem is solved by having the digital output control routine
check priorities when called by the on-off routines turning on an output. In

this case, the absolute value of the new priority for the digital output is

compared with the old priority, and the output will not be set if the new
priority is lower than the old priority.

The duty cycling software was tested on the NBS laboratory BMCS and used to

duty cycle loads on the analog simulator. A group of four LEDs was used to

represent electrical loads. The duty cycling software successfully cycled the

loads. In addition, loads were not cycled when the scheduler (time-of-day
control) software caused the loads to be turned off at a particular time.

4 . Example Duty Cycle Parameter Selection

A general algorithm was developed in FORTRAN to create a duty cycle table as

mentioned in section 3.5. This algorithm, intended to run at the CCU level,
will be referred to as the duty cycling phase allotment algorithm. The CCU
computer operator must specify the loads to be duty cycled and the desired
percentage of the duty cycle interval that the load is to be in the off state

at design conditions. In addition, the operator may specify relationships to

be maintained between loads. These load relationships may be either in the

form of interlocking (loads must be off at the same time and on at the same
time) or in the form of exclusivity (two loads must not be on or off at the
same time). The inclusion of relationship specification makes the algorithm
reasonable complex. The algorithm developed makes use of a brute force
technique to move load off-periods around within the duty cycle interval
(effectively by allotting phases to the loads) until all criteria are

3 2

satisfied. The main criterion remains the avoidance of simultaneous
activations of loads. A brief description of the algorithm will be given
here. Appendix C contains a more detailed description and the source code
listing of the example program.

A flow chart of the general operation of the phase allotment algorithm is

given in figure 11. The algorithm works on a duty cycle table such as shown
in table 3. All off-times and phases are specified in terms of a percentage
of the duty cycle interval. Five major passes are made through the table to

satisfy all of the constraints. In figure 11, only the first two passes are
shown in detail. Additional figures in appendix C illustrate the other
passes. The first two passes are sufficient to set up a table for a simple
situation where the loads in the table have fairly small off-times and no load

relationships are specified. The other passes are used to sort out more
complicated situations.

The guiding philosophy for the first two passes of the phase allotment
algorithm is to arrange the off periods of the loads within the duty cycle
interval so that the on-times of the loads are as evenly spaced throughout the
interval as possible. There are usually a large number of solutions to this

problem, but one particular arrangement is used. The first pass divides the
duty cycle interval into equal intervals, identifying the same number of ideal
load turn-on times as there are loads to duty cycle. The second pass then
attempts to assign phases to the loads so that the loads are turned on at the
ideal turn-on times. Loads which cannot be assigned ideal turn-on times are
flagged to be taken care of in subsequent passes.

The third, fourth, and fifth passes of the phase allotment algorithm shown in

figure 11 modify the basic duty cycling table for complex duty cycling
constraints. The third pass assigns phases to loads which could not be forced
into turning on a load at an ideal turn-on time determined in the first pass
of the algorithm. The fourth pass adjusts the table for interlocking between
loads, and the fifth pass is used to satisfy mutually exclusive load
constraints. If any of these types of constraints are absent, the third,
fourth, or fifth passes may be skipped.

The third pass of the algorithm operates by moving load off-periods around
within the duty cycle interval. If a load which could not be assigned an
ideal turn on time is encountered, it is tested to determine how close its
turn-on time would be to the nearest other turn-on time if the load were given
a phase of zero. If too close, the load off-period is moved until there is

sufficient space between load turn-on times.

The fourth pass of the phase allotment algorithm consists of checks of the
duty cycling table for entries in the column for interlocks between loads. If

the load being checked is interlocked to another load, the off-period for the
load is moved within the duty cycle interval, and a compromise is made between
having the two loads being off at the same time and avoiding the situation
where two loads have turn-on times that are too close together. When all

33

figure 11 Flew diagrams for phase allotment algorithm

loads have been checked, the fourth pass is complete and all loads should be

turned off at approximately the same time as any loads with which they are
interlocked.

The fifth and final pass of the phase allotment algorithm adjusts the table
for loads which should not be off at the same time as another load which is

specified. As in the fourth pass, load off-periods are moved within the duty
cycle interval, if required. In this case, however, load off-periods are
moved so that they do not coincide with the off-period of a specified load,
while maintaining a minimum distance between load on-times.The fifth pass can
become complicated if there are multiple interlocks between loads that
conflict with each other.

When the fifth pass is complete, the duty cycle table is finished and should
reasonably satisfy all constraints. The final table may not be the best
solution to the problem because the algorithm is relatively simple. The
operator may wish to make slight improvements to the table, after it has been
created by the phase allotment algorithm.

5. CONCLUSIONS

This report has described algorithms developed for use in the NBS Building
Management and Controls Laboratory for two supervisory building control
strategies. The strategies implemented were time-of-day control and duty
cycling. The algorithms were tested using an actual microprocessor-based FID
running software incorporating the algorithms. The algorithms developed
performed successfully on a test system using a simulator panel rather than an
actual building system. Further research will be required to determine how
the algorithms perform when connected to a real HVAC system and to measure the
performance of the algorithms in terms of energy savings, accuracy of control,
and reliability.

6. REFERENCES

1. U.S. Army Corps of Engineers, "Energy Monitoring and Control Systems,"
Technical Manual TM5-81 5-2/AFM 88-36/NAVFAC DM-4.9, Dept, of the Army,
Air Force, and Navy, Washington, DC, September 1, 1981.

2. "Duty Cycling's extra heat: will it void warranty?," Energy User News, 4:7

1,10-llp. 12 Feb, 1979.

36

oooooooooooo

APPENDIX A - Time-of-Day Control Routines

This appendix contains the FORTRAN IV source code for the time-of-day control

routines used in the NBS FID. The routines are taken out of the complete
program that they are designed to work with, but still provide an example of

actual source code for time-of-day control.

C :::::::::::::::::::::::::::::::::: : :::::::::::::::::::::::::::

:

SUBROUTINE SCHTSK
C ::

:

C This routine is the task which is responsible for time of day control.

C Information from the CCU level has been loaded into a schedule table
C and this table is used by this scheduler task to cause the starting
C and stopping of tasks.
C

C VARIABLE DEFINITIONS:

COMMON BLOCK SCHEDU: the schedule table; values entered by other tasks

TASKID - array of task ID numbers representing scheduled events
ISSO - array of values to indicate stop, start, or one-shot task
THR - array of hours of day to start tasks
TMIN - array of minutes within the hour to start tasks
TDOW - array of days of the week to start tasks

COMMON BLOCK TSKLNK: parameters describing the tasks in the FID software
TSKMAX - total number of tasks currently configured in the system

KS - index of starting position (row) in schedule table
C NCD - day number of the current day of the year (1-365)
C NCDOW - number representing the current day of the week (1-7)

C NCR - number of the current hour of the day
C NCM - number of the current minute of the hour
C NDIFF - number of differential hours between table and current time
C NDIFM - number of differential minutes between table and current time
C NTD - day of week that the current task is scheduled to execute
C NTH - hour that the current task is scheduled to execute
C MINMUM - minimum time differential for imnediate task scheduling
C TIME - array containing current time, obtained from hardware clock
C

BYTE TASKID, ISSO, THR, TMIN, TDOW, TIME (9) , NCDOW, H,M,S,TS
BYTE CNTRL , IDOFF , SCANO , SCMAST , SCSLAV , DCSLAV ,TSKMAX , DCMAS T
COMMON/TSKLNK/CNTRL (16) , IDOFF (16) , SCANO , SCMAST , SCSLAV(16)

,

&DCSLAV (8) , TSKMAX , DCMAS T
COMMON/SCHEDU/TASKID (25) ,ISSO(25) ,THR(25) ,TMIN(25) ,TDOW(25) ,KTASK
COMMON/TSKINT/H,M,S,TS
DATA MINMUM/ 60/

C determine current time and day of week
CALL RDCLOK(TIME)

37

NCD=TIME(9)*100+TIME(8)*10+TIME(7)
N CD0V7= IDOW (N CD

)

NCH=TIME(6)*10+TIME(5)

NCM=TIME(4)*10+TIME(3)
C find starting point in task table

IF(TASKID(1) . EQ.O)GO TO 9999
DO 200 K=l,24
IF(TASKID(K) . EQ .0 .OR.TDOW(K) ,GE.NCDOW)GO TO 1000

200 CONTINUE
C check nearness of tasks in table
1000 KS=K

DO 1200 K=KS ,24

C time differential calculation
IF (TASKID(K) . EQ . 0)GO TO 8000
NCARRY=0
NTH=THR(K)
ntd=tdow(k)
NDIFM=TMIN(K)-NCM
IF(NDIFM.GE.0)GO TO 1040
NDIFM=NDIFM+60
NTH=NTH-1

1040 NDIFF=NTH-NCH
IF(NDIFF.GE.0)GO TO 1060
NDIFF=NDIFF+24
NTD=NTD-1

1060 NDIFM=NDIFM+(NDIFF*60)
NDIFF=NTD-NCDOW
IF(NDIFF.GE.0)GO TO 1100
NDIFF=NDIFF+7
NCARRY=-1

1100 NDIFM=NDIFM+ (NDIFF*1440)
IF(NCARRY.EQ.-1)NDIFM=NDIFM-10080

C based on differential, shedule task or quit
IF(NDIFM.LT.MINMUM.AND.NDIFM.GE.0)GO TO 2000
IF(NDIFM.GE.MINMUM)GO TO 8000

1200 CONTINUE
GO TO 8000

C schedule a task for execution
2000 TS=0

H=0
M=NDIFM-1
IF(NDIFM.LE.0)M=0
S=60-(TIME(2)*10+TIME(1))
IF(NDIFM.LE.0)S=0
IF(ISSO(K) .EQ .0 .AND.NDIFM.GT.0)GO TO 8500
IF(TASKID(K) .LE.TSKMAX)CALL TSKEDT(TASKID(K) , ISSO(K) ,2)

GO TO 1200
C if no tasks to schedule, set scheduler task to restart later--
8000 TS=0

38

H=1

M=0
S=0

8500 CALL TSKEDT(T.l.l)
C exit

9999 RETURN
END

C===
FUNCTION IDOW(IDAY)

C==r================r ===

C Determines the day of the week as a function of the day number
C for 1983 only. Sunday = 1, Mon. = 2, etc.
C IDOW = day of the week, NWEEK = week number, IDAY = day number

DATA IDOWl/7/
NWEEK=IDAY/7
IDOW=IDAY-(NWEEK*7)+IDOW1-1
IF (IDOW. GT . 7) ID0W=ID0W-7
RETURN
END

39

ooooooooooooo

ooooooooooooo

APPENDIX B - Duty Cycling Control Routines

This appendix contains the FORTRAN IV source code for the duty cycling control
routines used in the NBS FID. The routines are taken out of the complete
program that they are designed to work with, but still provide an example of

actual source code for duty cycling control.

C: :::

:

SUBROUTINE DUTCYC
C ::

:

C This routine is the main routine to cause duty cycling of electrical
C loads connected to digital outputs to occur. Based on the contents
C of a duty cycle table, the routine causes digital outputs currently
C on to be turned off for certain periods of time to save energy.
C The routine LDCONT is used to create an interface to the loads.

VARIABLE DEFINITIONS:

COMMON BLOCK DUTYCT: The duty cycle table. It is loaded from the CCU.

LOAD - array of load ID numbers to be duty cycled (MUX no. and point no.)

PCPHAS - array of phase times for the loads (% of duty cycle interval)
PCOFF - array of off-period times for the loads(% of duty cycle interval)
ADJUST - logical array, 1 if off-period is to be dynamically adjusted
DCAMUX - array of MUX ID numbers for the analog values used for adjustment
DCAPNT - array of Point ID's for the analog values used for adjustment
DCADES - array of values for the adjustment analog value at the design point

DCALO - array of lower values of the adjustment analog at minimum off-period
DCAHI - array of higher values of the adjustment analog at min. off-period

DCMAST -

DCI
DELTA
FRAC
H.M.S.TS-
IEDOS
PHASE
REDUC
STATUS -

TIMOFF -

TPHASE -

TTO

task ID number for duty cycler task (passed in common block)
duty cycle interval obtained from task manager task table
design minus current analog value for off-period adjustment
difference between design and high (low) adjustment analog values
task execution interval times from task table (hrs. , mins., etc.)
argument for task interval utility routine, holds task status
two part integer containing phase for current load in mins, and sec

reduction in off-period when duty cycle adjustment is made
status of request to load controller to turn load off and on
two part integer containing off-period for current load (min., sec.)
absolute phase in seconds for current load
absolute off-period in seconds for current load

INTEGER LOAD , PCPHAS , PCOFF , DCI , TTO , TPHASE
BYTE ADJUST, DCAMUX, DCAPNT
REAL DCADES, DCALO, DCAHI
REAL*8 ANAI
REAL DELTA, FRAC

40

o

n

INTEGER REDUC, LOAD, PHASE(2) ,TIMOFF(2) .STATUS

BYTE CNTRL, IDOFF , SCANO .SCMAST , S CSLAV , DCSLAV , TSKMAX, DCMAS

T

BYTE H,M, S ,TS

COMMON/TSKINT/H.M.S.TS
COMMON/TSKLNK/CNTRL(16) , IDOFF(16) , SCANO , SCMAST, SCSLAV(16)

,

&DCSLAV(8) , TSKMAX, DCMAS T
COMMON/DUTYCT/LOAD(16) , PCPHAS (16) ,PCOFF(16) ,ADJUST(16) ,DCAMUX(16)

,

&DCAPNT (16), DCADES (16), DCALO (16), DCAHI (16)
COMMON/ANALOG/ANAI (1,32)

determine duty cycle interval DCI

CALL TSKCHK (DCMAS T.IEDOS)
DCI=M*60+S

C read duty cycle loads and parameters from table
DO 1000 1=1,16
IF(LOAD(I) ,LE.O)GO TO 1000
TTO=DCI*PCOFF(I)/100
TPHASE=DCI*PCPHAS (I) / 100

IF(ADJUST(I) ,EQ.O)GO TO 500

C adjust PCOFF and PCPHAS if required
M=DCAMUX(I)
S=DCAPNT(l)
DELTA=DCADES (I

) -ANAI (M, S

)

IF (DELTA .LE . 0) FRAC=DCADES (I
) -DCAHI (I

)

IF (DELTA . GT . 0) FRAC=DCADES (I
) -DCALO (I

)

IF(FRAC.EQ.O)GO TO 500
FRAC=DELTA/FRAC
REDUC=TTO*FRAC
TPHAS E=TPHAS E+REDUC
TTO=TTO-REDUC

C Call load controller to turn load on and off
500 TIMOFF(1)=TTO/60

TIMOFF (2) =TTO-TIMOFF(1) *60
PHASE (1)=TPHASE/ 60
PHAS E (2) =TPHASE- PHAS E (1) *6

0

CALL LDCONT (LOAD (I) , PHAS E , TIMOFF , 5 , S TATU S

)

1000 CONTINUE
C Check status and take appropriate action
CC
C In this version, no status check is made. Status check becomes C

C important when demand limit control is added to the FID. C

C If records of duty cycling are to be kept, this routine must also C

C keep track of the actual time that loads are cycled off C

CC
RETURN
END

C= === ============

SUBROU TINE LDCONT (LOAD , PHAS E , TIMOFF , PR IOR , S TATU S

)

C= == ===========

41

C This is the load controller routine. It is used by routines which
C control electrical loads controlled by digital outputs. The routine
C performs the following functions. 1: checks to see if the load is

C currently under control by a routine with a higher priority than
C the routine requesting control; 2: Checks to see if minimum off-time
C criteria are satisfied; 3: Checks for a violation of minimum on-time
C criteria; 4: controls the load by the use of two currently unused
C floating on-off control tasks.
C

C VARIABLE DEFINITIONS:

C CURPRI - current priority level that digital output to be controlled is at

C DOPRI - array containing current control priority of all digital outputs
C INUSE - logical array indicating if an on-off task is reserved
C LOAD - ID number of the load to be cycled off
C MINOFT - minimum value of the off-period to avoid equipment damage
C NEGPRI - negative of PRIOR, used to turn on load and request a priority check
C ONAGIN - relative time interval from present before load is turned back on
C PHASE - relative time interval from present before load is turned off
C PRIOR - priority that load is to be controlled under
C STATUS - status of request for load control:
C status = 0 , loads successfully controlled
C status = 1 , load control rejected due to low priority request
C status = 2 , off-time less than minimum specification
C TIMOFF - off-period for load
C

BYTE DIGO, DOPRI, DIGIN
BYTE DONOFF, INUSE
INTEGER LOAD , PHAS E (2) , TIMOFF (2) , PRIOR , STATU S , MINOFT
INTEGER ONAGIN(2) , IPR, DNUM
INTEGER L0AD2, CURPRI, NEGPRI
BYTE MUXPNT(2

)

COMMON/ONOFF/DNUM(8) ,DONOFF(8) , INUSE(8) , IPR(8

)

COMMON/DIGITA/DIG0(1 ,24) ,D0PRI(1 ,24) ,DIGIN(1 ,16)

EQUIVALENCE (L0AD2,MUXPNT(1)

)

DATA MINOFT/ 1/

C priority check
L0AD2=L0AD
I2=MUXPNT(1

)

Il=MUXPNT(2)

CURPRI=DOPRI(11,12)
IF (PRIOR.LE. CURPRI) GO TO 100
STATUS=1
RETURN

C minimum on-time check
100 CONTINUE

CC
C Minimum on-time checking is not implemented in this version. When C

C demand limit control is added to the FID, this routine must check to C

42

C see if the load to be turned off has been on long enough to avoid C

C damage to equipment or satisfy other criteria. If demand limit is C

C trying to turn off a load, the duty cycler may just have turned a C

C load on. A minimum on time must elapse, so the time until the load C

C is turned off, the phase, must be adjusted. If duty cycle is trying C

C to turn off a load, and demand limit has just released a load, then C

C there must also be a minimum on time, and the phase must be adjusted.

C

CC
C minimum off- time check
C Minimum off time becomes important when the percent off time becomes C

C too small and there is the risk of equipment damage as equipment is C

C turned off and then on again a short time later. Currently, minimum C

C is set at 1 second. C

C

IF(TIM0FF(1) .GT.O.OR.TIMOFF(2) .GT.MINOFT)GO TO 200
STATUS=2
RETURN

C find unused on/off task pair
200 11=0

12=0

DO 1000 1=1,8
IF(INUSE(I) ,NE.0)GO TO 1000
IF(I1 .NE. 0)12=1
IF(II .EQ .0) INUSE (I) =1

IF(I1.EQ. 0)11=1
IF(I1 .NE.O.AND.I2.NE.O)GO TO 2000

1000 CONTINUE
11=5
12=6

2000 INUSE(12) =1

C set load to turn off and then on
NEGPRI=- PRIOR
CALL DELAYD (II, LOAD , NEGPR 1 , 0 , PHASE (1) , PHASE (2)

)

0NAGIN(1)=PHASE(1)+TIM0FF(l

)

0NAGIN(2) =PHASE(2)+TIM0FF(2)

CALL DELAYD (12 ,LOAD ,NEGPR 1 , 1 , ONAGIN(1) , ONAG IN (2)

)

STATUS=0
RETURN
END

C= == ==============

SUBROUTINE DELAYD (DOTSK , OUT , PRIOR , ONOFF ,MIN , SEC

)

C= === =============

C this routine is called to turn a load off or on, after a specified time
C interval. DOTSK is the on-off task to use to control the load, OUT is

C the digital output to control, PRIOR is the priority to control the load
C under, ONOFF is 1 to turn on a load, 0 to turn it off, and MIN and SEC
C are the time interval that should elapse before the output is controlled.
C COMMON BLOCK ONOFF contains a table of on-off task parameters that are
C set before the task can be used.

43

c

INTEGER PRIOR, OUT, DOTSK
BYTE ONOFF,H,M,S,TS,TSK
BYTE DONOFF, INUSE
INTEGER MIN, SEC, IPR.DNUM
BYTE CNTRL , IDOFF , SCANO , SCMAST, SCSLAV , DCSLAV , TSKMAX , DCMAS

T

COMMON/TSKINT/H, II, S ,TS

COMMON/ONOFF/DNUM(8) ,DONOFF(8) ,INUSE(8) ,IPR(8)

COMMON/TSKLNK/ CNTRL(16) , IDOFF(16) , SCANO , SCMAST, SCSLAV(16)

,

&DCSLAV(8) , TSKMAX, DCMAST
C set parameters in on-off task table

INUSE (DOTSK) =1

IPR(DOTSK)= PRIOR
DNUM (DOTSK)=OUT
DON OFF (DOTSK)=ONOFF

C cause on-off task to execute after a delay time
TS=0
H=0
M=MIN
S=SEC
TSK=DCSLAV(DOTSK)
CALL TSKEDT(DCSLAV (DOTSK) .-1 ,1)

RETURN
END

C: :::

:

SUBROUTINE ONOFFl
C ::

:

C This routine is one of several identical tasks used to turn off or
C turn on digital outputs after a short delay time. The output to be

C controlled by the task is programmable. There are multiple copies
C of these tasks to allow several outputs to be set up to turn off
C or on within the same future time frame.
C

BYTE DONOFF, INUSE
INTEGER IPR, DNUM
BYTE CNTRL , IDOFF , SCANO , SCMAST, SCSLAV , DCSLAV , TSKMAX, DCMAST
COMMON/ ON0FF/DNUM (8) ,DONOFF(8) , INUSE (8) , IPR(8)

C control digital output with priority IPR
CALL DIGOUT (DNUM (1) ,DONOFF(1) , IPR(1)

)

RETURN
END

44

APPENDIX C - Duty Cycling Phase Allotment Algorithm

This appendix contains a detailed explanation, flow charts, and FORTRAN IV

source code for a duty cycling table phase allotment algorithm (see section
4.4 of the main text). The routine might be used in central computer softv/are

(CCU) to assist the building operator in setting up duty cycling of building
equipment

.

The main flow diagram for the algorithm was given in figure 11. There are
five passes that the algorithm makes over a duty cycle table containing a set

of loads, and corresponding desired off-periods. The algorithm essentially
fills in the phase parameters for each load to avoid simultaneous starting of

equipment and to satisfy constraints on the loads of interlocking and
exclusivity.

The first pass of the algorithm finds the load with the smallest off-period
and the load with the longest off-period. The load with the smallest off-
period is then assigned a phase of zero. The load with the largest off-period
is given a phase which will cause the load to turn on 90% of the way through
the duty cycle interval. If the remaining loads have small off-periods, their
turn-on times can then be evenly spaced between the turn-on time of the load
assigned the zero phase, and the turn on time of the load with the largest
off-time, set at 90%. This is done by subtracting the off-period of the zero
phase load (in %) from 90% to yield a range. The range is divided by the
number of loads minus two, giving an increment for the on-times.

The second pass of the phase allotment algorithm tries to match load on-times
with the ideal on-times determined after the first pass. A flag variable is

used to indicate which loads have not been assigned a phase. The loads with
the shortest and the longest off-periods were flagged as done after the first
pass. The second pass tries to assign phases to all the remaining loads. A
load on-time target is arrived at by subtracting the increment determined
after the first pass from the previous target. The first value for the
previous target is 90%. Thus if the increment was determined to be 10%, the

targets would be 80%, 70%, 60%, etc. For each target, the algorithm loops
through the table, looking for the load with the longest off-period that has
not been assigned a phase. When this load is found, it is assigned a phase
equal to the on-time target minus the off-period for the load. If the off-
period is small, this value will be positive. It is possible for the
calculated phase to be negative. This is allowable for the second pass
because the negative phase will be corrected in the third pass. The algorithm
continues assignment of values to phases to match targets until all of the
loads have been assigned a phase. A flag is set if any of the phases were
negative. If this flag is not set then the basic table is complete.

The third, fourth, and fifth passes of the phase allotment algorithm shown in

figure 11 modify the basic duty cycling table for complex duty cycling

45

constraints. The third pass ensures that all phases
are positive values. The fourth pass adjusts the
between loads, and the fifth pass is used to satisfy
constraints. If any of these types of constraints
fourth, or fifth passes may be skipped.

that have been assigned
table for interlocking
mutually exclusive load
are absent, the third.

Figure A-l is a flow chart illustrating the third pass of the phase allotment
algorithm. This pass checks each phase, and if the phase is positive, makes
no change. If a phase is negative (indicating a long off-period or similar
problem) the algorithm uses a routine to determine what the nearness (in

percent) of the ontime of the current load to other on-times in the table
would be if the phase was assigned a value of zero. Also determined is the
number of the load with the next chronological on-time. At this point, three

constants must have been defined. These are a minimum spacing, which is the

smallest desired time interval between two load on-times; a minimum
separation, which is the smallest time interval between two on-times where
another ontime may be inserted between these two; and the increment, which was
determined during the second pass as the distance between on-time targets.

If the nearness factor is determined to be greater than the minimum
separation, then the phase is made zero, and the next load in the table is

checked. If the nearness is less than the minimum, another phase must be

tried. The value of the next trial phase for the current load depends on how
close the current load on-time is to the next load on-time in the table. If

the space between these on-tiraes is greater than the minimum space, the trial
phase is increased by half the distance of the space between the current and
next on-times. If the space between on-times is less than the minimum, the

trial is increased by half the increment determined in the second pass. Using
the new trial value, the nearness for the current load is checked again, and
the phase is adjusted until all the tests described are passed.

If the trial phase reaches a point where the on-time value exceeds 95 percent,

the trial is reset to zero and the minimum space and minimum separation
constraints are halved. The process then continues until a valid positive
phase can be assigned.

The fourth pass of the phase allotment algorithm consists of checks of the
duty cycling table for entries in the column for interlocks between loads. If

the load being checked is interlocked to another load, the table entry for the
current load will contain a positive number which is the load number of the
interlocked load. Figure A-2 is a chart illustrating the operation of the
fourth pass of the algorithm. If the interlock load entry is indeed positive,
a trial phase for the current load is set equal to the phase of the
interlocked load. This will result in the two loads being off at the same
time. The on-time of the current load must then be checked and its nearness
to other on-times is determined with the same routine used by the third pass
to check nearness. If the nearness is greater than the minimum separation,
then the phase for the current load is made equal to the trial phase and the
next load is checked for a positive load interlock. If the nearness is less

46

figure A~

DETERMINE
NEARNESS OF
CURRENT LOAD
ONTIME TO
OTHER ONTIMES

SPACE = TIME
BETWEEN CURRENT
ONTIME AND
NEXT ONTIME

TRIAL PHASE =

TRIAL PHASE +
INTERLOCK / 2

N //SPACE sv Y— > MIN. > *
SPACE?/

TRIAL PHASE=
TRIAL PHASE+
SPACE / 2

E=Z -
1

SET TRIAL PHASE = TRIAL

HALVE MIN.
SPACE AND MIN.
SEPARATION NEXT I

1 . flow diagrams for the third pass of the phase allotment algorithm

47

than the minimum separation* the trial phase is increased by an amount equal

to the minimum separation and the nearness is redetermined. Usually this is

enough, unless the change in the trial phase has moved the on-time too close

to another on-time. In this case the trial must be increased again. When all

loads have been checked* the fourth pass is complete and all loads should be

turned off at approximately the same time as any loads to which they arc
interlocked.

The fifth and final pass of the phase allotment algorithm checks the same
column in the duty cycle table as the fourth pass, but only checks for values
less than zero, rather than greater than zero. A value less than zero in the

interlock column indicates that the current load should not be off at the same
time as the load number specified by the absolute value of the number in the

interlock column. Each load is checked to see if it has a negative number in

the interlock column and if it does, the fifth pass must make an adjustment to

the phase of the load. The fifth pass is illustrated by figure A-3.

When two loads are to be exclusive, there are two possible cases in

determining the adjustment to be made to the phase of the current load to move
it away from the interlocked load. The interlocked load may have its off-
period start before the off-period of the current load, or the current load
may have its off-period start before the off-period of the interlock load. In

the first case, the current load would be moved in time so that its off-period
would occur later, in order to increase the distance between the two off-
periods. In the second case the current load off-period would be moved to

occur earlier. A space between loads can be determined for each of the two
cases, defined as the time interval between the off-time of one load and the
on-time of the other. If the space is negative, this indicates that the loads
are off at the same time during at least part of their off-periods. If either
of the spaces for the two cases is greater than the minimum space, then no
change i6 made to the phase of the current load.

If the spaces between off-periods for the two exclusive loads are not greater
than the minimum space, a trial phase for the current load must be determined.
First a decision is made to determine the direction to move the current load
which would result in the least movement of the current load off-period. Once
this is done, a trial phase can be calculated to separate the off-periods of

the exclusive loads by the minimum separation. Using this trial phase, the
nearness of the current load on-time to other on-times is determined, as was
done in the previous two passes. If the nearness is greater than the minimum
separation, then the current load phase is assigned the value of the trial
phase. If the nearness is too small, the trial phase is either increased or
decreased, depending on the relative positions of the current and interlocked
load off-periods, by an amount equal to the minimum separation. The nearness
is checked for the new phase until a the value is greater than the minimum
separation

.

At this point in the fifth pass, either the exclusive criterion for the
current load has been satisfied, or the off-period of the current load has

48

figure A-

Y

trial phase
FOR CURRENT
LOAD=PHASE
OF INTER-
LOCKED LOAD

2 . flow diagrams for the fourth pass of the phase allotment algorithm

49

figure A-3 flow diagrams for the fifth pass of the phase allotment algorithm

50

been pushed all the way to an edge of the duty cycle interval. In the latter
case, the off-periods of the current load and the interlock load may still not
be exclusive. If this is true, then the phase of the interlock load can be

adjusted. This adjustment is very similar to the phase adjustment for the
current load, which has been discussed, except that the movement of the off-

period is for the interlock load and spaces and separations are calculated
relative to the current load.

Another difference between the exclusive loads phase adjustment for the

interlock load and the current load is that the interlock load may be in turn
interlocked to another load. Thus, when the trial phase for the interlock
load is determined, it may be necessary to compromise the value for the trial

phase. The decision to compromise depends on whether the movement of the
interlock load off-period causes a conflict with the load off-period that the
interlock load is itself interlocked with. If the interlock load off-period
is moved away from an off-period that it is interlocked with, this is

desirable and no compromise is necessary. Otherwise, a compromise is made.
The compromise consists of halving the original change in phase that would
have been made if there were no load interlocked to the interlock load of the
current load.

Following is the listing of the duty cycling phase allotment algorithm,
contained in the listing between label 1000 and label 4900. The other lines
in the listing are a brief test program which the algorithm has been placed
within.

C VERSION 0.2 8/ SEPTEMBER 23,1982/W.B. MAY
C=rr=============== ====== = = ============ ===== =================== ===

PROGRAM DCPHASAL
C===r=====

INTEGER* 1 DISPLA(40)
INTEGER PCPHAS (25) , PCTOFF (25) , ONTIME , PDONE (25) , NDEL , INTLOC (25

)

INTEGER NMIN ,NMAX, MAXOFF , MINOFF ,RANGE , TINCR , TARGET , DELTA , MINDEL
LOGICAL NPFLAG , PIFLAG , NIFLAG
INTEGER TRIAL, NLOW,NHIGH,NEARNS, SPACE, MINSEP.MINSPA, SPACE2 ,TRMAX
DATA MINSEP/ 2/ , MINS PA/ 5/

C get off-time data
WRITE (1,1)

1 FORMAT (IX, ’DUTY CYCLING PHASE ALLOTMENT ALGORITHM TEST',//)
100 DO 500 1=1,25

WRITE (1,2)
2 FORMAT (1H+,’ ENTER PERCENT OFF TIME AND INTERLOCK FOR LOAD (~1=END)
&’

,

13 ,’>’)

READ (1,3) PCTOFF (I) , INTLOC (I

)

C

C INTERLOCK CODE: 0 = NO INTERLOCK
C >0 = INTERLOCK WITH LOAD OF SAME NUMBER
C <0 = MUTUALLY EXCLUSIVE WITH LOAD OF SAME NUMBER
C

51

n

n

n

3 FORMAT(211 0)

IF(PCTOFF(I) .LT.O.OR.PCTOFF(I) .GT.99)GO TO 1000
PCPHAS(I)=0
PDONE(I) =0

500 CONTINUE

phase allotment algorithm

1000 N=I-1
IF(N. EQ . 1)GO TO 5000

C first pass - find max and min offtimes
PIFLAG=0
NIFLAG=0
NPFLAG=0
MINOFF=99
MAXOFF=0
DO 1200 1=1 . N

IF(INTLOC(l) .LT.O)NIFLAG=1
IF(INTLOC(I) .GT.0)PIFLAG=1
IF(PCT0FF(I) .GT.MIN0FF)G0 TO 1100
MINOFF=PCTOFF(I)
NMIN=I

1100 IF(PCTOFF(I) ,LT.MAXOFF)GO TO 1200
MAXOFF= PCTOFF (I

)

NMAX=I
1200 CONTINUE

PCPHAS (NMAX) =90-MAXOFF
RANGE=90- PCTOFF (NMIN)
TINCR= RANGE/ (N-l)
PDONE(NMAX) =1

PDONE(NMIN) =1

IF(N.EQ.2)GO TO 3000
C 2ND pass - match loads to target turn on times

N2=N-2
TARGET=90
DO 1500 1=1, N2

MINDEL=0
TARGET=TARGET-TINCR
DO 1400 J=1,N
IF(PDONE(J) .EQ.l)GO TO 1400
ONTIME=PCTOFF (J)+PCPHAS(J

)

IF (ONTIME . LT . MINDEL) GO TO 1400
MINDEL=ONTIME
NDEL=J

1400 CONTINUE
DELTA=TARGET-MINDEL
PCPHAS (NDEL) =DELTA
IF(DELTA.LT.0)NPFLAG=1
PDONE(NDEL)=l

52

1500 CONTINUE
C ---3RD pass - negative phase removal

2000 IF(NPFLAG.NE.l)GO TO 3000
DO 2500 1=1 ,N

IF(PCPHAS(I).GE.O)GO TO 2500
TRIAL=0
MSEP=MINSEP
MSPA=MINSPA

2300 CALL ONTCHK (I .TRIAL , PCPHAS . PCTOFF , N , NLOW , NHIGH, NEARNS

)

IF(NEARNS.GE.MSEP)GO TO 2400
C nearness too small, adjust trial phase

SPACE=PCTOFF(NHIGH)+PCPHAS(NHIGH)-PCTOFF(l)-TRIAL
IF(SPACE. GT.MSPA)TRIAL=TRIAL+SPACE/2
IF (SPACE .LE . MS PA) TRIAL=TR IAL+TINCR/

2

ONTIME=TRIAL+PCTOFF(l)
IF(ONTIME.LE.95)GO TO 2300

C exceed duty cycle interval, reduce minimums
TRIAL=0
MSEP=MSEP/ 2

MSPA=MSPA/2
GO TO 2300

2400 PCPHAS (I)=TRIAL
2500 CONTINUE

C 4TH pass - positive interlock adjustment
3000 IF(PIFLAG.NE.l)GO TO 4000

DO 3500 1=1,

N

IL=INTLOC(l)
IF(IL.LE.0)GO TO 3 500

TRIAL=PCPHAS(IL)
3300 CALL ONTCHK (I, TRIAL, PCPHAS, PCTOFF, N, NLOW, NHIGH, NEARNS)

IF (NEARNS .GE.MINSEP) GO TO 3400
TRIAL=TRIAL+MINSEP
GO TO 3300

3400 PCPHAS (I) =TRIAL
3 500 CONTINUE

C 5TH pass - exclusive loads adjustment
4000 IF(NIFLAG.NE.l)GO TO 5000

DO 4900 1=1,

N

IL=-INTLOC(l)
IF(IL.LE.0)GO TO 4900

C check interload spacing
SPACE=PCPHAS(l)“PCTOFF(IL)“ PCPHAS (IL)

SPACE2=PCPHAS (IL) -PCTOFF (I
) -PCPHAS (I

)

IF (SPACE . GE . MINS PA . OR . S PACE2 . GE . MINS PA) GO TO 4900
IF(SPACE2 .GT. SPACE)GO TO 4200

C increase current load phase to clear interlock load
TR IAL= PCPHAS (IL)+PCTOFF (IL) +MINSPA
TRMAX=95-PCT0FF(I)
TRIAL=MIN0(TRIAL, TRMAX

)

53

MSEP=MINSEP
GO TO 4300

C decrease current load phase to clear interlock load
4200 TR IAL= PCPHAS (IL) - PCTOFF (I

) -MINS PA
TRIAL=MAX0(TRIAL,0)
MSEP=-MINSEP

4300 CALL ONTCHK(I , TRIAL (PCPHAS » PCTOFF • N , NLOW , NHIGH, NEARNS

)

IF(NEARNS.GE.MINSEP)GO TO 4400
C slide off-time back or forward to clear conflict

IF(TRIAL.LE.0.OR.TRIAL.GE.95)MSEP=-MSEP
TRIAL=TRIAL-MSEP
GO TO 4300

4400 PCPHAS (I)=TRIAL
C if exclusive interlock not ok* move interlock load

S PACE= PCPHAS (I) - PCTOFF (IL) - PCPHAS (IL

)

SPACE2 =PCPHAS (IL) -PCTOFF (I
) -PCPHAS (I

)

IF (S PACE . GE . MINS PA . OR . SPACE2 . GE . MINS PA) GO TO 4900
IF(SPACE2.GT.SPACE)GO TO 4420

C decrease interlock load phase to clear current load
TRIAL= PCPHAS (IL) -MINS PA- PCTOFF (I

)

TR IAL=MAX0 (TR IAL » 0

)

MSEP=-MINSEP
GO TO 4450

C increase interlock load phase to clear current load—
4420 TR IAL= PCPHAS (I)+PCTOFF(I)+MINSPA

TRMAX=9 5- PCTOFF (IL)
TRIAL=MIN0(TRIAL.TRMAX)
MSEP=MINSEP

4450 IF(lNTLOC(IL) .EQ.0)GO TO 4500
C if interlock load has interlock load, adjust trial

IF (INTLOC (IL) . GT . 0) GO TO 4470
SPACE=TRIAL-PCPHAS(IL)

IL2 = INTLOC (IL)
S PACE2=PCPHAS (IL) -PCPHAS (IL2

)

IF(SPACE.GT.O . AND.SPACE2 .GT.0)GO TO 4500
IF(SPACE.LT.O .AND. SPACE2 .LT.0)GO TO 4500

4470 TRIAL=(TRIAL+PCPHAS (IL))/2

4500 CALL 0NTCHK(IL, TRIAL .PCPHAS, PCTOFF, N. NLOW, NHIGH.NEARNS

)

TRMAX=95-PCTOFF(IL)
IF (NEARNS. GE.MINSEP. OR. TRIAL. LE.0. OR. TRIAL, GE.TRMAX) GO TO 4600
TRIAL=TR IAL+ MSEP
GO TO 4500

4600 PCPHAS (IL)=TRIAL
4900 CONTINUE

C print out allotment
5000 WRITE (1 ,13)

13 FORMAT(lX,// ,1X, * LOAD PHASE OFFTIME TURN-ON’,/)
DO 5500 J=1,N
ONTIME=PCTOFF (J)+PCPHAS (J

)

54

DO 5200 1=1,40
DISPLA(l) =32

5200 CONTINUE
DISPLA(1)=124

DISPLA(40) =1 24
Il=PCPHAS(J)*l 0/25+1
I2=ONTIME*10/ 25+1

DO 5300 1=11,12
DXSPLA(I)=95

5300 CONTINUE
WRITE (1 ,4) J, PCPHAS(J) , PCTOFF(J) .ONTIME, INTLOC(J) .DISPLA

4 FORMAT(IX, 16 ,418 , 1X.40A1

)

5500 CONTINUE
WRITECl ,15)

15 FORMAT (IX,//)
GO TO 100
END

C= = = = = = = = = == = = = = = =

SUBROUTINE ONTCHK (1 * TRIAL , PCPHAS , PCTOFF , N , NLOW, NHIGH .NEARNS

)

C==rr===============

C This subroutine is used by the duty cycling phase allotment
C algorithm. Given a load with a trial phase and fixed off-time,
C the routine compares the ontime for this load with all other
C on-times and computes the nearness of the closest on time in %.

C The routine also points to the closest turn-on times on either
C side of the given load.

INTEGER TRIAL, PCPHAS (25) , PCTOFF (25), NLOW, NHIGH, NEARNS
INTEGER PDEL,NDEL,DEL
NLOW=l
NHIGH=N
PDEL=100
NDEL=-100
DO 1000 J=1,N
IF(I.EQ.J)GO TO 1000
IF (PCPHAS (J) . LT . 0) GO TO 1000
DEL=TRIAL+PCTOFF (I) -PCPHAS (J) -PCTOFF (J)

IF(DEL. LT.O)GO TO 400
IF(DEL.GT.PDEL)GO TO 1000
NLOW=

J

PDEL=DEL
GO TO 1000

400 IF (DEL . LT . NDEL) GO TO 1000
NHIGH=J
NDEL=DEL

1000 CONTINUE
NDEL=-NDEL
NEARNS=MIN0 (NDEL , PDEL

)

RETURN
END

5 5

N BS»1 14A (rev. 2«sc>

U.*. DEPT. OF COMM.

BIBLIOGRAPHIC DATA
SHEET (See Instructions)

1. PUBLICATION OR
REPORT NO.

NBSIR 83-2713

2. Performing Organ. Report No. 3. Publ icatlon Date

July 1983

4. TITLE AND SUBTITLE

TIME OF DAY CONTROL AND DUTY CYCLING ALGORITHMS FOR BUILDING MANAGEMENT
AND CONTROL SYSTEMS

5. AUTHOR(S)

William B. May, Jr.

6. PERFORMING ORGANIZATION (If joint or other than NBS, see instructions)

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

7. Contract/Grant No.

S. Type of Report & Period Covered

9.

SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State, ZIP)

U.S. Department of Energy
1000 Independence Avenue, SW
Washington, DC 20585

Naval Civil Engineering Laboratory
Port Hueneme, CA 93043

10.

SUPPLEMENTARY NOTES

Document describes a computer program; SF-185, FIPS Software Summary, Is attached.

11.

ABSTRACT (A 200-word or less factual summary of most significant Information. If document Includes a significant
bibliography or literature survey, mention It here)

Software is an important component of building management and control systems (BMCS).

Although much software is available in proprietary or system dependent form, public
domain control software and algorithms are rare. This report describes concepts,
algorithms, and software used in BMCS components developed in the NBS building
systems and controls laboratory. The concepts and basic algorithms for time of day
(scheduled start/stop) control and duty cycling of electrical equipment in building
heating, ventilating, and air conditioning systems are presented. Time of day
control results in control events occurring at predetermined times of the day on
selected days of the week. Duty cycling is the periodic turning off and on of loads,

usually electrical, to reduce energy consumption under part heating and cooling load

conditions. Considerations for use of duty cycling with other control strategies
such as demand limiting, selection of duty cycling parameters, and dynamic adjustment
of duty cycling, are discussed. All algorithms presented were implemented in software
on a specific BMCS, and the actual computer programs used are presented as examples.

12. KEY WORDS (Six to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolons)

Building Management and Control Systems (EMCS, BMCS); computer control; control

algorithms; control software; duty cycling; energy management; heating, ventilating
and air conditioning (HVAC) ; scheduled start/stop; time of day control.

13. AVAILABILITY

[X] Unlimited

| |
For Official Distribution. Do Not Release to NTIS

PH Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

(JLl Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

60

15. Price

$ 10.00

U9COMM.DC «043-P80

		Superintendent of Documents
	2022-04-14T14:56:35-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

