

NBSIR 73-207 ALLIO 995092 Chemical Kinetics Data Survey VI: Photochemical and Rate Data for Twelve Gas Phase Reactions of Interest for Atmospheric Chemistry

R. F. Hampson, Editor

D. Garvin, J. T. Herron, R. E. Huie, M. J. Kurylo, A. H. Laufer, H. Okabe, M. D. Scheer, and W. Tsang

Physical Chemistry Division Institute for Materials Research National Bureau of Standards Washington, D. C. 20234

August 1973

Interim Report

QCDared for100Dared for. U56Datic Impact Assessment Program, Department of Transportation,no.73-Dirdnance Systems Command, ORD 3311, Department of the Navy207Department Reference Data, N.B.S.,

sures for Air Quality, N.B.S.

NBSIR 73-207

CHEMICAL KINETICS DATA SURVEY VI. PHOTOCHEMICAL AND RATE DATA FOR TWELVE GAS PHASE REACTIONS OF INTEREST FOR ATMOSPHERIC CHEMISTRY

R. F. Hampson, Editor

D. Garvin, J. T. Herron, R. E. Huie, M. J. Kurylo, A. H. Laufer, H. Okabe, M. D. Scheer, and W. Tsang

Physical Chemistry Division Institute for Materials Research National Bureau of Standards Washington, D. C. 20234

August 1973

Interim Report

Prepared for Climatic Impact Assessment Program, Department of Transportation, Naval Ordnance Systems Command, ORD 3311, Department of the Navy Office of Standard Reference Data, N.B.S., and Measures for Air Quality, N.B.S.

U. S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secretary NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Director

		Page
Abstract		1
Introduction (Includes revisions of reports) Data Sheets	recommendations in previous	1
$H + H_2 O_2 \rightarrow Products$	M. D. Scheer	4
$HNO_2 + hv$	R. F. Hampson	7
$HO + H_2O_2 \rightarrow HO_2 + H_2O$	M. J. Kurylo	9
$HO + NO + M \rightarrow HNO_2 + M$	W. Tsang	15
$HO + NO_2 + M \rightarrow HNO_3 + M$	W. Tsang	21
NO + hv	H. Okabe, R. F. Hampson, D. Garvin	33
$NO + O + M \rightarrow NO_2 + M$	R. E. Huie, J. T. Herron	55
$NO_2 + hv$	R. F. Hampson, D. Garvin	59
$NO_2 + O \rightarrow NO + O_2$	R. E. Huie, J. T. Herron	79
$NO_2 + O + M \rightarrow NO_3 + M$	R. E. Huie, J. T. Herron	85
$N_2O_5 + hv$	R. F. Hampson	93
$0_2 + hv$	A. H. Laufer	98

- Appendix A. Reactions of Potential Interest for the Chemistry of the Stratosphere.
- Appendix B. Conversion Tables: Rate Constants, Energy Units and Optical Absorption Coefficients.

Appendix C. Errata to NBSIR 73-203 and NBSIR 73-206.

Chemical Kinetics Data Survey

VI. Photochemical and Rate Data for Twelve Gas Phase

Reactions of Interest for Atmospheric Chemistry

Abstract

Photochemical and rate data have been evaluated for twelve gas phase reactions of interest for the chemistry of the stratosphere. The results are presented in data sheets, one for each reaction. For each reaction the data are summarized. A preferred value is given for the rate constant or the primary quantum yield and photoabsorption cross section.

Key words: atmospheric chemistry; chemical kinetics; data evaluation; gas phase reaction; optical absorption cross section; photochemistry; quantum yield; rate constants.

Introduction

This report presents evaluations of chemical kinetic and photochemical data for twelve gas phase reactions. It is the sixth in a series. The objective of the work and a description of the general format of a data sheet including explanatory material regarding general conventions for the presentation of data have been given in the introductory sections of two previous reports: NBS Report 10692 (January 1972) and NBS Report 10828 (April 1972).

The evaluations in these two reports have been updated recently and will be published in "Survey of Photochemical and Rate Data for Twenty-Eight Reactions of Interest in Atmospheric Chemistry", R. F. Hampson, editor. J. Phys. Chem. Ref. Data 2, #2(1973). For some reactions, a change was made in the recommended value of the rate constant, quantum yield or absorption cross section. These changes are summarized in the following tables. Table 1. Revised Recommended Values for Reactions Evaluated in NBS Reports 10692 and 10828

Reaction	k/cm ³ molecule ⁻¹ -1	<u>T/K</u>	<u>∆log k</u>
$H + HNO \rightarrow H_2 + NO$	7×10^{-12}	2000	±0.3
$HNO + HO \rightarrow H_2O + NO$	7×10^{-11}	1600-2100	±0.7
$HNO_2 + HO \rightarrow H_2O + NO_2$	No recommendation		
$HNO_3 + HO \rightarrow H_2O + NO_3$	$6 \times 10^{-13} \exp(-400/T)$	300-650	±0.5
$HO + O_3 \rightarrow HO_2 + O_2$	1.6 x 10 ⁻¹² exp(-1000/T)	220-450	±0.3
$HO_2 + HO_2 \rightarrow H_2O_2 + O_2$	3 x 10 ⁻¹¹ exp(-500/T)(a)	300-1000	±0.3(b)
$H_2O + NO + NO_2 \rightarrow 2HNO_2$	<1.1 x 10 ⁻⁵⁵ (c)	300	
$H_2^0 + N_2^0_5 \rightarrow 2HNO_3$	<1 x 10 ⁻²⁰	300	
$H_2 O + O(^1 D) \rightarrow 2HO$	3.5×10^{-10}	300	±0.1
$H_2O_2 + NO \rightarrow HO + HNO_2$	10^{-20}	300	
$NO_2 + O_3 \rightarrow NO_3 + O_2$	5×10^{-17}	298	±0.2
$N_{2}O + O(^{1}D) \rightarrow N_{2} + O_{2}$	1.1×10^{-10}	300	±0.1
\rightarrow 2NO	1.1×10^{-10}	300	±0.1
$0 + 0_3 \rightarrow 20_2$	1.9 x 10 ⁻¹¹ exp(-2300/T)	200-1000	±0.1
$O_2(^{1}\Delta) + M \rightarrow O_2 + M$	< 2 x 10 ⁻²⁰ (M=N ₂)	300	

RATE CONSTANTS

(a) $-d[HO_2]/dt = 2k[HO_2]^2$

(b) Uncertainty in log k increases to ± 1 at 1000 K.

(c) -d[N0₂]/dt = k[N0][N0₂][H₂0]². The experimental data show a <u>second</u> order dependence of rate on [H₂0]. Value for k is for a surface reaction. This is adopted as the upper limit for the gas phase rate constant.

Table 1 (Continued)

PHOTOCHEMICAL DATA

Reaction	Quantum yield, $\phi(\lambda)$	Wavelength λ , nm
$HNO_3 + h\nu \rightarrow HO + NO_2$	no recommendation	
$0_3 + hv(uv) \rightarrow 0(^1D) + 0_2(^3\Sigma_g)$	0	< 350
$\rightarrow 0(^{3}P) + 0_{2}(singlet)$	∿1	310-350
	0	< 310
$\rightarrow 0(^{1}D) + 0_{2}(^{1}\Delta)$	$\frac{1}{0}$	250-310 >310

Also, the newer values of the absorption cross section for nitric acid by Johnston and Graham (J. Phys. Chem. <u>77</u>, 62 (1973)) are now the recommended values.

Note concerning the 0, quantum yields

The behavior of $\emptyset(0^1D)$ near $\lambda = 310$ nm is currently under study in several laboratories. These should provide a better definition of $\emptyset(0(^1D))$ in the critical region near the thermochemical threshold. A reanalysis of the matter will appear in a later publication in this series.

Chemical Kinetics Data Survey

The Reaction of H with H202

1. Two channels are possible for this reaction; they are

$$H + H_2 O_2 \rightarrow H_2 + HO_2 \qquad k_1$$

$$H + H_2 O_2 \rightarrow H_2 O + HO$$
 k₂

2.
$$\Delta H^{\circ}_{298}$$
 (1) = -61 ± 8 kJ/mo1 (-14.5 ± 2 kca1/mo1) (a)

$$298$$
 (2) = -284 kJ/mol (-68.0 kcal/mol) (a)

$$\log_{10} K_{eg}$$
 (1) = 0.342 + 3.26 (1000/T) (b)

$$\log_{10} K_{eq}$$
 (2) = 0.877 + 14.98 (1000/T) (b)

3. Data

The available rate data have been presented and evaluated by Baulch, Drysdale, Horne and Lloyd (c). In their 1972 review, they recommended the expression $k_1 = 2.8 \times 10^{-12} \exp (-1900/T) \text{ cm}^3$ molecule⁻¹s⁻¹ from 300 to 800 K and made no recommendation for k_2 . There have been no more recent measurements.

Albers et al (d) measured the total rate of removal of D atoms in a discharge-flow reactor from 294 to 464 K with 5-8 torr H_2O_2 and added O atoms to suppress the chain decomposition initiated by OH. D atoms were monitored by ESR and mass spectrometry. They estimate that $k_1/k_2 \approx 10$ for D atoms at 421 K. Also they find $k_1^{(H)}/k_1^{(D)} = 0.43$ at 375 K. They give the result that $k_1^{(D)} + k_2^{(D)} = 1.2 \times 10^{-11} \exp$ (-4200/RT) cm³ molecule⁻¹s⁻¹. (294-464 K).

Baldwin et al (e) studied the decomposition of H_2O_2 in the presence of H_2 from 713-773 K. They report k_1/k_2 to have the value 0.143 over this temperature range (note: in their abstract this is incorrectly given as 0.125). Also they measure the ratio k_2/k_3 where (3) is $H + O_2 + M \rightarrow HO_2 + M$. From this ratio and their previously measured values of k_3/k_4 where (4) is $H + O_2 \rightarrow HO + O$ they derive

 $H + H_2 O_2$

values of k_2/k_4 . Baulch et al (c) use the values k_1/k_2 and k_2/k_4 in (e) with their own recommended expression for k_4 to obtain values of k_1 . (Note: Because Baulch et al used the value of k_1/k_2 in Baldwin's abstract, the calculated values of k_1 given on p. 212 of (c) should be increased by 14%; however this will not seriously affect their evaluation).

4. <u>Preferred value</u> $k_1 = 2.8 \times 10^{-12} \exp (-1900/T) \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1} (300-800 \text{ K})$ uncertainty: factor of two no value is recommended for k_2

5. Remarks

The recommendations of Baulch et al have been adopted. The value derived there for $k_2 = 3.7 \times 10^{-9} \exp(-5900/T) \text{ cm}^3 \text{ molecule}^{-1}\text{s}^{-1}$ as noted there can not be recommended with any confidence because of the unreasonably high value of the pre-exponential factor. By extrapolation, k_1 at stratospheric temperatures (220 K) is estimated to be $5 \times 10^{-16} \text{ cm}^3 \text{ molecule}^{-1}\text{s}^{-1}$. From these expressions k_2/k_1 at 220K is estimated to be 10^{-5} , subject to a large uncertainty.

References

a) D. D. Wagman et al, NBS Technical Note 270-3 (Jan. 1968).

b) V. N. Kondratiev, "Rate Constants of Gas Phase Reactions -Reference Book," R. M. Fristrom, editor. National Technical Information Service, Springfield, Virginia COM-72-10014 (Jan. 1972).

- c) D. L. Baulch, D. D. Drysdale, D. G. Horne, A. C. Lloyd, "Evaluated Kinetic Data for High Temperature Reactions volume 1, Homogeneous gas phase reactions of the H₂-0₂ systems," Butterworth & Co. London (1972).
- d) E. A. Albers, K. Hoyermann, G. Gg. Wagner, J. Wolfrum,
 13th Combustion Symposium 81 (1971).
- e) R. R. Baldwin, D. Brattan, B. Tunnicliffe, R. W. Walker,
 S. J. Webster, Combustion and Flame <u>15</u>, 133 (1970).

M. D. Scheer September, 1972

PHOTOCHEMISTRY OF HNO2

1. Primary Photochemical Transitions

Reaction		8	λ threshold (nm)
	kJ/mol	kcal/mol	
$HN0_2 \rightarrow OH + NO$	202	(48)	590
\rightarrow H + NO ₂	326	(78)	370
\rightarrow HNO + 0	423	(101)	280

 $(\triangle H_0^0 \text{ values from } [a] \text{ except } \triangle H_0^0 \text{ (HNO) from } [b])$

2. Data

The absorption spectrum of HNO_2 vapor in the region 300-400 nm, has been reported and partly analyzed (ref [c] and references cited therein). It consists of a series of diffuse absorption bands which showed no fine structure when photographed on a 20-foot grating spectrograph with a resolving power of 150,000. Fig. 1 (from [c]) shows the absorption spectrum of HNO_2 at 25°C.

Fig. 1 The absorption spectrum of HONO at 25 C.

Reproduced by permission of the National Research Council of Canada from the Canadian Journal of Chemistry, <u>40</u>, 2057-2065 (1962)

 $HNO_2 + h_V$

2

No absorption coefficients nor quantum yields have been published. Preliminary measurements (H. Johnston, private communication) on $NO + NO_2 + H_2O \neq 2 HNO_2$ equilibrium mixtures provide a scale for figure 1, good to a factor of 1.5 to 2. The absorption cross sections for peaks B and E, averaged over a 1 nm wavelength interval were 10.7 x 10^{-20} and 3.8 x 10^{-20} cm² molecule⁻¹ respectively.

The only related data on absorption coefficients are for HNO_2 in aqueous solution [d]. For HNO_2 in 0.05 normal HCl, there are a series of bands from 380 to 320 nm, with the maximum value of the decadic molar extinction coefficient equal to 50 liter mol⁻¹ cm⁻¹ at approximately 371 and 358 nm. (abs. cross section = 1.9×10^{-19} cm²). These values obtained in a polar solvent are <u>not</u> recommended for use in calculating the absorption of HNO_2 in the gas phase.

3. Preferred values

No values are recommended for the absorption coefficient or the quantum yield.

References

[a] D. D. Wagman et al, NBS Technical Note 270-3 (Jan. 1968).

 [b] D. R. Stull and H. Prophet, "JANAF Thermochemical Tables, 2d.
 Ed." Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 37 (June, 1971).

[c] G. W. King and D. Moule, Can. J. Chem. 40, 2057 (1962).

[d] G. Kortüm, Z. Phys. Chem. B43, 418 (1939).

R. Hampson November 1972

 $H0 + H_20_2$

Chemical Kinetics Data Survey

The Reaction of HO with H202

1. <u>Reaction</u>

$$HO + H_2O_2 \rightarrow HO_2 + H_2O_k$$

2.
$$\Delta H^{\circ}$$
 (298) = -124.3 kJ mol⁻¹ (-29.7 kcal mol⁻¹) (a)
 $\log_{10} K_{eg} = -0.329 + 6.612 (1000 /T)$ (j)

a. The available data prior to 1972 have been described and evaluated by Baulch et al [h] and by Drysdale and Lloyd [i]. In these reviews in 1972 and 1970, they recommended the expression $k_1 =$ 1.7 x 10⁻¹¹ exp (-910/T) cm³ molecule⁻¹s⁻¹ from 300 to 800 K.

Upper and lower limits for k_1 at 298 K have been derived from studies employing flash photolysis [b] and electric discharge [c] of H_2O_2 .

Absolute values of k₁ over the temperature range 307 - 462 K have been determined in flash photolysis studies by following the OH decay by kinetic spectroscopy.

Rate ratio data at higher temperatures extends the range. A k_1/k_2 ratio was determined at 798 K using the thermal decomposition of H_2O_2 in the presence CO [d].

$$CO + HO \rightarrow CO_2 + H$$
 (2)

 $H0 + H_20_2$

The rate relative to reaction 3,

$$HO + H_2 \rightarrow H + H_2O \tag{3}$$

has been determined between 700 and 800 K by examination of the inhibition of the second explosion limit of the H_2/O_2 system by H_2O_2 [e], in studies of the decomposition of H_2O_2 in the presence of H_2 in boric acid coated vessels [f] and from studies of the $H_2/O_2/N_2$ system [g].

b. <u>Recent measurements</u>

Quantity Measured

There has been only one measurement involving the rate of this reaction since the 1972 review by Baulch et al (h).

Quantity medbured	System
$k_1/k_2 = 8.13 \pm 0.56$	Photolysis of H ₂ 0 ₂ (0.94 torr)
	at 254 nm. in presence of O 2
where k_2 : H0 + C0 \rightarrow C0 ₂ + H	(5.4 torr) and CO (3-32 torr).
	Measured initial rate of formation
	of CO2.
	GORSE, VOLMAN 1972 (k)

4. <u>Preferred</u> Value

 $k_1 = 1.7 \times 10^{-11} \exp(-910/T) \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1} \text{ for } 300 < T < 800.$ $k_1 (300 \text{ K}) = 8.2 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1}.$ This is the evaluation given in refs [h, i]. It fits the measured data within 50%.

 $H0 + H_20_2$

3

Remarks

5.

Reaction 1 is a simple H atom abstraction

$$HO + H - O_2H \rightarrow H_2O + HO_2$$

and is the only interaction expected in this system.

The evaluation relies heavily on the data of Greiner which are the only absolute rate measurements available. The flash photolysis study is subject to some uncertainty due to the method of temperature measurement. The temperature was varied by changing inert gas pressures thereby lowering the effect of flash heating. This coupled with the normal experimental uncertainties gives a reliabity factor of approximately 2 to the data. Thus, the expression given above probably predicts the value for k₁ within a factor of 2 over the temperature range

298 to 800 K. At stratospheric temperatures 200-240 K the uncertainty is considerably larger (probably at least a factor of 4). Thus a number of lower temperature measurements are in order.

A value of k_1 can be derived from the recent relative rate measurement in ref. (k) by selecting a value for k_2 : H0 + C0 \rightarrow CO_2 + H. For the room temperature value of k₂ we select the recent direct measurement of Stuhl and Niki (ℓ): $k_2 = 1.35 \times 10^{-13} \text{ cm}^3$ molecule s⁻¹. This result has been confirmed quite recently in a study using a completely different technique (m). Using this value, we derive the value $k_1 = (11 \pm 3) \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1}$ from the ratio measured in (k). We consider this to be in substantial agreement with the value k_1 (300 K) = 8.2 x 10⁻¹³ cm³ molecule⁻¹s⁻¹ recommended in Section 4. The combined uncertainties in the measured values of (k_1/k_2) and k_2 and the complexity of the mechanism used in (k) do not justify changing the recommended value of k_1 . Alternatively, one can use for k_2 the expression $k_2 =$ $5.1 \times 10^{-13} \exp (-300/T) \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1} \text{ recommended by Wilson in}$ his recent lengthy review of hydroxyl radical reaction kinetics (n). This expression gives $k_2 = 1.88 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1}$, which value, when combined with the ratio measured in (k) gives $k_1 = 15 \times 10^{-13}$ cm^3 molecule $^{-1}s^{-1}$.

References

- a) D. R. Stull and H. Prophet, "JANAF Thermochemical Tables, 2d. Ed." Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 37 (June 1971).
- N. R. Greiner, J. Chem. Phys. <u>45</u>, 99 (1966); ibid, <u>46</u>, 2450 (1967) (erratum); superseded by J. Phys. Chem. <u>72</u>, 406 (1968).
- c) S. N. Foner and R. L. Hudson, J. Chem. Phys. <u>36</u>, 2681 (1962).
- d) D. E. Hoare, Proc. Roy. Soc. (London) <u>A291</u>, 73 (1966).

 $H0 + H_20_2$

- W. Forst and P. A. Giguere, J. Phys. Chem. <u>62</u>, 340 (1958), R. R. Baldwin and L. Mayor, Trans. Faraday Soc. <u>56</u>, 80 and 103 (1960), R. R. Baldwin, P. Doran and L. Mayor, Symp. Combust 8th, 103 (1962).
- f) R. R. Baldwin and D. Brattan, Symp. Combust 8th, 110 (1962), R.
 R. Baldwin, D. Jackson, R. W. Walker and S. J. Webster, Symp.
 Combust 10th, 423 (1965).
- g) R. R. Baldwin, D. Jackson, R. W. Walker and S. J. Webster, Trans. Faraday Soc. <u>63</u>, 1676 (1967).
- h) D. L. Baulch, D. D. Drysdale, D. G. Horne, A. C. Lloyd, "Evaluated Kinetic Data for High Temperature Reactions volume 1, Homogeneous gas phase reactions of the H₂- 0₂ system", Butterworth & Co., London (1972); also in D. L. Baulch, D. D. Drysdale and A. C. Lloyd, High Temperature Reaction Rate Data, Report No. 3 (1969), Dept. of Physical Chemistry, The University, Leeds, England.
- i) D. D. Drysdale and A. C. Lloyd, Oxidation and Combustion Reviews, <u>4</u>, 157 (1970).
- j) V. N. Kondratiev, "Rate Constants of Gas Phase Reactions -Reference Book," R. M. Fristrom, editor. National Technical Information Service, Springfield, Virginia COM-72-10014 (Jan. 1972).

- k) R. A. Gorse and D. H. Volman, J. Photochem., <u>1</u>, 1-10 (1972).
- 1) F. Stuhl and H. Niki, J. Chem. Phys. <u>57</u>, 3671 (1972).
- m) A. A. Westenberg and N. de Haas, J. Chem. Phys. <u>58</u>, 4061 (1973).
- n) W. E. Wilson, Jr., J. Phys. Chem. Ref. Data 1, 535 (1972).

July, 1972 Revised July, 1973 M. J. Kurylo

Chemical Kinetics Data Survey

The Combination of HO with NO

1.	Reaction evaluated	ΔH°_{29}	8	(a)
		kJ/mol	kcal/mol	
	$HO + NO + M \rightarrow HNO_2 + M$	-209.32	(-50.03)	k _l
2.	Related reactions			
	$HNO_2 + M \rightarrow HO + NO + M$	209.32	(50.03)	k ₂
	$HO + CO \rightarrow CO_2 + H$	-103.97	(-24.85)	k ₃
	$HO + H_2 \rightarrow H_2O + H$	- 62.81	(-15.01)	k4

3. Data

Results		System
$\frac{k_1 \times 10^{31}}{2}$	<u>P(M)/torr</u>	Fast flow experiments with
cm [°] molecule ² s ⁻¹		excess NO_2 added to H atoms
4 ± 2	5	in Ar, T = 297 K. OH detected
2.5 ± 1	8	by resonance fluorescence
		ANDERSON, KAUFMAN, 1972 (b)
$k_1 \times 10^{31}$	<u>T/K</u>	Flash photolysis of NO_2 in
cm ⁶ molecule ⁻² s ⁻¹		presence of H_2 (2.5 or 15
4.1 ± 0.6	300	torr) and NO (<0.4 torr). He
1.9 ± 0.3	416	added to bring total pressure
		to 30 torr. OH detected by U.V.

 $k_1(H_2)/k_1(He) = 2.3 \pm 0.9$

absorption.

HO + NO + M

2

$k' \times 10^{31}$		
cm^{6} molecule ⁻² s ⁻¹	<u>T/K</u>	Flow experiment with
		OH (from H + NO ₂)
13	273	and excess NO.
8.0	298	OH detected by e.s.r.
3.6	398	M = He (0.5 to 5 torr).
$k_1(Ar)/k_1(He) = 0.45 \text{ at } 298 \text{ K}$		WESTENBERG, DeHAAS, 1972 (d)

k' x 10 ¹³		
cm ³ molecule ⁻¹ s ⁻¹	P(M)/torr	Pulsed vacuum u.v.
0.8	5	photolysis of H ₂ 0 in
1.4	10	presence of NO and excess
2.2	20	He(5 - 82 torr). OH
5	82	detected by resonance
		fluorescence

$$k' = 34k_{3} + 234k_{4}$$
(expression derived from data)
value reported:

$$k' = 6 \times 10^{-12}$$

$$cm^{3}molecule^{-1}s^{-1}$$

fluorescence STUHL, NIKI, 1972 (e) Photolysis of N_2^0 (47 torr) in presence of H_2 (760 torr), O_2 (50 torr), C0 (110 torr), and NO (60 or 120 mtorr). $\Phi(NO_2)$ measured. T = 300 K.

SIMONAITIS, HEICKLEN, 1973 (f)

*k' is the pressure dependent rate constant defined by the expression: $d[HNO_2]/dt = k'[HO][NO]$

4. Preferred values

Preferred values of k_1 are given in Figure 1. $\Delta \log k = \pm 0.5$

Values of k based on a N_2 efficiency of 0.5

5. Remarks

Experimental results are in satisfactory agreement in the sense that all the data can be fitted with a maximum deviation of $\pm 40\%$ (see Table 1). At the present time this is probably all that can be expected. The present fit is based on RRKM calculations (g,h) assuming a loose complex [transition state frequencies 3600, 1600, 60(2), and 40 yielding $k_{1^{\infty}}$ (300) = 2 x 10⁻¹¹ m^{3} cm molecule s⁻¹ and with all overall rotations active. The last ignores angular momentum conservation. The justification is that in other cases when this is combined with the two adjustable parameters $k_{1}{}_{\infty}$ and λ (collision efficiency) a satisfactory fit can be made over large temperature ranges (h). The symbol k_1^{∞} denotes the limiting high pressure second order rate constant for reaction 1. The approach is thus largely empirical. In this study $\boldsymbol{\lambda}$ is .8 and the collision diameter 6.5Å. Third body efficiencies are He(.42), Ar(.21), and $H_2(1.0)$. All calculations are based on the more stable trans-HNO₂ form. Values of k_1 calculated for the cis form are about 20% slower. Conversion to values of k, can be effected through the equilibrium constant $\log_{10} K_p$ (atm) = 7.7516 - 10976/T (derived from thermochemical data in ref. j.).

6. Comments on measurements

<u>ref f</u>. The value reported for $k_1[M]$ is based on the values $k_3 = 1.35 \times 10^{-13}$ and $k_4 = 7.1 \times 10^{-15} \text{ cm}^3 \text{molecule}^{-1} \text{s}^{-1}$ (i).

	(of k 1		k_1 x 1	L0 ³¹
				cm ⁶ molec	cule ⁻² s ⁻¹
Ref	M	P(M)/torr	T/K	Expt1.	<u>Calc.</u>
(b)	Ar	5	297	4	3.8
		8		2.5	3.3
(c)	He	30	300	4.1	4.1
			416	1.9	2.4
•					
(d)	He	3	273	13	8.7
			298	8	6.9
			398	3.6	3.8
	Ar	3	298	3.6	3.5
(e)	Не	5	298	5.2	6.2
		10		4.4	5.5
		20		3.4	4.3
		82		1.9	2.9
(f)	H ₂ , CO, O ₂ , N ₂	2 ⁰ 970	300	1.9	1.5

Table 1. Comparison between Experimental and Calculated Values of k,

 $X(H_2)=0.78$

K(CC2/WOLECULE2-SEC)

References

- a. D. D. Wagman, et al, NBS Technical Note 270-3 (Jan. 1968).
- b. J. G. Anderson and F. Kaufman, Chem. Phys. Lett. 16, 375 (1972).
- c. C. Morley and I. W. M. Smith, J. Chem. Soc. Far. Trans. II <u>68</u>, 1016 (1972).
- d. A. A. Westenberg and N. DeHaas, J. Chem. Phys. 57, 5375 (1972).
- e. F. Stuhl and H. Niki, J. Chem. Phys. 57, 3677 (1972).
- f. R. Simonaitis and J. Heicklen, J. Phys. Chem. 77, 1096 (1973).
- g. P. J. Robinson and K. A. Holbrook, "Unimolecular Reactions", Wiley-Interscience, New York (1972).
- h. W. Tsang, Int. J. Chem. Kinetics, to be published.
- i. F. Stuhl and H. Niki, J. Chem. Phys. <u>57</u>, 3671, 3677 (1972).
- j. D. R. Stull and H. Prophet, JANAF Thermochemical Tables, 2d Edition, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (US) 37, June 1971.

W. Tsang May 1973

Chemical Kinetics Data Survey

The Combination of HO with NO_2

1.	Reaction evaluated	ΔH°_{298}		(a,b)
	$HO + NO_2 + M \rightarrow HNO_3 + M$	kJ/mol -207.2	kcal/mol (-49.52)	^k 1
2.	Related reactions			
	$HNO_3 + M \rightarrow HO + NO_2 + M$	207.2	(49.52)	k ₂
	$HO + HNO_3 \rightarrow H_2O + NO_3$	-76	(-18)	k ₃
	$HO + CO \rightarrow CO_2 + H$	-103.97	(-24.85)	^k 4
3.	Data			

a. <u>Direct Studies</u> <u>Results</u> $k_1/k_3 = 2.2 \times 10^{-20}$ cm^3 molecule⁻¹

System

Nitric acid photolysis at 300 K and 150-750 torr Kr. Measured change in Φ (NO₂) as function of [Kr]. BERCES, FORGETEG, 1970 (c) Mass spectrometric study of H + NO₂ \rightarrow HO + NO at 0.2 to 1 torr total pressure. Measure \triangle [NO₂] MULCAHY, WILLIAMS, 1971 (d)

$$k_1 = 1.6 \times 10^{-29}$$

cm⁶ molecule⁻²s⁻¹

$\frac{k' \times cm^3 \text{ molec}}{T = 300 \text{ K}}$	$\frac{10^{12}}{\text{cule}-\text{I}_{s}-1}$ $\frac{T = 416 \text{ K}}{10^{12}}$	P(M)/torr
1	0.4	30
2.0	0.75	100
3.3	1.6	300

 $k_1(SF_6)/k_1$ (He) = 4.8 ± 0.8

 $k_1(H_2)/k_1$ (He) = 4 ± 1

Flash photolysis of NO₂ in presence of H₂ at 300 and 416 K, 20-300 torr He, Followed disappearance of OH by resonance absorption.

 $k_{\infty}/k_{4} = 15 \exp (380/T)$ Photolysis of NO₂ at 228.8 nm in where $k_{\infty} = 1$ imiting high presence of 3-20 torr H₂0, 0-1000 torr pressure 2nd order value for k_{1} He, 1-350 torr CO, and $k_{1}/k_{4} = 2 \times 10^{-18} \exp (550/T)$ 3-30 torr NO₂ at 300 and 423 K. $cm^{3}/molecule$ M = He Measured Φ (CO₂). $k_{1}(H_{2}0)/k_{1}$ (He) ~ 8 $k_{1}(CO)/k_{1}$ (He) ~ 1.5 SIMONAITIS, HEICKLEN, 1972 (f)

 $k_1 \times 10^{30}$ cm^6 molecule -2s-1P(Ar)/torr Fast flow experiments with excess 1 ± 0.3 0.5-3 NO2 added to flowing H atoms in Ar at 297K. OH detected by 0.8 6 0.6 10 resonance fluorescence. 2 P = 8 torr $X(N_{2}) = 0.8$ X(Ar) = 0.2ANDERSON, KAUFMAN, 1972 (g)

k' is the pressure dependent rate constant defined by the expression $d[\text{HNO}_3]/dt = k' [\text{HO}_2]$.

$k_1 \times 10^{30}$			
cm ⁶ molecule ⁻² s ⁻¹	M	<u>T/K</u>	Similar experiments as in ref. (g),
2.01	He	273	except that OH was detected by
1.57	He	298	e.s.r. $P = 0.5$ to 5 torr.
0.58	He	398	WESTENBERG, DEHAAS, 1972 (h)
0.83	Ar	298	
b. <u>Indirect</u>	t Studies	-	Decomposition of UNO in 1 atm
$k_2[M] = 0.16$	o s		Decomposition of HNO3 in I atm
[M] = 1 atm	$N_{2}, T =$	670 K	N_2 in static system. [HNO ₃] and
			$[N0_2]$ determined by absorption.
			JOHNSTON et al, 1953 (i)
$k_2 \times 10^{19}$			
cm ³ molecule ⁻¹ s ⁻¹	-	<u>T/K</u>	Decomposition of HNO_3 in static
0.53		648	system. $P(HNO_3)$ was 0.5-20 torr.
1.7		673	[NO2] determined by absorption.
4.8		698	
$P(HNO_3) \sim 3$	torr		

$k_2(M)/k_2(HNO_3)$	M	
1	H ₂ 0	
0.25	с0 ₂	
0.15	02	
0.1	Ar	
(T = 673 K)		JOHNSTON et al, 1955 (j)

 $k_{2} = 2.6 \times 10^{-9} \exp (-15,400/T)$ Shock tube study of HNO₃ decomposition in 500 torr Ar (2-4% HNO₃) at 800-1200 K. Rate determined from NO₂ appearance. HARRISON et al, 1962 (k) $k_{2}[M] = 0.012 \text{ s}^{-1}$ Decomposition of HNO₃ at 622 K in N₂; P(H O₃) ~ 30 torr, total pressure 680 and 230 torr. Rate determined from \triangle [HNO₃] and agrees with that determined from \triangle [NO₂]. GODFREY, et al, 1965 (ℓ)

4. Preferred value

Preferred values of k_1 are given in Figure 1. $\triangle \log k = \pm 0.3$ Values of k based on a N₂ efficiency of 0.26

5. Remarks

The fit of the data is based on RRKM calculations (0, P) a loose complex and overall rotations active. The transition state structure is 3600, 1600(2), 760, 40(2) and 2 free internal rotors $(1.6 \times 10^{-40} \text{ g-cm}^2)$. This yields $k_{1\infty}$ (300 K) = 1.0 x 10^{-11} cm^3 molecule $^{-1}\text{s}^{-1}$. The collision diameter is 6.5A and the collision efficiency is 1. The third body efficiencies are $\text{HNO}_3 = 1.00$, He = .26, Ar = .12, and N₂ = .26. A summary of the data on third body effects can be found in Table 3. A satisfactory fit can also be obtained with a

 $HO + NO_2 + M$

5

transition-state model with an elongated central bond (factor of 3) and with the overall rotation about this bond as active. (p). Except for ref. c and d, results can be fitted to within a factor of 2. This is summarized in Tables 1 and 2. Note that the data range from .5 torr to an atmosphere and 273-1100 K and involves the forward and reverse reactions. The larger discrepancies of ref. c and d (compared to the other results) can be attributed to errors in specification of the reaction mechanism.

6. <u>Comments on measurements</u>

<u>ref c.</u> From the measured k_1/k_3 , taking the value of $k_3 = 1.4 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1}$ (ref m), the value $k_1 = 3 \times 10^{-33} \text{ cm}^6$ molecule $^{-2} \text{s}^{-1}$ is derived. Note that in nitric acid systems at low temperatures, reactions are often subject to surface effects.

<u>ref. d.</u> This is basically a qualitative study with respect to the process of interest.

<u>ref. f.</u> The value of k_3 used in the present analysis to get the values of k_1 in Table 1 is 1.33 x 10^{-13} cm³ molecule⁻¹s⁻¹ (n).

<u>ref. i and ℓ </u>. This fit does not substantiate the claims that the measured rates are in the limiting high pressure region. The present results indicate that $k_2[M]/k_2^{\infty} \sim 0.1$.

HO + NO₂ + M 6

Table	1	Comparison	between	Experimental	and	Calculated	Values	of	k ₁
									-

				k ₁ x cm ⁶ mole	$\frac{k_1 \times 10^{31}}{cm^6 molecule^{-2}s^{-1}}$	
Ref	M	P(M)/torr	<u>T/K</u>	Exptl.	Calc.	
(h)	He	3	273	20	22	
		3	298	16	18	
		3	398	6	11	
	Ar	3	298	8	10	
(e)	He	30	300	10.4	8.6	
		100		6.2	5.3	
		300		3.5	2.9	
	He	30	416	5.8	6.1	
		100		3.3	4.3	
		300		2.2	2.7	
(f)	He	30	300	13.6	8.6	
		100		9.5	5.3	
		300		5.2	2.9	
		1000		1.9	1.4	
	He	30	423	8.6	5.8	
		100		6.7	4.1	
		300		4.1	2.6	
		1000		1.8	1.5	

				^k 1 x	$k_{1 \times 10^{51}}$		
				cm ⁶ mole	cule ⁻² s ⁻¹		
<u>Ref.</u>	M	P(M)/torr	<u>T/K</u>	Expt1	Calc.		
(g)	Ar	.5-3	297	10	12		
		6		8	8		
		10		6	7.5		
	N ₂ ,Ar	8	297	20	19		
(c)	Kr	300	300	.03	2		
(d)	Ar	1	300	170	10		

Table 2 Comparison between Experimental and Calculated Values for k_2

				k ₂ x	$k_2 \times 10^{19}$	
				cm ³ molec	ule ⁻¹ s ⁻¹	
Ref	M	P(M)/torr	<u>T/K</u>	Expt1.	Calc.	
(k)	Ar	500	900	980	800	
			1000	5000	9000	
			1100	25000	50000	
(j)	HN03	3	648	.53	.63	
			673	1.7	2.3	
			698	4.8	8.0	
(1)	N ₂	760	622	.012	.014	
(i)	N ₂	760	670	.15	.22	

HO + NO₂ + M 9

Table 3. Summary of Experimental Data on Third Body Effects

M	<u>Ref. j</u>	<u>Ref. e</u>	<u>Ref. f</u>	<u>Ref. h</u>	<u>Ref. g</u>
HNO3	1				
Не		1	1	1	
Ar	~ 0.1			0.5	1
н ₂ 0	~ 1		8		
SF ₆		4.8			
c0 ₂	~ 0.25				
N ₂					2.2
^H 2		4.0			
02	~ 0.15				
с0			1.5		

References

а.	D.	D.	Wagman,	et	a1,	NBS	Technical	Note	270-3	(Jan.	1968)).
----	----	----	---------	----	-----	-----	-----------	------	-------	-------	-------	----

- b. D. R. Stull and H. Prophet, "JANAF Thermochemical Tables,
 2d Ed," Nat. Stand. Ref. Data Ser. Nat. Bur. Stand. (U. S.),
 37 (June 1971).
- c. T. Berces and S. Forgeteg, Trans. Faraday Soc. <u>66</u>, 640 (1970).
- M. F. R. Mulcahy and R. H. Williams, J. Chem. Phys. <u>54</u>, 5215 (1971).
- e. C. Morley and I. W. M. Smith J. Chem. Soc., Far. Trans. II, 68 1016 (1972).
- f. R. Simonaitis and J. Heicklen, Int. J. Chem. Kinetics 4, 529 (1972).
- g. J. G. Anderson and F. Kaufman, Chem. Phys. Lett. 16, 375 (1972).
- h. A. A. Westenberg and N. deHaas, J. Chem. Phys. 57, 5375 (1972).
- i. H. S. Johnston, L. Foering, and R. J. Thompson, J. Phys. Chem. 57, 390 (1953).
- j. H. S. Johnston, L. Foering and J. R. White, J. Am. Chem. Soc. <u>77</u>, 4208 (1955).
- k. H. Harrison, H. S. Johnston and E. R. Hardwicke, J. Am. Chem.
 Soc. <u>84</u>, 2478 (1962).
- L. T. S. Godfrey, E. D. Hughes and C. Ingold, J. Chem. Soc. 1063 (1965).

 $HO + NO_2 + M$

11

m. R. F. Hampson et al, "Survey of Photochemical and Rate Data for Twenty-Eight Reactions of Interest in Atmospheric Chemistry", to be published J. Phys. Chem. Ref. Data 2, No. 2 (1973).

- n. A. A. Westenberg and N. deHaas, J. Chem. Phys. 58, 4061 (1973).
- o. P. J. Robinson and K. A. Holbrook, Unimolecular Reactions, Wiley-Interscience, New York (1972).
- p. W. Tsang, Int. J. Chem. Kinetics, to be published.

W. Tsang May, 1973

Photochemistry of NO

1. Primary Photochemical Transitions

a. Dissociation

	<u>H0</u>		
Reaction	kJ/mol	kcal/mol	λ threshold (nm)
$NO \rightarrow N(^{4}S) + O(^{3}P)$	627.9	(150.07)	190.5
→ $N(^{4}s) + O(^{1}D)$	817.7	(195.43)	146.3
→ $N(^{4}s) + O(^{1}s)$	1032.1	(246.68)	115.9
$\rightarrow N(^{2}D) + O(^{3}P)$	857.8	(205.03)	139.5
$\rightarrow N(^{2}D) + O(^{1}D)$	1047.6	(250.38)	114.2
$\rightarrow N(^{2}D) + O(^{1}S)$	1262.1	(301.64)	94.8

 ΔH_0^o values calculated from ΔH_f^o (0) in (a) and energies of excitation of O(¹D), O(¹S), and N(²D) in (b).

The bond dissociation energy has been determined to be 52400 \pm 10 cm⁻¹ or 626.84 \pm 0.12 kJ/mol (149.82 \pm 0.03 kcal/mol) (c). This energy corresponds to a threshold wavelength of 190.8 nm.

b. Electronic Energy Levels of NO and Transitions

State	T_o/cm^{-1}	λ (vac)/nm	Transitions
$D(2\Sigma^+)$	53291 (a)	187.65	D → X (¢)
c(² 11)	52372 (a)	190.94	C → X (ô)
в(² П _г)	45505 (a)	219.76	B → X (β)
$A(2\Sigma^+)$	44199.2 (a)	226.25	A → X (γ)
a (⁴ 11)	37965 ± 25 (b)	263	-
$x(^{2}\pi_{1/2})$	0	-	-

a. From ref. (x)b. From ref. (y)

2. Absorption Coefficient Data

The spectroscopy of NO absorption bands has been studied in detail. It is summarized in reference (x). See also references (f, z) for examples of the complexities that occur.

Hudson (h) in 1971 reviewed the u.v. absorption coefficient measurements on NO, with emphasis on data for $\lambda < 160$ nm. Marmo (d) and Thompson, Harteck and Reeves (e) reported absorption coefficients covering the range $110 < \lambda < 230$ nm. These coefficients are not independent of the resolution of their instruments except possibly for $\lambda < 130$ nm. See Figures 1 and 2 for a qualitative view of the spectrum.

a. $\lambda < 130 \text{ nm}$ Watanabe, Matsuga and Sakai, 1967, (g) presented extensive tables of absorption coefficients and photoionization yields. For the range 106 < λ < 135 nm these are based on measurements in a 10 cm long cell with 0.02 nm band pass. There is reasonable agreement with (d).

b. <u>Banded absorption</u> Integrated absorption coefficients and oscillator strengths have been measured for the β , \forall , δ and ε band systems. These are summarized below as oscillator strengths, f (v', v") for individual bands. <u>v</u>' is the vibrational quantum number in the upper state, v" is that in the ground state. This oscillator strength is related to the integrated absorption coefficient for the same band via

$$f(v', v'') = (mc^2/\Pi e^2 N_o) (K_o/F(v''))$$
$$= 4.203 \times 10^{-8} (K_o/F(v''))$$

where c is the velocity of light, m and e are the mass and charge of the electron, N_o is the number of molecules per cm³ at 1 atm. and 273.15 K, and F(v") is the fraction of these molecules in the lower vibrational state (under the conditions of the experiment). K_o is in cm⁻² atm⁻¹.

Methods of measurement. Bethke 1959 (aa), measured integrated absorption coefficients photometrically for NO pressurized with argon. Callear and Pilling, 1970 (bb), used a similar spectrographic studies and analysis of fluorescence intensities. Farmer et al, 1972 (cc) and Pery-Thorne and Banfield, 1970 (dd) measured refractive index dispersion near absorption lines. Marr, 1964 (ee), reanalyzed the earlier data and presented smoothed values for many transitions in the v and β bands.

Oscillator Strengths

	β bands (B-X),	ref(aa) *	
v', v''	10 ⁴ f(v' v")	v', v"	10 ⁴ f(v', v")
2, 0	$0.0155 \pm 10\%$	9,0	$3.58 \pm 10\%$
3, 0	$0.0461 \pm 10\%$	11, 0	$3.62 \pm 20\%$
4, 0	$0.138 \pm 20\%$	12, 0	$23.1 \pm 10\%$
5, 0	$0.264 \pm 10\%$	14, 0	$2.006 \pm 10\%$
6. 0	0.462 + 20%		

v bands (A-X)

v', v''		10 ⁴ f(v', v")	
	Ref (aa)	Ref (cc) *	Ref (dd)
0, 0	$3.99 \pm 10\%$	$4.0 \pm 5\%$	3.64 ± 0.05
1, 0	$7.88 \pm 10\%$	$8.09 \pm 5\%$	-
2, 0	$6.73 \pm 10\%$	$7.00 \pm 5\%$	-
3, 0	$3.60 \pm 10\%$	2.4 ± 25%	-

$$\frac{\delta \text{ bands } (C-X)}{10^4 f(v', v'')}$$
Ref (aa) Ref (bb) *
0, 0 24.9 ± 10% 56 ± 18%
1, 0 57.8 ± 10% -
2, 0 27.4 ± 10% -

		Ref (aa) *	Ref (bb)
0,	0	$25.4 \pm 10\%$	same as for (aa)
1,	0	46.0 \pm 10%	-
2,	0	33.2 ± 10%	-

36

ż

* Preferred values

3. Photochemical data

There have been two recent reviews of the photochemistry of NO: 1) Heicklen and Cohen, 1968, (ref. i), and 2) Preston and Cvetanovic, 1972, (ref j).

a. $\lambda > 191 \text{ nm}$

Table I summarizes the results of studies of the photochemistry of NO at photon energies less than the dissociation energy.

Absorption produces an excited NO. Products are formed exclusively from reactions of this excited molecular species.

MECHANISM:

$$NO + hv \rightarrow NO^{*}$$

$$NO^{*} \rightarrow NO + hv$$

$$NO^{*} + NO \rightarrow 2NO$$

$$NO^{*} + NO \rightarrow N_{2} + O_{2}$$

$$NO^{*} + NO \rightarrow N_{2}O + O$$

$$2NO + O_{2} \rightarrow 2NO_{2}$$

b. $\lambda < 191 \text{ nm}$

Table II summarizes the results of studies of the photochemistry of NO at photon energies greater than the dissociation energy. $\Phi(N_2)$ is always < 1, indicating that absorption produces bound excited states which can fluoresce or be collisionally quenched or dissociate. Products are formed by atom-molecule reactions.

MECHANISM:

 $NO + hv \rightarrow NO^{*}$ $NO^{*} \rightarrow NO + hv$ $NO^{*} + M \rightarrow NO + M$ $NO^{*} + M \rightarrow N + O + M$ $N + NO \rightarrow N_{2} + O$ $O + NO + M \rightarrow NO_{2} + M$

Table I. Summary of data on photochemistry of NO at energies less than the dissociation energy (i.e. at $\lambda > 191$ nm).

λ (nm)	P(NO) (torr)	Products	Quantum Yields	Excited State
214,	20-600	^N 2, ^{NO} 2	$\Phi(N_2)=0.19$	v = 1 and
226		N ₂ O	$\Phi(N_2 0) = 0.096$	v' = 0 of
(Cd(II))			$\Phi(-NO)(calc)$	$A^2\Sigma$
			$= 1.05^{(1)}$	
HEICKLEN,	L966 (k)			
199,	50-650	N ₂ , NO ₂ ,	$\Phi(-NO) =$	probably
193,		N ₂ O	1.45 ⁽²⁾	v = 5 of
186				B ² ∏ by
(Al spark) Absorpt	ion of 186	nm line proba	ly not important	λ =199 nm.
MacDONALD,	1928 (l)			

- <u>Note 1</u>. Obtained indirectly; based on mechanism assuming $\Phi(N_2^0) = 2$ in presence of large conc. of CH_4 .
- Note 2. Obtained directly; incident light intensity measured by irradiation of thermocouple.

λ	P(NO)		Quantum(1)	Excited	
(nm)	(torr)	Products	Yields	State	
∿160	2-500	N ₂ , NO ₂	$\Phi(N_2) = .24$	$A^2\Sigma$, $B^2\Pi$	
(H ₂ dis-			$\Phi(NO_2) = .37$	$c^2 \Pi$, $p^2 \Sigma$	
charge)			$\Phi(-NO) =$		
	-		0.8-1.8		
147	10-700	N ₂ , NO ₂	$\Phi(N_2) = .35$	v = 7 of	
		N ₂ 0 ⁽²⁾	$\Phi(NO_2) = .6 - 1.1$	$D^2\Sigma$	
			$\Phi(N_2O) = .021$		
			$\Phi(-NO) =$	v = 3 of	
			1.3-2.7	E ² Σ	
123.6,	10-950	N ₂ , NO ₂	$\Phi(N_2) = .25$	_{NO} + (3)	
116.5			$\Phi(NO_2) = .4 - 1.0$		
			$\Phi(-NO) =$		
			1.0-2.3		
LEIGA, TA	YLOR, 1965	(m)			
∿183.2	0.07-7	N ₂ , NO ₂	only dcmp.	v = 1 of	
(Hg arc)			rate of	$C^2\Pi$ with	
and metal			NO meas.	perhaps some	
spark				abs. to v = 9	
sources				of $B^2\Pi$	
FLORY, JO Note 1.	HNSTON, 193 Φ values in O_{2} flowing	5 (n) ref (l) based through reactio	on $\Phi(0_3) = 2$ in pon vessel.	photolysis of 1 atm	
Note 2.	2 Secondary p	roduct from N -	+ NO2 (see ref. o).	
Note 3.	Ionization potential of NO = 9.25 eV (corresponds to λ = 134 nm; at 123.6 nm the ionization yield is 0.77 (g).				

Table II.	Summary	of da	ta on	photochemis	stry of	NO at	energ	gies	
	greater	than	the d	issociation	energy	(i.e.	at λ	< 191	nm).

In addition to these studies giving values of quantum yields of product formation, the wavelength dependence of the formation of oxygen atoms from photolysis of NO has been studied by Stuhl and Niki (u). They detected 0 atoms (by NO₂^{*} emission) when NO was photolyzed at $\lambda > 160$ nm and at $\lambda > 180$ nm but not at $\lambda > 210$ nm. These observations are consistent with the value of the thermochemical threshold for photodissociation (191 nm).

4. Excited States of NO

a. Lifetimes

(1) Mean lifetimes (1/e) of low-lying excited states of NO with respect to spontaneous radiation and predissociation.

State	Lifetime To/s	Reference
$A^2\Sigma$	2×10^{-7}	(p)
B ² Π	3×10^{-6}	(q)
C ² ∏	6×10^{-10} (a)	(c)
$D^2\Sigma$	2×10^{-8}	(r)

Note (a): predissociation at limiting high [Ar].

(2) Specific rate constants for spontaneous radiationand predissociation (all paths). From reference (c).

Rate constant, k/s⁻¹

State	emission to $X^2\Pi$	emission to $A^2\Sigma$	predissociation
$A^2\Sigma$	0.51×10^{7}		
C ² ∏	5.1×10^{7}	3.5×10^{7}	1.65 x 10 ⁹ (a)
$D^2\Sigma$	4.1 x 10 ⁷	0.95×10^{7}	<0.8 x 10 ⁷

Note (a): k (predissociation) at limiting high [Ar].

b. Quenching of excited states

The table below gives ratios of total quenching coefficients, k_Q , in cm³ molecule⁻¹s⁻¹, to total spontaneous decay rates, i.e. predissociation plus radiative transitions, $1/\tau_o$ (or $k_p + \Sigma k_r$), in reciprocal seconds. These are based on the quenching half pressure, i.e. that pressure of added gas which reduces the intensity of fluorescence to one-half its value in the absence of added gas. Data from reference (c) and at 298 K except as indicated.

The following formula relates the quenching coefficient, k_Q in cm³ molecule⁻¹s⁻¹, the radiative lifetime, τ_o in s, and the half pressure, P_{0.5} in kN m⁻².

$$k_{\rm Q} \cdot \tau_{\rm o} = 4.1 \times 10^{-18} / P_{0.5}$$

$$10^{18} k_{\rm Q} \cdot \tau_{\rm o}/{\rm cm}^3$$
 molecule⁻¹

State	<u>N0</u>	<u>N2</u>	Ar	<u> </u>	<u>0</u> 2	
A(² Σ)	47	.0164	< 0.016	79	34 (a)	
c(² Σ)	2.34	0.91	< 0.008	2.0		
<u>D</u> (² Σ)	71	5.6	3.08	22.8		
State	<u>N20</u>	H ₂	H ₂ 0	<u> </u>		
<u>в(²П)</u>	140 (b,c)	60 (b,c)	< 1500 (b,c)	30 (b,c)		
 (a) Reference (s), data on 0₂ (b) Reference (t) 						

(c) T = 196 K

а

(Use values of $\tau_{\rm o}$ in section 4a to obtain $k_{\rm Q}$ from the table)

5. Preferred values

	Absorption coefficients							
i)	Banded spectra (data in section 2b)							
	β bands. Use data from (aa)							
	γ bands. Use data from (cc)							
	δ bands. Use data from (bb) See remarks							
	€ bands. Use data from (aa)							
ii)	λ $<$ 130 nm. Use data from (g)							

b. Quantum yields

No general recommendations. Product yields depend upon the composition of the mixture being photolyzed and the wavelength of the exciting light. See remarks for some estimates pertinent to absorption in the atmosphere. 11

6. Remarks

a. Absorption coefficients

(i) $\lambda > 130$ nm. The spectrum is highly structured. The apparent absorption coefficients that have been measured depend strongly upon instrumental resolution. Figure 1 may be used only to locate the wavelengths where absorption occurs but not to obtain the magnitude of the absorption coefficient.

Values for absorption coefficients, either for bands or lines, should be developed from oscillator strengths, f(v', v''), populations of absorbers and line strength formulae. See (w) for application of the technique to NO.

The oscillator strength for δ (0,0) measured by Callear and Piling (bb) is preferred to Bethke's (aa) because it is based on two methodsintegrated absorption and fluorescence lifetimes-that agree. This agreement is an argument that large systematic biases are absent from the spectrographic measurements. The value from (bb) is 2.25 times that from (aa).

Oscillator strengths for δ (1,0 and δ (2,0) are available only from (aa). Should they be used as is, or increased, i.e., normalized to the δ (0,0) reported in (bb)? Two arguments suggest that they should be increased. First, the reported oscillator strengths vary approximately as do the Franck-Condon factors. Secondly, Callear and Pilling show that collisional (pressure) broadening is much weaker for the δ (0,0) than the ϵ (0,0) band. This suggests that the δ bands were insufficiently broadened in Bethke's experiments. The argument is weak because of the high pressures (100 psia) of argon used by Bethke.

Arbitrarily we suggest that the δ (1,0) and δ (2,0) oscillator strengths from (aa) given in section 2b should be multiplied by 2.25. When these new values are used in aeronomic calculations they should be considered to be upper limits.

(ii) $\lambda < 130$ nm. Absorption into a continuum is the most important element here. The higher resolution study (g) has been selected. The data in Figure 2 are in reasonable agreement.

6.b. Quantum Yields

Product formation following absorption of light by NO. Bound excited states of NO, $a^{4}\Pi$, $A^{2}\Sigma^{+}$, $B^{2}\Pi$, $C^{2}\Pi$ and $D^{2}\Sigma^{+}$ are formed in the photon absorption by NO in the wavelength range 230 > λ > 150 nm. Other observed products are due to reactions of NO^{*}. Pertinent processes are reaction of NO^{*} with NO, predissociation (atom formation), reactive quenching and physical quenching. The first is important in laboratory studies but need not be considered for the photolysis of trace amounts of NO in air. (Mechanisms applicable to laboratory photolyses are given in Section 3 a,b.)

The other processes are important for atmospheric photolysis of NO. Cieslik and Nicolet (w) have developed an overall photodissociation rate. The remarks that follow rely heavily on their discussion and on two recent reviews (i, j) and the summary in (c).

Each state is considered separately. An estimate is made for an "effective initial quantum yield" of products (e.g. 0, N, NO₂). More precisely, these estimates are ratios: Products formed per NO^{*} disappearing by all paths. For each excited electronic state a vibrational-rotational level is reached that is strongly predissociated. (The evidence is either absence of higher levels in emission spectra or line broadening). All higher levels are assumed to dissociate to atoms either directly or via another electronic state. The main discussion is about the fate of lower levels.

This is the upper state for the \vee bands (X \rightarrow A). Vibrational levels v' > 4 are predissociated. $\emptyset(0) = \emptyset(N) = 1$, v' > 4. For lower levels the only important atmospheric reaction partner is $0_2(s)$. (N₂ is 2000 fold less efficient and is ignored here). Quenching by 0_2 may be a chemical reaction, in analogy to NO and CO₂ (s, k, v). The level A(v = 0) is 1.017 ev below the dissociation limit for the ground state (forming ground state atoms)

The minimum required steps are

$$NO + hv \rightarrow NO(A^2\Sigma^+, v = 0)$$
 1

$$NO(A^2\Sigma^+) \rightarrow NO + h\nu$$
 2

$$NO(A^{2}\Sigma^{+}) + O_{2} \rightarrow NO + O_{2} \qquad 3$$

$$\rightarrow NO_2 + 0$$
 4

$$\emptyset(0) = \emptyset(N0_2) \sim k_4[0_2]/((k_3 + k_4)[0_2] + k_2)$$

Reaction (4) is speculative. It has not been observed. \emptyset can vary from zero to near 1 depending upon the value of k_4/k_3 . We guess that $k_4/k_3 > 1$.

Rate constants are $k_2 = 5 \times 10^6 \text{s}^{-1}$ (c) and $(k_3 + k_4) = 1.6 \times 10^{-10} \text{ cm}^3$ molecule $^{-1}\text{s}^{-1}$ (s). At 20 km radiative loss would be about 8% of the total but would increase in importance with increasing altitude.

$NO(B^{2}\Pi)$

This is the upper state for the β bands (X \rightarrow B). Emission has not been observed for v' > 7 (which lies close to the dissociation limit of NO), $\emptyset(0) = \emptyset(N) = 1$, v' > 7. Our knowledge of the photochemistry of this state is sketchy. We follow Preston and Cvetanovic (j) and suggest a behavior similar to that of $A^2\Sigma^+$.

<u>N0(C²II)</u>

This is the upper state of the 6 bands (X \rightarrow C). Emission from v' > 0 has not been observed. $\emptyset(0) = \emptyset(N) = 1$, v' > 0. Emission has been observed from v' = 0, but even here some levels are predissociated.' This state has its minimum energy at approximately the dissociation limit for the X state. Cieslik and Nicolet (\forall) consider the C state to be the most important contributor to the photodissociation process in the upper atmosphere.

A mechanism for photolysis in air that can be used to estimate a lower limit for the quantum yield is

$$NO + h_{\mathcal{V}} \rightarrow NO(C^{2}\Pi, v = 0)$$
 1

NO
$$(C^2\Pi) \rightarrow NO + h\nu$$
 (to $X^2\Pi$ and $A^2\Sigma^+$) 2

$$NO(C^{2}\Pi) \rightarrow N + 0$$
 3

$$NO(C^2\Pi) + M \rightarrow loss of NO(C^2\Pi)$$
 4

$$\emptyset(\mathbf{N}) = \emptyset(\mathbf{0}) \ge k_3 / (k_3 + k_2 + k_4 [\mathbf{M}])$$

$$\ge 17 \times 10^8 / (17 \times 10^8 + 9 \times 10^7 + 15 \times 10^{-10} [\mathbf{M}])$$

$$\ge 1 / (1 + 0.8 \times 10^{-18} [\mathbf{M}])$$

Rate constants given in reference [c] have been used. These apply to NO($C^2\Pi$, v = 0) the level least likely to predissociate. The value for k₄ is for nitrogen. It is used here as an upper limit for physical quenching.

At 20 km, $[M] \sim 2 \times 10^{18}$ molecules cm⁻³ and $\emptyset \ge 0.4$. This lower limit will increase with altitude. Reactive quenching by 0_2 (see remarks on NO(A² Σ ⁺)) would also increase $\emptyset(0)$.

$\underline{NO(D^{2}\Sigma^{+})}$

This is the upperstate of the ε bands (X \rightarrow D). It has approximately the same energy as $C^2\Sigma^+$. However, the rate of predissociation is less than 1/5 that of spontaneous emission:

$$N0 + h_{\mathcal{V}} \rightarrow N0(D^{2}\Sigma^{+})$$
 1

$$NO(D^2\Sigma^+) \rightarrow NO + h\nu$$
 (to X and A)) 2

$$NO(D^{2}\Sigma^{+}) \rightarrow N + 0$$
 3

$$NO(D^{2}\Sigma^{+}) + N_{2} \rightarrow NO(X)$$

$$4$$

$$NO(D^{2}\Sigma^{+}) + O_{2} \rightarrow ? ? \qquad 5$$

Ignoring reaction 5

$$\emptyset(0) = \emptyset(N) = k_3/(k_3 + k_2 + k_4 [N_2])$$

= (< 8 × 10⁶)/((< 8 × 10⁶) + 5 × 10⁷ + 3 × 10⁻¹⁰[N₂])
< 1/(1 + 60 + 3.8 × 10⁻¹⁷[N₂])

Thus radiative loss and quenching are controlling. If, however, reaction 5 is efficient and is a chemical reaction, the quantum yields would be larger. See discussion of $NO(A^{2}\Sigma^{+})$.

N0(a4I)

Unimportant. Gas phase absorption to this state is not observed. Excitation to this state probably is followed only by quenching to the ground state.

<u>formed</u>	Vibrational level	Reactions Products	Products/ANO*
$NO(A^{2}\Sigma^{+})$	v > 4	N + 0	~ 1
	v = 0	$N0_{2} + 0$?	0 - 1
	······································	reactive quenchi	ng
$NO(B^{2}\Pi)$	v > 7	N + 0	~ 1
	v <u><</u> 7		? possibly
			similar to $A^2\Sigma^+$
$NO(C^{2} \square)$	v > 0	N + 0	~ 1
	v = 0	N + 0	pressure dependent,
			> 0.4 at 20 km.
NO (D ² 7+)			. O modiative lass
NO(DZ)	-	-	\sim 0, radiative loss
			and quenching dominate
NO(a ⁴ II)	-	-	Unimportant

6.b. Photodissociation of NO in the stratosphere

The discussion of the photochemistry of NO given in earlier sections is not sufficient to define the stratospheric photodissociation of NO. A major fraction of the photodissociation occurs in the same wavelength region as that for the Schumann-Runge absorption bands of 0_2 .

A line by line analysis must be made to determine the overlap between the radiation transmitted through the S-R bands and the NO absorption lines. From this analysis the effective absorption by NO can be obtained. Only then can the photochemical discussion be applied. See Cieslik and Nicolet (W) for a detailed study of the problem.

Fig. 1 Apparent absorption coefficient of NO in the wavelength region 150 - 230 nm in units of cm⁻¹ (atm at 273 K)⁻¹ base e. The positions of the band heads for the δ , β , ε , and γ bands are indicated at the top. Band pass: 0.085 nm. Data of F. Marmo. From Watanabe, Zelikoff, Inn, Geophysical Research Paper No. 21, AFCRL, June 1953.

WAVELENGTH, (Å)

Fig. 2 Apparent absorption coefficient of NO in the wavelength region 110 - 160 nm in units of cm⁻¹ (atm at 273 K)⁻¹ base e. Data of F. Marmo. From Watanabe, Zelikoff, Inn, Geophysical Research Paper No 21. AFCRL. June 1953.

References

a. D. D. Wagman et al. NDS letimital Note 270-5 (Jan.

- b. C. E. Moore, NBS Circular 467, vol. 1 (1949).
- c. A. B. Callear and M. J. Pilling, Trans. Far. Soc. 66, 1618 (1970).
- d. F. F. Marmo, J. Opt. Soc. Am. 43, 1186 (1953).
- e. B. A. Thompson, P. Harteck, and R. R. Reeves, Jr., J. Geophys. Res. <u>68</u>, 6431 (1963).
- f. K. Dressler and E. Miescher, Astrophys. J. 141, 1266 (1965).
- g. K. Watanabe, F. M. Matsunaga, and H. Sakai, Appl. Optics <u>6</u>, 391 (1967).
- h. R. D. Hudson, Rev. Geophys. Space Phys. 9, 305 (1971).
- i. J. Heicklen and N. Cohen, Advances in Photochemistry 5, 157 (1968).
- j. K. F. Preston and R. J. Cvetanovic, "Decomposition of Inorganic Oxides and Sulfides", in "Comprehensive Chemical Kinetics",
 ed. C. H. Bamford and C. F. H. Tipper (Elsevier Publishing Co. 1972) vol. 4 pages 47-141.
- k. J. Heicklen, J. Phys. Chem. 70, 2456 (1966).
- 1. J. Y. MacDonald, J. Chem. Soc. <u>1928</u>, 1 (1928).
- m. A. G. Leiga and H. A. Taylor, J. Chem. Phys. <u>42</u>, 2107 (1965).
- n. P. J. Flory and H. L. Johnston, J. Am. Chem. Soc. 57, 2461 (1935).
- o. D. S. Sethi and H. A. Taylor, J. Chem. Phys. 48, 533 (1968).
- p. H. Bubert and F. W. Froben, Chem. Phys. Lett. 8, 242 (1971).
- q. M. Jeunehomme and A. B. F. Duncan, J. Chem. Phys. <u>41</u>, 1692 (1964).
- r. J. E. Hesser, J. Chem. Phys. <u>48</u>, 2518 (1968).

s.	L. A. Melton and W. Klemperer, Planet, Space Sci. <u>20</u> , 157 (1972).
t.	I. M. Campbell and B. A. Thrush, J. Quant. Spectrosc. Radiat.
	Transfer <u>8</u> , 1571 (1968).
u.	F. Stuhl and H. Niki, Chem. Phys. Lett. 7, 197 (1970).
v.	N. Cohen and J. Heicklen, J. Phys. Chem. <u>71</u> , 558 (1967).
W,	S. Cieslik and M. Nicolet, Planet. Space Sci. <u>21</u> , 925 (1973).
x.	E. Miescher and F. Akermann, in "Spectroscopic Data relative to
	Diatomic Molecules", B. Rosen, editor. International Tables of
	Selected Constants (Pergamon Press, 1970), vol 17, p. 277.
у.	H. P. Broida and M. Peyron, J. Chem. Phys. <u>32</u> , 1068 (1960).
Z.	Ch. Jungen and E. Miescher, Can. J. Phys., <u>46</u> 987 (1968).
aa.	G. W. Bethke, J. Chem. Phys. <u>31</u> , 662 (1959).
ЪЪ.	A. B. Callear and M. J. Pilling, Trans. Faraday Soc. <u>66</u> , 1886 (1970).
cc.	A. J. D. Farmer, V. Hasson and R. W. Nicholls, J. Quant.
	Spectrosc. Radiat. Transfer <u>12</u> , 627 (1972).
dd.	A. Pery-Thorne and F. Banfield, J. Phys. B., Atom. Molec. Phys.
	<u>3</u> , 1011 (1970).
ee.	G. V. Marr, Proc. Phys. Soc., <u>83</u> , 293 (1964).
H. D. R.	Okabe Garvin Hampson

July, 1973

Chemical Kinetics Data Survey

The Combination Reaction of NO and O

1.
$$NO + O({}^{3}P) + M \rightarrow NO_{2} + M$$
 k_{1}

2.
$$\Delta H_{298}^{\circ} = -306.2 \text{ kJ mol}^{-1} (-73.2 \text{ kcal mol}^{-1})$$
 (a)

3. Data

a. The rate measurements on this reaction prior to July 1970 were compiled and reviewed by Baulch, Drysdale, and Horne (b). The major investigations of the temperature dependence of the reaction were performed using discharge flow systems by Clyne and Thrush (c) over the range 212-293 K, and by Klein and Herron (d) over the range 300-505 K. The third body effect was studied extensively by Kaufman and Kelso (e) at room temperature also using a discharge flow system.

b. Recent measurements

$k_1 (cm^6 molecule^{-2} s^{-1})$	М	Т
6.65×10^{-32}	He	300 к
15×10^{-32}	NO	300 к

<u>System</u> Pulsed vacuum-uv photolysis of N0 (1-3.5 torr) or of $0_2(0.1 \text{ torr})$ in presence of NO (< 0.3 torr) and He (< 31 torr). 0 atom decay rate monitored by chemiluminescent reaction 0 + NO \rightarrow NO₂ + hv STUHL, NIKI 1971 (f)²

NO + O + M = 2

k_1 (cm ⁶ molecule ⁻² s ⁻¹)	M	<u>T</u>	System
13.5 × 10 ⁻³²	Ar	300 K	Pulsed photolysis of 0 ₂ (0.1 torr) at 147 nm in presence of NO (1-8 mtorr) and Ar (6 or 10 torr). 0 atom decay rate detected by resonance fluorescence. SLANGER, BLACK 1970 (g)
6.0×10^{-32}	Ar	296	Pulsed photolysis of 0,
13.0×10^{-32}	Ar	241	the presence of 0.1 torr NO and 10 torr Ar. Experiments primarily performed to measure rate constant for $0 + NO_2 \rightarrow NO + O_2$. SLANGER, WOOD, BLACK 1973 (h)

4. Preferred values

k = 2.9 x $10^{-33} \exp(940/T) \text{ cm}^6 \text{ molecule}^{-2} \text{s}^{-1}$, M = 0_2 Temperature range: 200-500 K. Estimated error limit: $\pm 20\%$ at 298 K, $\pm 50\%$ at other temperatures. k(298 K) = 6.8 x $10^{-32} \text{ cm}^6 \text{ molecule}^{-2} \text{s}^{-1} \text{ M} = 0_2$ k(220 K) = 2.1 x $10^{-31} \text{ cm}^6 \text{ molecule}^{-2} \text{s}^{-1} \text{ M} = 0_2$ Relative efficiencies for M: N₂ (1.4); 0_2 (1); Ar (1)

5. Remarks

The recommended rate expression is that given by Baulch et al (b). The relative efficiency values are also from (b). This expression for k (T) has been confirmed by the recent measurements of Stuhl and Niki at 300 K (f) and those of Slanger, Wood, and Black at room temperature and at 241 K (h). The earlier measurement by Slanger and Black (g) is apparently a factor of two high. The authors speculated that a fast secondary reaction between atomic oxygen and vibrationally excited nitrogen dioxide produced in reaction (1) was the cause of the higher measured rate constant.

References

- D. D. Wagman, W. H. Evans, V. B. Parker, I. Halow, S. M.
 Bailey, and R. H. Schumn, NBS Technical Note 270-3, (1968).
- (b) D. L. Baulch, D. D. Drysdale, and D. G. Horne, "High Temperature Reaction Rate Data", Report No. 5 (1970), Dept. of Physical Chemistry, The University, Leeds, England.
- (c) M. A. A. Clyne and B. A. Thrush, Disc. Faraday Soc. <u>33</u>, 139 (1962).
- (d) F. S. Klein and J. T. Herron, J. Chem. Phys. <u>41</u>, 1285 (1964).
- (e) F. Kaufman and J. R. Kelso, Symp. Chemiluminescence, Durham, N. C. (1965).

- (f) F. Stuhl and H. Niki, J. Chem. Phys. 55, 3943 (1971).
- (g) T. G. Slanger and G. Black, J. Chem. Phys. <u>53</u>, 3717 (1970).
- (h) T. G. Slanger, B. J. Wood, and G. Black, Inter. J. Chem. Kinetics <u>5</u>, 615 (1973).

R. E. Huie, J. T. Herron January, 1973

PHOTOCHEMISTRY OF NO2

Reaction		.o 0	λ threshold (nm)
2 2	kJ/mol	<u>(kcal/mo</u>	1)
$NO_2 \rightarrow NO(X^2\pi) + O(^3P)$	300	(71.8)	398
$NO_2 \rightarrow NO(X^2 \pi) + O(^1 D)$	490	(117.2)	244
$NO_2 \rightarrow NO(x^2\pi) + O(^1s)$	705	(168.4)	170
$NO_2 \rightarrow N(^4s) + O_2(x^3\Sigma_g)$	435	(103.9)	275
$NO_2 \rightarrow N(^4s) + O_2(a^1 \triangle_g)$	529	(126.5)	226
$NO_2 \rightarrow N(^4s) + O_2 (b^{1}\Sigma_g^+)$	592	(141.4)	202
$NO_2 \rightarrow NO(A^2\Sigma^+) + O(^3P)$	829	(198.2)	144
$NO_2 \rightarrow NO(A^2\Sigma^+) + O(^1D)$	1019	(243.6)	117
$NO_2 \rightarrow NO(A^2\Sigma^+) + O(^1S)$	1234	(294.8)	97
0	0		

1. Primary Photochemical Transitions

 ΔH_0^0 values calculated using $\Delta H f_0^0$ values in (a), excitation energies of O(¹D) and O(¹S) in (b), and excitation energies of NO(A² Σ^+), $O_2(a^1 \Delta_g)$, and $O_2(b^1 \Sigma_g^+)$ in (c).

2. Data

2a. Absorption Coefficient

240-500 nm	See Figure 1.
	HALL, BLACET, 1952 (d)
400-700 nm	DIXON, 1940 (e)
108-270 nm	See Figures 2a, 2b, 2c, 2d
	NAKAYAMA, KITAMURA,
	WATANABE, 1959 (f)
405-515 nm	WILKERSON, ERCOLI,
	TOMPKINS, 1973 (y)

See Appendix for conversion factors for units of absorption coefficients.

2b. Overall Quantum yield for 0_2 production, Φ (0_2) : $N0_2 + h\nu \rightarrow N0 + 0$ $({}^{3}P)$ $0 + N0_2 \rightarrow 0_2 + N0$

 λ (nm) Φ (0₂)*

		$\Phi(0_2)$ measured. Equal to
313	0.97	$\emptyset(0)$ at low pressures. P(NO ₂)
366	0.92	= 10 torr. Values also given at
380	0.82	344, 406, 496, and 566 K for λ
405	0.36	= 405 nm. Non-zero value at 436 nm
436	0.005	believed due to trace component
		of 405 nm.

*at T = 296 K PITTS, SHARP, CHAN, 1964 (h)

<u>λ(nm)</u>	Φ(0 ₂)	
270	1.0	Weighted average of results of
313	0.97	four studies (1928-53).
366	0.92	
405	0.36	
436	0.00	LEIGHTON, 1961 (i)
<u>λ(nm)</u>	Φ(0 ₂)	
313	0.99	Reassessment of data considered
366	0.96	in (1) and those reported in
380	0.82	(h).
405	0.36	
436	<0.005	DEMERJIAN, KERR, CALVERT,
		1974 (u)

2c. Overall quantum yield for NO production, $\Phi(NO)$:

λ (nm)	<u>₫ (NO)</u>	
295 - 398	2.0	Relative overall quantum yield
400	1.35	for production of NO, Φ (NO),
405	0.64	measured. Values normalized
410	0.32	to values at 313 and 366 nm in
415	0.10	(i). $P(NO_2) = 3$ torr.
420	0.07	Also, see Figure 3
425	0.06	NOTE: Preliminary data
435	0.05	
490	0.03	
580	0.02	JONES, BAYES 1972 (g)

3. Preferred values

a. Absorption coefficients

240-500	nm	Use	data	in	ref	(d).	See F	ig. 1.
		(Se	e al:	so s	peci	al not	e unde	er remarks)
108-270	nm	Use	data	in	ref	(f).	See F	igures
		22	2h	20	and	24		

NOTE: Units of absorption coefficients

In Fig. 1, k is in units of (mm Hg at 298 K) $^{-1}$ cm $^{-1}$ (base 10) In Fig. 2a-d, k is in units of (atm at 273 K) $^{-1}$ cm $^{-1}$ (base e) See Appendix for table of conversion factors for units.

Absorption cross-sections averaged over 10 nm intervals:

(nm) $\sigma(N0_2)$		λ (nm)	σ(N0 ₂)			
290	$0.99 \times 10^{-19} \text{ cm}^2$	400	$6.53 \times 10^{-19} \text{ cm}^2$			
300	1.41	410	6.38			
310	2.18	420	6.23			
320	2.98	430	5.88			
330	3.74	440	5.54			
340	4.54	450	5.20			
350	5.20	460	4.47			
360	5.69	470	4.05			
370	6.04	480	3.51			
380	6.23	490	3.06			
390	6.38	500	2.64			

 $\sigma = (1/n^{\ell}) \log_e (I_0/I) \text{ where } \underline{n} \text{ is the concentration of NO}_2$ in molecules cm⁻³ and $\underline{\ell}$ is the path length in cm.

5

Ъ.	Primary	quantum	yields	for	0	atom	formation	, Ø(0((ີ₽)))
----	---------	---------	--------	-----	---	------	-----------	------	----	------	----

λ (nm)	$\emptyset(0(^{3}P))$
295-398	1.0
400	0.70
405	0.29
410	0.12
415	0.05
420	0.02
425	0.01
435	0.002
440	0.001
>440	ZERO

4. Remarks

a. Absorption coefficient

<u>Ref. (d)</u> Figure 1 also includes absorption coefficient data for $N_2^0_4$. Resolution in spectrum that data are based on was 0.4 nm. It is not possible to assess the reproducibility of these absorption coefficients. Values for N_2^0 and $N_2^0_4$ were calculated from measured optical densities of two mixtures of N_2^0 and $N_2^0_4$ having mole fractions of $N_2^0_4$ equal to 0.20 and 0.57. A third mixture, $X_{N_2^0_4}$ = 0.41 gave good agreement. These measurements agree with those in (e) and (f) over the regions of wavelength overlap.

 $NO_2 + hv$ 6

The absorption coefficient data averaged over 10 nm intervals centered on the wavelength shown are derived from Table 14 of (i). They are based on data in (d). The entire table covers the wavelength range 290-700 nm and is based on (d) and (e).

The selection of the data in (d) is a tentative selection; work is in progress to measure the absorption coefficient over the photochemically active region $\lambda \approx 400$ nm (aa).

<u>Ref. (f)</u> These are the only data for $\lambda < 240$ nm. They have been critically reviewed in (x).

Ref. (y) Measurements made on a $1.13\% \text{ NO}_2$ in N₂ mixture at 745 torr total pressure, 23.9° C, 10 cm path length. High resolution (0.003 nm). Results are consistent with the low-resolution data in (d) within the probable errors of the two studies.

<u>Special Note</u> Recent experiments (S. E. Novick, B. J. Howard, and W. Klemperer, J. Chem. Phys. <u>57</u>, 5619 (1972) indicate the existence of the trimer N_30_6 and possibly higher polymers in the gas phase. However, N_30_6 will not be important in the atmosphere: the total $[N0_2]$ is to small. If these recent experiments are verified, the experimental measurements of equilibrium constants and optical absorption coefficients must be reanalyzed. Any effects of polymers will be more pronounced at low temperatures and at high pressures of $N0_2$. The spectrum of N_30_6 is not known.

It is our conjecture that the present absorption coefficients for NO₂ are good ($\sim 15\%$) for $\lambda > 300$ nm but that the data for shorter wavelength regions may require revision.

 $NO_2 + h$

7

b. Primary quantum yield for 0 atom production, $\emptyset(0)$

Ref. (g) In order to deduce the value of $\emptyset(0)$ from the measured value of $\frac{\Phi}{(N0)}$, it is necessary to assume a mechanism of photolysis of NO₂. It is well established (h, ℓ) that for $\lambda < 398$ nm and at low conversions and low pressures, the mechanism is:

 $NO_{2} + hv \rightarrow NO + 0$ $O + NO_{2} \rightarrow NO + O_{2}$

Isotopic scrambling experiments with ${}^{36}O_2$ showed the production of a free oxygen atom at $\lambda \leq 410$ nm. Similar results have been found by other workers (h, k-1). This confirms the above two-step mechanism for this wavelength range. For regions where this simple mechanism is applicable, $\emptyset(0) = (1/2) \times {}^{\Phi}(N0)$. The preferred values of $\emptyset(0)$ were derived from the values of ${}^{\Phi}(N0)$ in (g) according to the following scheme:

 $\lambda < 415 \text{ nm}$ $\emptyset(0) = (1/2) \times \Phi(N0)$ $\lambda > 415 \text{ nm}$ $\emptyset(0) = \exp[(\varepsilon_{\lambda} - 3.115)/0.043]$

where $e_{\lambda} = 1239.8/\lambda$ (nm) is the photon energy in ev, 3.115eV corresponds to 398 nm, and 0.043eV is the e-folding parameter in region B in Figure 3. The small non-zero values of Φ (NO) at $\lambda \approx 440$ nm are suggested by the authors to result from reactions of NO₂^{*} to produce NO but not free 0 atoms. At this wavelength the photon energy is 0.3 eV (<u>i.e.</u> approximately 12 kT) less than the energy required to dissociate NO₂ into NO and 0.

5. Discussion

This section summarizes interpretations of the photochemistry of NO_2 and describes related work on excited states and fluorescence.

I. Primary Photochemical Processes in Various Wavelength Regions.

a) $\lambda < 250 \text{ nm}$

Wavelength threshold for $O(^{1}D)$ production is 244.1 nm. Lines are sharp in band at 249.1 nm and broadened in band at 245.9 nm, while the bands at 244.7 nm and beyond are diffuse. Broadening of lines for $\lambda >$ threshold wavelength used as argument against correlation of absorption in this region with $O(^{1}D)$ formation (j).

Chemical evidence from photolysis at $\lambda = 228.8$ nm shows that of oxygen atoms produced, 40% are $0(^{1}D)$ (k2). Photo-oxidation of butene-1 shows a change in mechanism between 228.1 and 253.7 nm, suggesting $0(^{1}D)$ formation at 228.8 nm (k3).

If the broadened bands at 245.9 nm do correlate with formation of $O(^{1}D)$ then absorption from internally excited NO₂ may be involved.

b) $250 < \lambda < 398 \text{ nm}$

 $NO_2 \rightarrow NO (X^2 \pi) + O(^3 P)$ throughout this region. For discussion of complex mechanisms of photolysis see (h) and (!).
Addition of high pressures of N₂ reduces the total quantum yield in this wavelength region. This effect is partly due to changed rates of secondary reactions and partly due to quenching of the upper state formed in the photoabsorption act (cc). The latter (quenching) has a negligible effect on the primary process for pressures less than 1 atm. The former is significant at 1 atmosphere of N₂, $\frac{\Phi}{P}(P=0)/\Phi(P) \sim 1.27$, due to the process:

 $0 + NO_2 + M \rightarrow NO_3 + M$

 $\begin{array}{c} \mathrm{NO}_3 + \mathrm{NO} \rightarrow 2\mathrm{NO}_2\\ \mathrm{competing with } \mathrm{O} + \mathrm{NO}_2 \rightarrow \mathrm{O}_2 + \mathrm{NO}\\ \mathrm{c}) \quad \lambda > 398 \ \mathrm{nm} \end{array}$

Threshold for $0({}^{3}P)$ production is 398 nm. Some residual oxygen atom production at longer wavelengths by absorption from internally excited NO₂ (h) or by collisionally induced dissociation of NO₂^{*} (g). Otherwise absorption in this region results in formation of NO₂^{*} the dominant fate of which is fluorescence or collisional quenching. In presence of O₂, NO₂^{*} can undergo energy transfer to give O₂(¹ Δ g) (z).

Under high resolution, lines in the absorption spectrum are sharp for $\lambda > 397.9$ nm and diffuse at shorter wavelength (m). This onset of diffuseness is in excellent agreement with the calculated wavelength threshold for $O({}^{3}P)$ production. This line spectrum of NO_{2} is very rich. Only a few bands have been analyzed (m). A. E. Douglas (private communication) has estimated that there may be

$$NO_{1} + hv = 10$$

100,000 lines in the visible region that may be observed with the high resolution available with a 10m grating spectrograph. Even with this resolution many of the lines are blends.

The plot of absorption coefficient versus wavelength, Figure 1, has the appearance of lines superimposed on a "continuum". This background is not a true continuum but is due to absorption in the wings of many lines. It is an intrinsic part of the spectrum and is not due to limitations of instrumental resolution.

A recent discussion of the photochemistry of NO_2 is given in (dd).

II. Excited States of NO₂

a.	Lifetime	measurements	from fluor	escence.	
Wave Regi	elength ion (nm)	State	T, Us	Note	Ref.
40	0-600	² B ₂ ?	40-90	1,3	n,o
458	3-521	2 _{B2} , continuum	?	2,3	р
451	L-460	² _{B1} , ² _{B2}	62 - 75	4	(bb)

Notes:

1. Excitation primarily by Hg lines. Lifetime dependence upon exciting λ both found (n) and not found (o).

2. Excitation by laser lines. Fluorescence spectrum shows vibrational and rotational structure and continuum (p).

3. The number of upper electronic states is in question. One mechanism is in (o3). A recent theoretical treatment of the potential energy diagram is in (q).

Discussions of the transitions in the absorption spectrum of NO_2 are in (r) and (s).

4. This detailed study using a tunable dye laser shows a structure of lifetimes as a function of wavelength. The conclusion is that the shorter life times ($\tau = 40-60 \ \mu s$) reported in the literature are due to geometrical effects. Earlier experiments are discussed in detail.

> b. Quenching of $NO_2^{*}({}^{2}B_2)$ fluorescence by various gases $NO_2: \lambda_E = 436$ nm (exciting wavelength) $NO_2^{*}: \lambda_F = 470$ nm (fluorescence wavelength)

M	a _M (cm ³ molecule ⁻¹)	$k_{Q,M}$ (cm ³ molecule ⁻¹ s ⁻¹)
^N 2	3.4×10^{-15}	0.62×10^{-10}
02	3.7	0.67
NO	6.2	1.1
N02	7.7	1.4
c0 ₂	8.1	1.5
- Н ₂ 0	21	3.8

Notes:

The quenching constant a_m is defined by the equation:

1.
$$a_{M} = k_{Q,M} \times \tau_{rad}$$
 for the mechanism:
 $NO_{2}^{*} \rightarrow NO_{2} + hv$ $k_{rad} = 1/\tau_{rad}$
 $NO_{2}^{*} + M \rightarrow NO_{2} + M$ $k_{Q,M}$

2. $a(NO_2)$ from Table I of ref. (o3). Other values of a_M based on this value and ratios of a_M (λ_E = 436 nm) in Table II of ref. t and arguments therein that $a(M)/a(NO_2)$ is independent of λ_F and λ_E .

3.
$$k_{Q,M}$$
 calc. from a_M with $\tau_{rad} = 5.5 \times 10^{-5}$ s. (o3).

c. Fluorescence of NO2 in the atmosphere

Based on mechanism in note 1 of section b above, the fraction of NO_2^* fluorescing in the presence of quenching gas, M, at concentration [M] is given by:

 $f_{fluorescing} = (1 + \sum_{M} a_{M} [M])^{-1}$

In one atmosphere of N $_2$ f \sim 1.2 x 10^{-5} for excitation at 436.0 nm and fluorescence at 470.0 nm.

Total fluorescence per unit volume in sunlight depends upon incident light flux, absorption coefficient, and a_M all of which are functions of wavelengths. Data for the calculation not available.

 $NO_2 + inv$ 13

d. Photochemistry of NO, in Air

To a good first approximation the following mechanism controls the relative concentrations of NO_2 , NO, O, and O_3 in a polluted atmosphere (i):

$$\begin{aligned} NO_{2} + hv \rightarrow NO + 0 & k_{a} = 8.0 \times 10^{-3} \text{ s}^{-1} & (u) \\ O + O_{2} + M \rightarrow O_{3} + M & k_{2} = 5.6 \times 10^{-34} \text{ cm}^{-6} \text{molecule}^{-2} \text{ s}^{-1} & (v) \\ O_{3} + NO \rightarrow NO_{2} + O_{2} & k_{3} = 1.6 \times 10^{-14} \text{ cm}^{-3} \text{molecule}^{-1} \text{ s}^{-1} & (w) \end{aligned}$$

The specific rate of photodissociation of NO_2 to give 0 atoms by absorption of solar radiation is denoted by k_a after the notation in ref. (i).

These reactions are controlling because they are much faster than any other reactions and involving these species in the polluted atmosphere. They establish the following stationary-state concentration or intermediates:

$$[0]_{ss} = k_{a}[N0_{2}]/k_{2}[0_{2}][M] = 1.1 \times 10^{-7}[N0_{2}]$$
$$[0_{3}]_{ss} = k_{a}[N0_{2}]/k_{3}[N0]$$
$$= 5 \times 10^{11} \times [N0_{2}]/[N0] \text{ molecule/cm}^{3}$$

These formulae may be used, as a first approximation, to estimate [0] and $[0_3]$ at any instant for which measurements of $[N0_2]$ and [N0] are available.

The lifetime of an oxygen atom in air at one atmosphere, $T(0) = 1/k_2[0_2][M]$, is 12 µsec. This mechanism conserves the sum $[N0_2] + [N0]$. It does not give the rate of input or of destruction of nitrogen oxides in the atmosphere.

References

a)	D.	D.	Wagman	et	a1,	NBS	Technical	Note	270 - 3	(Jan.	1968)	
----	----	----	--------	----	-----	-----	-----------	------	----------------	-------	-------	--

- b) C. E. Moore, NBS Circular 467, vol. 1 (1949).
- c) G. Herzberg, "Molecular Spectra and Molecular Structure,"
 vol. II. D. Van Nostrand Co. Inc. (1950).
- d) T. C. Hall, Jr. and F. E. Blacet, J. Chem. Phys. <u>20</u>, 1745 (1952).
- e) J. K. Dixon, J. Chem. Phys. 8, 157 (1940).
- f) T. Nakayama, M. Y. Kitamura, and K. Watanabe, J. Chem. Phys. <u>30</u>, 1180 (1959).
- g) I. T. N. Jones and K. D. Bayes, private communication. Results were also presented at the Tenth Informal Conference on Photochemistry, Stillwater, Oklahoma, May 1972.
- h) J. N. Pitts, Jr., J. H. Sharp, and S. I. Chan, J. Chem. Phys.
 40, 3655 (1964).
- P. A. Leighton, "Photochemistry of Air Pollution," Academic
 Press (1961).
- j) G. Herzberg, "Molecular Spectra and Molecular Structure," vol. III D. Van Nostrand Co. Inc. (1967).
- k) K. F. Preston and R. J. Cvetanovic, Can J. Chem. <u>44</u>, 2445 (1966); J. Chem. Phys. <u>45</u>, 2888 (1966); Ber. der Bunsenges für physikalische Chemie <u>72</u>, 177 (1968).
- 1) H. Ford, Can. J. Chem. <u>38</u>, 1780 (1960).

m)	A. E. Douglas and K. P. Huber, Can. J. Phys. <u>43</u> , 74 (1965).
n)	1) S. E. Schwartz and H. S. Johnston, J. Chem. Phys. <u>51</u> ,
	1286 (1969).
	2) P. B. Sackett and J. T. Yardley, Chem. Phys. Lettr. <u>6</u> ,
	323 (1970).
0)	1) D. Neuberger and A. B. F. Duncan, J. Chem. Phys. <u>22</u> ,
	1693 (1954).
	2) K. Sakurai and G. Capelle, J. Chem. Phys. <u>53</u> , 3764 (1970)
	3) L. F. Keyser, S. Z. Levine, and F. Kaufman, J. Chem.
	Phys. <u>54</u> , 355 (1971).

- p) K. Sakurai and H. P. Broida, J. Chem. Phys. <u>50</u>, 2404 (1969).
 q) R. A. Gangi and L. Burnelle, J. Chem. Phys. <u>55</u>, 843 (1971).
 r) R. A. Gangi and L. Burnelle, J. Chem. Phys. <u>55</u>, 853 (1971).
 s) G. E. Busch and K. R. Wilson, J. Chem. Phys. <u>56</u>, 3638 (1972).
- t) G. H. Myers, D. M. Silver, and F. Kaufman, J. Chem. Phys. <u>44</u>, 718 (1966).
- u) Demerjian, K. L., Kerr, J. A., and Calvert, J. G., "The Mechanism of Photochemical Smog Formation," To appear in Adv. in Environmental Sci. and Technology, J. N. Pitts, Jr., and R. L. Metcalf editors, Wiley-Interscience (Vol. 4, 1974).
- v) R. E. Huie, J. T. Herron, and D. D. Davis, J. Phys. Chem. <u>76</u>, 2653 (1972).
- w) R. F. Hampson, ed. NBS Report 10828 (April 1972).
- x) R. D. Hudson, Rev. Geophys. Space Phys. <u>9</u>, 305 (1971).

y) Wilkerson, T. D., Ercoli, B., and Tomkins, F. S. "Absorption Spectra of Atmospheric Gases" University of Maryland and Argonne National Laboratory Report to Stanford Research Institute (January, 1973). Data available from T. D. Wilkerson, Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, College Park, Maryland 20742.

- z) I. T. N. Jones and K. D. Bayes, Chem. Phys. Lettrs <u>11</u>, 163 (1971).
- A. M. Bass and A. H. Laufer, Physical Chemistry Division,
 National Bureau of Standards (private communication).
- bb) P. B. Sackett and J. T. Yardley, J. Chem. Phys. <u>57</u>, 152 (1972).
- cc) H. Gaedtke, H. Hippler and J. Troe, Chem. Phys. Lettrs <u>16</u>, 177 (1972).
- dd) K. F. Preston and R. J. Cvetanovic, "Decomposition of Inorganic Oxides and Sulfides", in "Comprehensive Chemical Kinetics," ed. C. H. Bassford and C. F. H. Tipper, Elsevier Publishing Co (1972) vol. 4 pages 47-141.

R. F. Hampson D. Garvin January, 1973

Figure 1. Absorption coefficients $k = (1/p\ell) \log_{10} (Io/I)$ NO₂ and N₂O₄ at 25 C. where p is the pressure in torr at 25 C and ℓ is the path length in cm. HALL, BLACET, 1952 (d) (reprinted with consent

of authors)

Fig. 2a. Absorption coefficient (I) and ionization coefficient (II) of NO_2 in the region 108-130 nm.

<u>Fig. 2b.</u> Absorption coefficient of NO₂ in the region 130-160 nm. <u>NOTE</u>: In Fig. 2a-d, the absorption coefficient, k, is defined as: $k = (1/l) \log_e (I_0/I)$ where l, in cm., is the layer thickness of the absorbing gas reduced to 273 K and 1 atm pressure.

 $NO_2 + hv$ 19

Fig. 2c. Absorption coefficient of NO, in the region 160-200 nm.

Fig. 2d. Absorption coefficient of NO₂ in the region 200-270 nm. Dashed curves are suggested continua, and circles are some values by Hall and Blacet.

NAKAYAMA, KITAMURA, WATANABE, 1959 (f)

NOTE: In Fig. 2a-d, the absorption coefficient, k, is defined as: $k = (1/l) \log_e (I_0/I)$ where l, in cm., is the layer thickness of the absorbing gas reduced to 273 K and 1 atm pressure. (Figures 2a-d reprinted with permission of American Institute of Physics)

 $NO_2 + h_V$

Chemical Kinetics Data Survey

The Bimolecular Reaction between NO_2 and $O(^{3}P)$

1.
$$NO_2 + O(^{3}P) \rightarrow NO + O_2$$
 k_1

2.
$$\Delta H_{298}^{\circ} = -192 \text{ kJ mol}^{-1} (-45.9 \text{ kcal mol}^{-1})$$
 (a)

3. Data

a. Prior to the review of Baulch, Drysdale, and Horne (b), dated July, 1970, this reaction had been studied over the temperature range 278-543 K in discharge flow systems, at 300 K in flash photolysis-flow systems, and at 298 and 410 K in a static flash photolysis system. Details are given in (b). Baulch <u>et</u>. <u>a1</u>. recommended the expression $k_1 = 1.7 \times 10^{-11} \exp (-300/T) \text{ cm}^3$ molecule⁻¹s⁻¹ over the temperature range 280-550 K.

b. Recent measurements:

$$\frac{k_1(\text{cm}^3 \text{molecule}^{-1} \text{s}^{-1})}{4.4 \times 10^{-12}} \frac{T(\text{K})}{300}$$
Flash photolysis of NO (0.15 torr)
in presence of NO₂ (1-6 mtorr) and
He (10torr). 0 atom decay monitored
by chemiluminescent reaction
0 + NO → NO₂ + hy.
STUHL, NIKI 1970 (c).

NO₂ + 0 2

6.1×10^{-12}	298	Discharge flow system. O atoms		
		formed from N + NO reaction.		
		[N0 ₂] = 0.1-1.3 mtorr.[0] followed		
		by resonance fluorescence.Total pressure = 1.3 torr. CLYNE, CRUSE 1972 (d).		
9.12×10^{-12}	230-339	Flash photolysis of 0_2 (1 torr) in		
		presence of NO ₂ (1-7 mtorr) and		
		5 torr diluent (N ₂ ,Ar). [0] followed		
		by resonance fluorescence.		
		DAVIS, HERRON, HUIE 1973 (e).		
9.3×10^{-12}	296	Flash photolysis of 0 ₂ (0.1 torr) in		
10.5×10^{-12}	240	presence of NO (0.1 torr), Ar (10 torr)		
		and NO ₂ (0.2-2 mtorr). O atom decay		
		monitored by chemiluminescent reaction		
		$0 + N0 \rightarrow N0_2 + h_{\lambda}$. Flow system.		
		SLANGER, WOOD, BLACK 1973 (f).		
$k_1/k_2 [M] = 5.5$		Photolysis of NO ₂ . [NO ₂] and		
where k_2 : NO + O +	$M \rightarrow NO_2 + M$	[N205] followed by long path I. R.		
and $[M] = 1$ atm N_2 ,	297 К.	absorption. Molecular modulation		
		spectrum of NO ₂ measured.		
		HARKER, JOHNSTON, 1973 (g).		

 $k_1/k_3 [M] = 9.2 \times 10^2$ Photolysis of NO₂ (1-100 ppm) in where $k_3: 0 + 0_2 + M \rightarrow$ air studied using NO/O₃ $O_3 + M$ and [M] = 1 atm air chemiluminescence detectors. 298 K STEDMAN, NIKI, 1972 (h).

4. Recommended rate:

 $k = 9.1 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1}$ Temperature range 220-500 K Estimated error limits: ±20%

5. Remarks:

The rate expression recommended by Baulch, et al (b) was based on the data of Westenberg and de Haas (k), Klein and Herron (1), and Smith (m). In the flash photolysis experiments of Smith (m), k_1 and k_4 (0 + 1-butene \rightarrow products) were each measured relative to k_5 (0 + CS₂ \rightarrow CO + SO). The absolute value of k_5 was also measured. The value of k_1 reported was equal to $(k_1/k_5) \times k_5$. Alternatively, one can derive the value of (k_1/k_4) from the reported values of (k_1/k_5) and (k_4/k_5) and then combine this ratio with the value of k_4 in ref (n) to give the value of k_1 to be 7.2 \times 10⁻¹² cm³ molecule⁻¹s⁻¹ at 298 K and 9.2 \times 10⁻¹² cm³ molecule⁻¹s⁻¹ at 410 K. These values agree with the present recommended rate within the stated experimental uncertainty (±30%) in ref (m). In the experiments of Klein and Herron (1), performed using a discharge flow system coupled to a mass spectrometer, a sudden decrease in the measured rate constant was

 $NO_2 + 0$

4

observed at temperatures below 260 K, indicating that some phenomenon was complicating the system. If this complication existed unrecognized at the high temperatures used in the kinetic analysis, this could explain the reported lower values of the rate constant. The data of Westenberg and de Haas scatter considerably, but show little apparent temperature dependence. A simple average of the data gives $k_1 = 8.1 \times 10^{-12} \text{ cm}^3$ molecule⁻¹s⁻¹, which is within 15% of the recommended value.

Since the review by Baulch, <u>et al</u> (b) there have been several investigations of reaction (1). Stuhl and Niki (c) and Clyne and Cruse (d) obtained values in reasonable agreement with the recommended value of Baulch <u>et al</u> (b). Davis, Herron, and Huie (e), however, obtained a higher rate constant which also showed no temperature dependence. Slanger, Wood, and Black (f) confirmed this value using an experimental technique similar to that of Stuhl and Niki (c). The ratio k_1/k_2 (M) in (g) when combined with the value 9.5 x 10⁻³² cm⁶ molecule⁻²s⁻¹ recommended in this report for k_2 (N0 + 0 + N₂ \rightarrow NO₂ + N₂) (see separate data sheet on NO + 0 + M) gives a value of $k_1 = 12.8 \times 10^{-12}$ cm³ molecule⁻¹s⁻¹. The ratio k_1/k_3 [M] in (h) when combined with the values for k_3 (0 + 0₂ + M \rightarrow 0₃ + M) in (i) and (j) gives a value of $k_1 = 13.1 \times 10^{-12}$ cm³ molecule⁻¹s⁻¹. These recent results from NO₂ photolytic systems (g, h) confirm earlier results on similar systems (o, p).

Since the measurements of Davis, <u>et al</u> form the most extensive data set, and since these data seem to be supported by the most recent work, we have chosen the rate constant reported in that work as the recommended value.

A theoretical calculation using the bond energy-bond order (BEBO) method has been made for reaction 1 (q). An activation energy of about 12.5 kJ/mol is predicted - at variance with the zero temperature dependence preferred here.

References

- (a) D. D. Wagman, et al, NBS Technical Note 270-3 (Jan. 1968).
- (b) D. L. Baulch, D. D. Drysdale, and D. G. Horne, "High Temperature Reaction Rate Data", Report No. 5 (1970), Dept. of Physical Chemistry, The University, Leeds, England.
- (c) F. Stuhl and H. Niki, Chem. Phys. Letters 7, 197 (1970).
- (d) M. A. A. Clyne and H. W. Cruse, J. Chem. Soc. Faraday Trans.
 II <u>68</u>, 1281 (1972).
- (e) D. D. Davis, J. T. Herron, and R. E. Huie, J. Chem. Phys., <u>58</u>, 530 (1973).
- (f) T. G. Slanger, B. J. Wood, and G. Black, Typescript, Stanford Research Institute (1973).
- (g) A. Harker and H. S. Johnston, J. Phys. Chem. 77, 1153 (1973).

- (h) D. H. Stedman and H. Niki, "Kinetics and Mechanism for the Photolysis of NO₂ in Air", typescript (1972).
- (i) R. E. Huie, J. T. Herron, and D. D. Davis, J. Phys. Chem. 76, 2653 (1972).
- (j) F. Kaufman and J. R. Kelso, J. Chem. Phys. <u>46</u>, 4541 (1967).
- (k) A. A. Westenberg and N. de Haas, J. Chem. Phys. <u>50</u>, 707 (1969).
- (1) F. S. Klein and J. T. Herron, J. Chem. Phys. <u>41</u>, 1285 (1964).
- (m) I. W. M. Smith, Trans. Faraday Soc. 64, 378 (1968).
- (n) R. E. Huie, J. T. Herron, and D. D. Davis, J. Phys. Chem. <u>76</u>, 3311 (1972).
- (o) H. W. Ford and N. Endow, J. Chem. Phys. 27, 1156 (1957).
- (p) E. A. Schuck, E. R. Stephens, and R. R. Schrock, J. AirPoll. Cont. Assoc. <u>16</u>, 695 (1966).
- (q) S. W. Mayer, J. Phys. Chem. 71, 4159 (1967).

R. E. Huie, J. T. Herron January, 1973

Chemical Kinetics Data Survey

The Termolecular Association of NO_2 and $O(^3P)$

1.
$$NO_2 + O(^{3}P) + M \rightarrow NO_3 + M$$
 (1)
2. $\Delta H^{\circ}_{298} = -205 \pm 20 \text{ kJ mol}^{-1} (-49 \pm 5 \text{ kcal mol}^{-1})$ (a)

3. Data

a. Measurements of the rate of Reaction (1) in competition with the bimolecular reaction between NO_2 and O:

$$NO_2 + 0 \rightarrow NO + O_2$$
 k_2

in the steady u.v. photolysis of NO_2 at room temperature.

$(k_1/k_2) \times 10^{20}$		
(cm ³ /molecule)	M	System
7.7	N ₂	Stirred-flow photolysis reactor. $[NO_2] = 8-130 \times 10^{12} \text{ molecule/cm}^3;$ total pressure = 1 atm; $\lambda = 366 \text{ nm}.$ Value of k_1/k_2 obtained from intercept of plot of $1/\Phi$ (NO ₂) vs. [NO]/[NO ₂]. FORD, ENDOW 1957 (b)
1.12	N ₂	Static photolysis system.
1.09	c0 ₂	Effect of total pressure (up to 1.5 atm) on Φ (NO ₂) studied. [NO ₂] = 2 x 10 ¹⁷ molecule/cm ³ ; λ = 366 nm.

Values of k_1/k_2 are equal to slopes of $1/\frac{4}{2}$ (NO₂) vs. [M] plots although not identified as such in paper. FORD. JAFFE 1963 (c)

1.34	N ₂	Effect of addition of 1 atm N ₂ on
		<pre>² (NO₂) measured. Black light</pre>
		fluorescent tube used; peak output at
		350 nm. $[NO_2] = 4 \times 10^{14} \text{ molecule/cm}^3$.
		SHUCK, STEPHENS, SCHROCK 1966 (d)

1.10	^N 2	Effect of $P(N_2)$ on $2 (NO_2)$ measured.
		$[NO_2] = 2 \times 10^{17} \text{ molecule/cm}^3; h = 366 \text{ nm}.$
		Pressure range: 0.3 to 200 atm. k ₁
		found to be 3rd order up to 10 atm and
		reached limiting 2nd order value at
		\sim 100 atm.

TROE, 1969 (e)

1.36	^{C0} 2	Effect of total pressure up to 2.2 atm
16.6	CF2C22	on $\frac{2}{3}$ (0 ₂) from photolysis of NO ₂ at
		313 nm measured. $[NO_2] = 2 \times 10^{17}$
		molecule/cm ³ . Data for C ₂ H ₄ , C ₃ H ₈ ,
		and $i-C_4H_{10}$ as third bodies not quoted
		here; values are suspect because of
		reactivity with atomic oxygen.
		BLACET. HALL, LEIGHTON 1962 (f)

Photolysis of NO_2 in 1 atm. air with 1.18 AIR black-light fluorescent lamps. [NO2] $\sim 3 \times 10^{13}$ molecule/cm³. NO produced monitored by its chemiluminescent reaction with 0_3 . Value of k_1/k_2 calculated from expression: $-d \ln [NO_2]/dt = 2I_a/$ $[1 + k_1 [M]/k_2]$ Absorbed light intensity, I_a, determined separately from initial rate of photolysis of NO2 in 02. STEDMAN, NIKI 1972 (g) Photolysis of NO_2 (10¹⁵ molecules/cm³) 0.89 N_2 in N_2 (1 atm) with black light in 67 liter quartz tube. $[N0_2]$ and $[N_20_5]$ measured by i.r. absorption. Value of k1/k2 derived from d[N02]/dt; values

from d[N205]/dt.

HARKER, JOHNSTON 1973 (h)

agreeing within 10% derived separately

b. Flash photolysis studies of reaction (1):

$(k_1 [M] + k_2)/k_3$	P(M)/torr	System		
1.8	100	O atoms from flash photolysis of		
4.2 700		NO_2 ($\lambda > 300$ nm). M = Ar. [NO_2] ~ 10 ¹⁵ - 10 ¹⁶ molecule/cm ³ . Total		
		reaction of O atoms with NO_2 by		
(T = 298 K)		both channels ((1) + (2)) competes		
		with reaction with CS ₂ (3). [CS]		
$(k_3: 0 + CS_2 \rightarrow CS)$	+ S0)	monitored by absorption at 257.6 nm.		
		Data also given for T = 410 K.		
		SMITH 1968 (i)		

$$\frac{k_{1} [M] + k_{2}}{(cm^{3} molecule^{-1}s^{-1})} \frac{P(M)}{(torr)}$$

$$10.6 \times 10^{-12} 200$$

$$11.7 \times 10^{-12} 400$$

. .

O atoms from flash photolysis of 0_2 . Resonance fluorescence used to monitor atom decay by overall reaction with $N0_2$ in both channels ((1) + (2)).

$$k_2 = 9.1 \times 10^{-12}$$
 M = Ar. $[NO_2] \sim 10^{14}$ molecule/cm³
(T = 298 K) Data also given for T = 263 K and 230 K.
HUIE 1972 (j)

4. Preferred Value

$$\frac{k_1}{k_2}$$
 (M = N₂) = 1.1 ± 0.4 × 10⁻²⁰ cm³/molecule at 298 K

 $k_1 = 1.0 \pm 0.5 \times 10^{-31} \text{ cm}^6 \text{ molecule}^{-2} \text{s}^{-1}$ based on $k_2 = 9.1 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1}$ (value recommended in separate data sheet on 0 + N0₂ → N0 + 0₂).

5. Remarks

In the experiments involving the ultraviolet photolysis of nitrogen dioxide, the relative rate constant for reaction (1) was derived from the experimental quantum yields using the mechanism for the photolysis of NO₂:

$$NO_{2} + hv \rightarrow NO + O (^{3}P)$$

$$0 + NO_{2} \rightarrow NO + O_{2}$$

$$0 + NO_{2} + M \rightarrow NO_{3} + M$$

$$0 + NO + M \rightarrow NO_{2} + M$$

$$NO_{3} + NO \rightarrow 2NO_{2}$$

$$0 + O_{2} + M \rightarrow O_{3} + M$$

$$O_{3} + NO \rightarrow NO_{2} + O_{2}$$

$$NO_{3} + NO_{2} \rightarrow N_{2}O_{5}$$

and assuming steady state values for 0, NO_3 , and O_3 . Depending on the species being monitored and on the experimental conditions, various expressions leading to the ratio k_1/k_2 may be derived.

 $NO_2 + O + M = 6$

The recommended value for k_1/k_2 is the simple average of the values (for M = N₂) from references c, d, e, g, and h. These values all lie within about 20% (one standard deviation) of the average value. The only value which deviates significantly is from reference (b). The data from which this value was obtained, however, show considerable scatter, and the derived value of the ratio is quite sensitive to small changes in the intercept of the plot, so that this value is rejected.

Comments on measurements

<u>Ref (i).</u> In this work, consistent results were unobtainable without the addition of NO, presumably to remove NO₃. The derived value of k_1/k_2 at 298 K given there is a factor of eight higher than that recommended here. It is possible to derive the relationship: $k_1/k_3 = 1.2 \times 10^{-19} \text{ cm}^3$ /molecule from the data at [M] = 100 and 700 torr. With the absolute value of k_3 measured in the same study $(k_3 = 4.0 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1})$, one can derive a value of $k_1 = 5 \times 10^{-31} \text{ cm}^6 \text{ molecule}^{-2} \text{s}^{-1}$, almost a factor of five higher than the value of k_1 recommended here. In view of the complications in this system, these results are rejected. <u>Ref (j).</u> The only direct measurement of k_1 reported is from reference (j). Although there were no apparent complications in the system, the procedure involved measuring a small (20-30%) change, due to the contribution of reaction (1) in a large second order rate constant. At room temperature, the reported value of k_1 was about a factor of two higher than that recommended here. The temperature dependence of the reaction derived from these data is about T^{-5} , which is far steeper than would be expected (~ $T^{-3/2}$) based on RRKM calculations on other atom-molecule addition reactions (k). These calculations also indicate that the observed pressure effect reported in (j) at 230 K is too sharp.

References

- D. D. Wagman, W. H. Evans, V. B. Parker, I. Halow, S. M.
 Bailey, and R. H. Schumn, N. B. S. Tech. Note 270-3. Data on NO₃ from JANAF Thermochemical Tables (1965).
- (b) H. W. Ford and N. Endow, J. Chem. Phys. 27, 1156 (1957).
- (c) H. W. Ford and S. Jaffe, J. Chem. Phys. <u>38</u>, 2935 (1963).
- (d) E. A. Schuck, E. R. Stephens, and R. R. Schrock, J. Air Pollution Control Assoc. 16,695 (1966).
- (e) J. Troe, Ber. Bun. Phys. Chem. 73, 906 (1969).
- (f) F. E. Blacet, T. C. Hall, and P. A. Leighton, J. Amer. Chem. Soc. 84, 4011 (1962).

- (g) D. H. Stedman and H. Niki, "Kinetics and Mechanism for the Photolysis of NO₂ in Air", typescript (1972).
- (h) A. Harker and H. S. Johnston, J. Phys. Chem. 77, 1153 (1973).
- (i) I. W. M. Smith, Trans. Faraday Soc. <u>64</u>, 378 (1968).
- (j) R. E. Huie, Ph.D. Thesis, University of Maryland (1972).
- (k) W. Tsang, Private Communication (1973).

R. E. Huie J. T. Herron March, 1973

 $N_20_5 + hv$

N_0_ P	HOTOCHEMISTRY
--------	---------------

	$\triangle H$	0	
Reaction	kJ/mol	(Kcal/mol)	λ threshold (nm)
$N_2^{0_5} \rightarrow N_2^{0_4} + 0 (^{3}P)$	242	57.8	495
$N_2^{0}_{5} \rightarrow N_2^{0}_{4_1} + 0 (^{1}D)$	432	103.2	276
$N_2O_5 \rightarrow N_2O_3 + O_2$	66	15.9	1800
$N_2^{0_5} \rightarrow N0_3 + N0_2$	90	21.4	1300

 $\triangle H_0^\circ$ calculated using $\triangle H_f^\circ$ values in ref [a] (except for $\triangle H_f^\circ$ (NO₃) which is from JANAF tables but consistent with ref [a]) and excitation energy of O(¹D) from ref [b].

- 2. Data:
- 2a. Absorption Spectrum

Wavelength Range	Observation
ultraviolet	continuous absorption beginning at about 305 nm extending into the Schumann region UREY, DAWSEY, RICE, 1929 [c]
450-250 nm	continuous absorption 450-320nm transparent 320-280 nm. continuous absorption λ <280 nm. NOTE: NO2 always present
	DUTTA, SEN GUPTA, 1933 [d]

2b. Absorption Coefficient

285-380 nm in units of cm⁻¹ (atm at 273 K)⁻¹ base 10 (From E. J. Jones and O. R. Wulf, J. Chem. Phys. <u>5</u>, 873 (1937), reprinted with consent of authors)

2c. Quantum yields

 $\Phi(-N_2O_5) =$ net quantum yield for disappearance of N_2O_5

λ (nm)	$\Phi (-N_2 O_5)$	^P N2 ⁰ 5
280	0.6	51 torr, 0°C
280	0.6	eq. v.p., 10°C
265	0.6	51 torr, 0°C
	HOLMES, DANIELS, 193	34 [e]
280	0.62 MURPHY, 1969 [g]	14-51 torr, 0.2°C
Effect of	added inert gas on va	lue of $\Phi(-N_2O_5)$

M	P _M (torr)	$\Phi (-N_2 0_5)$	P _{N2} 05 (torr)
SF ₆	110-620	0.50-0.32	25-30
c0 ₂	110-600	0.59-0.36	35-40 λ=280nm
^N 2	100-600	0.62-0.55	18-25 t=0.2°C
02	100-600	0.53-0.29	≈ 30

MURPHY, 1969 [g]

Because $\Phi(-N_2O_5) < 1$ and decreases with increasing pressure of inert gas the photoabsorption act is believed to form an excited molecular state that can either dissociate or be quenched upon collision. The initial photodissociation products are unknown. The relationship between the overall Φ and the effective ϕ for photodissociation depends upon the extent of reaction of products of photolysis with N_2O_5 . See section 4 for one mechanism.

3. Recommended values.

3a. Absorption coefficients.

380-285 nm. Values shown in Fig. 1 (from [f])

280 and 265 nm. Values in section 2b (derived from [e])

To convert values given in 2b into cross sections in cm^2 molecule⁻¹ (base e) multiply by 8.57 x 10^{-20}

3b. Quantum yields

According to mechanism of N_2O_5 photolysis given in section 4, the primary quantum yield for production of O atoms, $\phi_0 = 0.5 \times \frac{1}{2} (-N_2O_5)$

From the data of ref. [g]:

$$\phi_0 = (3.12 + 0.00084 P_N_2 + 0.0058 P_{02})^{-1}$$

where P_N_2 and P_{02} are expressed in torr.

4. Remarks

The mechanism proposed for the photochemistry of pure $N_2^{0}0_5$ is:

$$\begin{split} & N_2 O_5 (S_0) + hv \rightarrow N_2 O_5^* (S_1) \\ & N_2 O_5^* (S_1) \rightarrow N_2 O_5^* (T_1) \\ & N_2 O_5^* (T_1) \rightarrow N_2 O_4 + 0 \\ & N_2 O_5^* (T_1) + M \rightarrow N_2 O_5 + M \\ & 0 + N_2 O_5 \rightarrow N_2 O_4 + O_2 (or 2NO_2 + O_2). \end{split}$$

By this mechanism, the limiting low pressure primary quantum yield for the production of 0 atoms is one-half the value of Φ (-N₂0₅) obtained in the absence of inert gas, i.e. 0.5 x 0.62 = 0.31.

References

[a]	D. D. Wagman et al, NBS Technical Note 270-3 (Jan. 1968).
[b]	C. E. Moore, NBS Circular 467, vol. 1 (1949).
[c]	H. C. Urey, L. H. Dawsey, and F. O. Rice J. Am. Chem. Soc. 51,
	3190 (1929).
[d]	A. K. Dutta and P. K. Sen Gupta Proc. Roy. Soc. (London) A139,
	397 (1933).
[e]	H. Holmes and F. Daniels J. Am. Chem. Soc. <u>56</u> , 630 (1934).
[f]	E. J. Jones and O. R. Wulf J. Chem. Phys. <u>5</u> , 873 (1937).
[g]	R. F. Murphy, "The Ultraviolet Photolysis of the Nitrogen Oxides,"
	Dissertation, U. C. L. A. (1969).

R. Hampson Nov. 1972

Chemical Kinetics Data Survey

Photolysis of 02

1.	Primary	Photochemical	Transitions

	$\triangle \mathbb{H}_0^o$		
Reaction	kJ/mo1	(kcal/mol)	λ threshold (nm)
$0_2 \rightarrow 0(^{3}P) + 0(^{3}P)$	493.57	(117.97)	242.4
$\rightarrow 0(^{3}P) + 0(^{1}D)$	683.39	(163.33)	175.0
$\rightarrow 0(^{3}P) + 0(^{1}S)$	897.81	(214.58)	133.2

 $(\triangle H^o_0$ values calculated from $\triangle H^o_f$ (0) in (a) and energies of excitation of O($^1D)$ and O($^1S)$ in (b)).

2. Absorption Coefficient Data

Wavelength range	System
< 300 nm	Critical review of u.v. absorption
	cross section data.
	HUDSON, 1971 (c)
175-205 nm	Computed absorption cross section
	at high resolution of the Schumann-
	Runge bands from (0,0) band at
	205 nm to dissociation limit at
	175 nm.
	ACKERMAN, BIAUME, KOCKARTS, 1970 (d)

178-205 nm	High-resolution study of
	structure of Schumann-Runge
	bands from $(0,0)$ to $(13,0)$ band.
	ACKERMAN, BIAUME, 1970 (e)
116-244 nm	Table of adopted values of
	absorption cross section averaged
	over 500 cm ⁻¹ intervals.
	ACKERMAN, 1971 (f)
181-235 nm	Absorption cross section of the
	0_2 continuum and its pressure
	dependence measured.
	OGAWA, 1971 (g)
243-264 nm	Absorption measured for eight
	bands of the Herzberg I
	$(A^{3}\Sigma_{u}^{+} - X^{3}\Sigma_{g}^{-})$ system.
	HASSON, NICHOLLS, 1971 (h1)
192-243 nm	Absorption cross section of weak
	photodissociation continuum
	adjoining the Herzberg I system
	measured over 109 ft. path length
	HASSON, NICHOLLS 1971 (h2).

175-203 nm Band oscillator strengths and predissociation line widths of Schumann-Runge band system derived. Continuum cross section calculated from 176-210 nm for T = 150, 200, 250, and 300 K. HUDSON, MAHLE 1972 (i)

3. Photochemical Data

A recent review and compilation of spectroscopic data (including the u.v. spectrum) of 0_2 is given in ref (j).

a) $\lambda > 175 \text{ nm}$

al. Spectroscopy (c,k, l,m)

λ range	Transition	Name
185-260 nm	$A^{3}\Sigma_{u}^{+} \rightarrow X^{3}\Sigma_{g}^{-}$	Herzberg
		Continuum
175-200 nm	$B^{3}\Sigma_{u}^{-} \rightarrow X^{3}\Sigma_{g}^{-}$	Schumann-Runge
		Band System

The $B^{3}\Sigma_{u}^{-}$ predissociates by crossing at about the v' = 2 level to the ${}^{3}\Pi_{u}$ state.

a2. Photochemistry

At $\lambda = 184.9 \text{ nm } \emptyset(0) = 2 \text{ based on } \Phi(0_3) = 2.0 \text{ for } P(0_2) > 100 \text{ torr}$ (ref n) ($\Phi(0_3)$ measured relative to $\Phi(N_2)$ from N_20 which was taken to be 1.44). At $P(0_2) < 100 \text{ torr } \Phi(0_3)$ decreases presumably due to 0 atom wall losses. Such a decrease is apparently an experimental artifact and not indicative of primary photochemical processes. The same study at 193.1 nm reports $\Phi(0_3) = 0.3$ independent of $P(0_2)$ from 300 to 1300 torr. The explanation requires direct excitation and subsequent quenching of a rotational line of the S-R continuum. This is contrary to spectroscopic evidence (c) which indicates that all of the rotational lines near 193 nm are strongly predissociated.

b) $175 > \lambda > 133.2$ nm

b1. Spectroscopy (c)

Absorption consists of the Schumann-Runge $(B \rightarrow X)$ dissociation continuum $(0({}^{3}P) + 0({}^{1}D))$ with two superimposed continua bands centered at 135.2 and 133.2 nm. The former has been suggested to correspond to the spin-forbidden dissociation of 0_{2} into two $0({}^{1}D)$ atoms. The low wavelength boundary of this region corresponds to the thermochemical onset for the dissociation into $0({}^{3}P) + 0({}^{1}S)$.

b2. Photochemistry

Emission from $O({}^{1}D)$ at 630 nm $(O({}^{1}D) \rightarrow O({}^{3}P))$ has been observed by Noxon (o) in the 147 nm photolysis of O_{2} . Emission from O_{2} $(b{}^{1}\Sigma_{g}^{+})$ at 760 nm $(b{}^{1}\Sigma_{g}^{+} \rightarrow X{}^{3}\Sigma_{g}^{-})$ was also observed. The O_{2} $(b{}^{1}\Sigma_{g}^{+})$ is presumed to be produced in the reaction:

$$0(^{1}D) + 0_{2}(X^{3}\Sigma_{g}^{-}) \rightarrow 0(^{3}P) + 0_{2}(b^{1}\Sigma_{g}^{+})$$

on the basis of the intensity of the 760 nm emission and assuming that $0_2(b^1\Sigma_g^+)$ is produced in the above reaction with 100% efficiency, an "order of magnitude" calculation indicated that $0({}^1D)$ and $0({}^3P)$ are formed in equal amounts in the primary photolysis of 0_2 at 147 nm. The 147 nm photolysis of 0_2 in the presence of H_2 and NO was studied by Young (p). Assuming that $0({}^1D)$ reacts with but is not quenched to $0({}^3P)$ by H_2 , and that $0({}^3P)$ reacts with NO to form $N0_2^*$ which fluoresces, he found that the $0({}^1D)$ and $0({}^3P)$ productions are equal. Other investigators (q, r) have monitored 0_3 formation to deduce thereby total 0 atom quantum yields of 2 but were unable to distinguish between $0({}^3P)$ and $0({}^1D)$. The fall-off in $\frac{5}{2}(0_3)$ at low pressure was also observed in these systems and has been inadequately explained on the basis of $0({}^1D)$ reactions.
c) $133.2 > \lambda > 100 \text{ nm}$

cl. Spectroscopy (c)

A continuum in the Schumann-Runge system centered at 133.2 nm is presumedly due to the onset of the dissociation of 0_2 into $0({}^3P)$ and $0({}^1S)$. The region between 102.7 nm, corresponding to the ionization potential of 0_2 , and 130 nm consists of a large number of strong absorption bands. A narrow window at Lyman- α , 121.56 nm has been observed repeatedly.

c2. Photochemistry

Emission from $0({}^{1}S)$ at 557.7 nm $(0({}^{1}S) \rightarrow 0({}^{1}D))$ has been observed in the flash photolysis of 0_{2} between 134 and 105 nm (s). This emission is enhanced in the presence of Ar, Kr, or Xe. The quantum yield for production of $0({}^{1}S)$ has not been determined.

4. Preferred values

a. Absorption Coefficients

243-195 nm	Use data of HASSON and NICHOLLS (h2).
210-176 nm	a) Continuum cross sections: use
	data Table 4 of HUDSON & MAHLE (i).
	b) Schumann-Runge bands: use data
	in ACKERMAN, BTAUME, AND KOCKARTS (d).

data is that given by ACKERMAN in Table 1 of ref (f). These are average adopted values not significantly different from values recommended above. They are given here in Table 1.

b. Quantum yields

b1. $0_2 + h\nu \rightarrow 0({}^{3}P) + 0({}^{3}P)$ $200 > \lambda > 175 \text{ nm} \qquad \emptyset = 1$ b2. $0_2 + h\nu \rightarrow 0({}^{3}P) + 0({}^{1}D)$ $175 > \lambda > 133 \text{ nm} \qquad \emptyset = 1$ b3. $0_2 + h\nu \rightarrow 0 + 0$ $200 > \lambda > 106 \text{ nm} \qquad \emptyset = 1$

5. Remarks

No photolytic system studied to date has used wavelengths corresponding to thresholds indicated in Section 1. Quantum yields for production of oxygen atoms in specific electronic states are needed.

TABLE 1.Averaged absorption cross section
values (from Ackerman, reference f)

∆×(Å)	Δν (cm ⁻¹)	$\sigma(0_2) (cm^2)$
Lya 1.215,67	82.259	1.00×10^{-20}
1.170-1.163	85.500-86.000	2.00×10^{-20}
1.176-1.170	85.000-85.500	1.25×10^{-18}
1.183-1.176	84.500-85.000	2.55 x 10 ⁻¹⁹
1.190-1.183	84.000-84.500	3.00×10^{-20}
1.198-1.190	83.500-84.000	3.75×10^{-19}
1.205-1.198	83.000-83.500	4.45×10^{-18}
1.212-1.205	82.500-83.000	8.35
1.220-1.212	82.000-82.500	6.00×10^{-19}
1.227-1.220	81.500-82.000	2.35
1.235-1.227	81.000-81.500	4.50
1.242-1.235	80.500-81.000	3.35
1.250-1.242	80.000-80.500	1.75×10^{-17}
1.258-1.250	79.500-80.000	8.95×10^{-19}
1.266-1.258	79.000-79.500	4.30
1.274-1.266	78.500-79.000	1.10
1.282-1.274	78.000-78.500	2.05
1.290-1.282	77.500-78.000	4.43
1.299-1.290	77.000-77.500	5.5 5
1.307-1.299	76.500-77.000	4.20
1.316-1.307	76.000-76.500	6.85
1.324-1.316	75.500-76.000	1.45 x 10 ⁻¹⁸
1.333-1.324	75.000-75.500	2.25
1.342-1.333	74.500-75.000	2.30
1.351-1.342	74.000-74.500	4.55
1.360-1.351	73.500-74.000	7.23
1.370-1.360	73.000-73.500	9.50
1.379-1.370	72.500-73.000	1.23×10^{-17}
1.389-1.379	72.000-72.500	1.32
1.408-1.389	71.000-72.000	1.36
1.428-1.408	70.000-71.000	1.40
1.449-1.428	69.000-70.000	1.48

TABLE 1 (Continued)

Δλ (Ά)	Δυ (cm ⁻¹)	$\sigma(0_2)(cm^2)$
1.470-1.449	68.000-69.000	1.41 × 10 ⁻¹⁷
1.492-1.470	67.000-68.000	1.29
1.515-1.492	66.000-67.000	1.15
1.538-1.515	65.000-66.000	9.91×10^{-18}
1.562-1.538	64.000-65.000	8.24
1.587-1.562	63.000-64.000	6.58
1.613-1.587	62.000-63.000	4.97
1.639-1.613	61.000-62.000	3.45
1.667-1.639	60.000-61.000	2.08
1.695-1.667	59.000-60.000	1.23
1.724-1.695	58.000-59.000	7.22×10^{-19}
1.739-1.724	57.500~58.000	4.58
1,754-1,739	67.000-57 500	2.74
2.020-).754	49.509-57.000	41
2.041-2.020	49.000-49.500	1.14 x 10 ⁻²³
2.062-2.041	48.500-49.000	1.05
2.083-2.062	48.000-48.500	1.00
2.105-2.083	47.500-48.000	9.55 к 10 ⁻²⁴
2.128-2.105	47.000-47.500	8.93
2.150-2.128	46.500-47.000	8.28
2.174-2.150	46.000-46.500	7.60
2.198-2.174	45.500-46.000	6.92
2.222-2.198	45.000-45.500	6.28
2.247-2.222	44.500-45.000	5.65
2.273-2.247	44.000-64.500	5.03
2.299-2.273	43.500-44.000	4.40
2.326-2.299	43.000-43.500	3.76
2.353-2.326	42.500-43.000	3.09
2.381-2.353	42.000-42.500	2.44
2.410-2.381	41,500-42,000	1.75
2.439-2.410	41.000-41.500	6.74×10^{-25}

 $0_2 + h_V$ 10

1

References

a.	D. D. Wagman et al, NBS Technical Note 270-3 (Jan. 1968).
b.	C. E. Moore, NBS Circular 467, vol. 1 (1949).
с.	R. D. Hudson, Rev. Geophys. Space Phys. 9, 305 (1971).
d.	M. Ackerman, F. Biaume, and G. Kockarts, Planet. Space Sci. <u>18</u> , 1639 (1970).
e,	M. Ackerman and F. Biaume, J. Mol. Spectrosc. 35, 73 (1970).
f.	M. Ackerman, "Ultraviolet Solar Radiation Related to Mesospheric
	Processes," Aeronomica Acta No. 77 (1970). Available through
	National Technical Information Service, N71-13825. Also published
	in "Mesospheric Models and Related Experiments," G. Fiocco, ed.,
	D. Reidel Publ. Co. (1971).
g.	M. Ogawa, J. Chem. Phys. <u>54</u> , 2550 (1971).
h.	V. Hasson and R. W. Nicholls, J. Phys. B: Atom. Molec. Phys.
	4, 1778 (1971); ibid. 4, 1789 (1971).
i.	R. D. Hudson and S. H. Mahle, J. Geophys. Res. 77, 2902 (1972).
j.	P. Krupenie, J. Phys. Chem. Ref. Data <u>1</u> , 423 (1972).
k.	P. K. Carroll, Astrophys. J. <u>129</u> , 794 (1959).
1.	D. H. Volman, Advances in Photochemistry <u>1</u> , 43 (1963).
m.	J. G. Calvert and J. N. Pitts, Photochemistry, p. 205
	(John Wiley & Sons Inc. 1966).
n.	N. Washida, Y. Mori, and I. Tanaka J. Chem. Phys. 54, 1119 (1971).
ο.	J. F. Noxon, J. Chem. Phys. <u>52</u> , 1852 (1970); ibid <u>57</u> , 1033 (1972).

- p. R. A. Young, G. Black, and T. G. Slanger, J. Chem. Phys. <u>49</u>, 4758 (1968).
- q. J. O. Sullivan and P. Warneck, J. Chem. Phys. 46, 953 (1967).
- r. M. Clerc, A. Reiffsteck, and B. Lesigne, J. Chem. Phys. <u>50</u>, 3721 (1969).
- s. S. V. Filseth and K. H. Welge, J. Chem. Phys. <u>51</u>, 839 (1969).

A. H. Laufer May 1973

Appendix A

Reactions of Potential Interest for the Chemistry of the Stratosphere

(Revised May 1973)

This list of reactions is based on several sources. It includes those used in models by P. J. Crutzen, J. Geophys. Res. <u>76</u>, 7311 (1971), Univ. of Stockholm Meteorology Report AP-6 (1971); by H. S. Johnston, Science <u>173</u>, 517 (1971), UCRL Report 20568 (1971), MS. "Formation and Stability of Nitric Oxide in the Stratosphere" (July 1971), and mentioned in discussions; those considered important by J. London and H. U. Dutsch, letter from J. L. to D. G., Oct. 19, 1971; and other reactions considered in studies at NBS.

The reactions are arranged in alphabetical order by first reactant. Notes on entries in the Table:

1. <u>Importance in Stratosphere</u>. An asterisk in this column indicates that a student of the atmospheric modelling problems considers this reaction to be important. Absence of a mark does not imply the opposite.

2. <u>Status of Data</u>. An asterisk in this column indicates that an evaluator or modeller considers that better measurements are needed. Other remarks indicate the reliability of the data as assessed by an evaluator. Absence of a mark or comment has no significance.

3. <u>Evaluation</u>. References to recent evaluations are given here. The listing may not be complete. The notations are identified below.

a. R. F. Hampson et al, "Survey of Photochemical and Rate Data for Twenty-Eight Reactions of Interest in Atmospheric Chemistry", to appear in J. Phys. Chem. Ref. Data <u>2</u>, No. 2 (Summer 1973). (Updated versions of evaluations in NBS Reports 10692 and 10828).

b. R. F. Hampson et al, NBSIR 73-207, May 1973, (this report).

c. D. Garvin, editor, NBSIR 73-203 (May 1973).

d. D. Garvin, editor, NBSIR 73-206 (May 1973).

e. D.L. Baulch, D. D. Drysdale, D. G. Horne, A. C. Lloyd,

"Evaluated Kinetic Data for High Temperature Reactions, Volume 1, Homogeneous gas phase reactions of the H_2^{-0} system", Butterworth and Co., London (1972).

- f. H. S. Johnston, Nat. Stand. Ref. Data Ser. NBS 20 (1968).
- g. A. C. Lloyd, NBS Report 10 447 (July 1971).
- h. K. Schofield, J. Phys. Chem. Ref. Data 2, 25 (1973).
- i. W. E. Wilson, Jr., J. Phys. Chem. Ref. Data 1, 535 (1972).

Reaction	Import. in Strat.	Status of Data ∆ log k	Evaluation
$CH_4 + O(^1D) \rightarrow CH_3 + HO$	*	± 0.1	d
$CO + HO \rightarrow CO_2 + H$		± 0.1	с
$H + HNO \rightarrow H_2 + NO$		upper limit only	a, d
$H + HNO_2 \rightarrow Products$		no data	a
$H + HNO_3 \rightarrow Products$		upper limit only	a
$H + H_2O_2 \rightarrow H_2 + HO_2$		±0.3	e, d
$H + NO_2 \rightarrow HO + NO$		± 0.1	a, d
$H + O_2 + M \rightarrow HO_2 + M$	*	±0.07	С
$H + O_3 \rightarrow HO + O_2$	*	±0.1	a
HNO + HO \rightarrow H ₂ O + NO		±0.7(T>1600K)	a, d
$HNO_2 + HO \rightarrow H_2O + NO_2$		no data	а
$HNO_2 + 0 \rightarrow HO + NO_2$		no data	a
$HNO_2 + h\nu \rightarrow Products$		no data	b
$HNO_3 + HO \rightarrow H_2O + NO_3$	*	±0.5	а
$HNO_3 + O \rightarrow HO + NO_3$	*	upper limit only	а
$HNO_3 + h\nu \rightarrow HO + NO_2$	*	σ data only	а
HO + HO \rightarrow H ₂ O + O	*	± 0.2	е
$HO + HO_2 \rightarrow H_2O + O_2$	*	±1	g,e,c
$HO + H_2O_2 \rightarrow H_2O + HO_2$	*	±0.1	b, e

Reaction	Import. in Strat.	Status of Data ∆ log k	Evaluation
HO + NO + M \rightarrow HNO ₂ + M	*	±0.5	Ь
HO + NO ₂ + M \rightarrow HNO ₃ + M	*	±0.3	Ъ
$HO + O \rightarrow H + O_2$	*	±0.3	e,i
$HO + O_3 \rightarrow HO_2 + O_2$	*	±0.3	а
$\mathrm{HO}_{2} + \mathrm{HO}_{2} \rightarrow \mathrm{H}_{2}\mathrm{O}_{2} + \mathrm{O}_{2}$	*	±0.3	a,e
$HO_2 + NO \rightarrow HO + NO_2$	*	±0.5	с
$HO_2 + NO + M \rightarrow HNO_3 + M$	*		
$HO_2 + O \rightarrow HO + O_2$	*	±1	g
$HO_2 + O_3 \rightarrow HO + 2O_2$	*	±0.3	с
$HO_2 + hv \rightarrow HO + O$	*	σ ± 30% some ϕ data	d
$H_2^{0} + NO + NO_2 \rightarrow 2HNO_2$		upper limit only	а
$H_2O + N_2O_5 \rightarrow 2HNO_3$	*	upper limit only	а
$H_2O + O(^1D) \rightarrow 2HO$	*	±0.1	d,a
$H_2O + h\nu \rightarrow HO + O$	*		
$H_2O_2 + NO \rightarrow HO + HNO_2$		upper limit only	а
$H_2O_2 + h\nu \rightarrow 2HO$	*	σ, φ	а
$NO + NO + O_2 \rightarrow 2NO_2$	*	± 0.2	с
$NO + NO_2 \rightarrow N_2O_3$			
$NO + NO_3 \rightarrow 2NO_2$	*	±0.7	d

	Import.		
Reaction	in Strat.	Status of Data A log k	Evaluation
$NO + O + M \rightarrow NO_2 + M$	*	±0.2	b,d
$NO + O_3 \rightarrow NO_2 + O_2$	*	±0.11	a,d
$NO + hv \rightarrow N + O$		fragmentary data	b
$NO + M \rightarrow N + O + M$		questionable data	d
$NO_2 + NO_2 + M \rightarrow N_2O_4 + M$	*	±0.2	h
$NO_2 + NO_3 \rightarrow NO + NO_2 + O_2$		±0.4	d
$NO_2 + NO_3 \rightarrow N_2O_5^*$	*		с
$NO_2 + O \rightarrow NO + O_2$	*	±0.1	b
$NO_2 + O + M \rightarrow NO_3 + M$	*	±0.3	b,d
$NO_2 + O_3 \rightarrow NO_3 + O_2$	*	±0.2(T=298 K)	a,d
$NO_2 + hv \rightarrow NO + O$	*		Ь
$NO_3 + NO_3 \rightarrow 2NO_2 + O_2$	*	±0.5	d
$NO_3 + hv \rightarrow NO_2 + 0$	*	± 1	С
$NO_3^* \rightarrow NO_2 + O$			
$N_2 0 + 0(^1 D) \rightarrow N_2 + 0_2$	*	±0.1	d,a
\rightarrow NO + NO \int	*		
$N_2 0 + hv \rightarrow N_2 + 0(^1D)$	*		
$N_2O_5 + 0 \rightarrow 2NO_2 + 0$	*	upper limit only	
$N_2O_5 + M \rightarrow NO_2 + NO_3 + M$		± 0.3	d,c

Reaction	Import. in Strat.	Status of Data A log k	Evaluation
$N_2O_5 + hv \rightarrow ?$	*	fragmentary data	Ь
$N_2O_5^* \rightarrow NO_2 + NO_3$	*		
N ₂ O ₅ [*] + M ≠ N ₂ O ₅ + M	*		
$0 + 0 + M \rightarrow 0_2 + M$	*	±0.3	f
$O + O_2 + M \rightarrow O_3 + M$	*	±0.07	с
$0 + 0_3 \rightarrow 20_2$	*	±0.1	a,c
$O(^{1}D) + O_{2} \rightarrow O + O_{2} (^{1}\Sigma_{g}^{+})$		±0.1	d
$\left. \begin{array}{c} O(^{1}D) + O_{3} \rightarrow 20 + O_{2} \\ O(^{1}D) + O_{3} \rightarrow 2O_{2} \end{array} \right\}$		±0.3	d
$O(^{1}D) + M \rightarrow O + M$	*	±0.1 (except M=0 ₃)	d
$0_2 + h\nu \rightarrow 0 + 0$	*	σ, φ	b
$0_2 + M \rightarrow 0 + 0 + M$		±0.3	f
$0_2(1\Delta) + 0_3 \rightarrow 0 + 20_2$		±0.05	
$O_2(^{1}\Delta) + M \rightarrow O_2 + M$		±0.1 (M = 0 ₂) upper limit only (M	a =N ₂)
$0_2({}^{1}\Sigma_{g}^{+}) + 0_{3} \rightarrow 0 + 20_{2} + M$			
$O_2(^{1}\Sigma_g^{+}) + M \rightarrow O_2^{+} M$		±0.1	а
$0_3 + h\nu \rightarrow 0 + 0_2$	*	σ, φ	а

Appendix Conversion Tables

Equivalent Second Order Rate Constants Equivalent Third Order Rate Constants Conversion Factors for Units of Molecular Energy Units of Optical Absorption Coefficients (Discussion) Conversion Factors for Units of Optical Absorption Coefficients

南

CONSTANTS
RATE
ORDER
SECOND
I VALENT
EQUI

AB	cm mol ⁻¹ s ⁻¹	dm ³ mo1 ⁻¹ s ⁻¹	m ³ mol ⁻¹ s ⁻¹	cm ³ molecule ⁻¹ s ⁻¹	(тт Hg)-1 ^{s-1}	atm -1 s -1	ppm ⁻¹ min ⁻¹	m ² kN ⁻¹ s ⁻¹
1 cm ³ mol ⁻¹ s ⁻¹ =	1	10-3	10 ⁻⁶	1.66 x 10 ⁻²⁴	1.604 × 10 ⁻⁵ T ⁻ 1	1.219 x 10 ⁻² T ⁻¹	2.453 x 10 ⁻⁹	1.203 x 10 ⁻⁴ T ⁻¹
1 dm ³ mo1 ⁻¹ s ⁻¹ =	10 ³	1	10-3	1.66 x 10 ⁻²¹	1.604 x 10 ⁻² T ⁻¹	12.19 T ⁻¹	2.453 x 10 ⁻⁶	1.203 x 10 ⁻¹ T ⁻¹
$1 m^{3}mol^{-1}s^{-1} =$	10 ⁶	10 ³	1	1.66 x 10 ⁻¹⁸	16.04 T ⁻¹	1.219 × 10 ⁴ T ⁻¹	2.453 × 10 ⁻³	120.3 T ⁻¹
1 cm ³ molecule ⁻¹ s ⁻¹ =	6.023 x 10 ²³	6.023 x 10 ²⁰	6.023 x 10 ¹⁷	1	9.658 x 10 ¹⁸ T ⁻ 1	7.34 x 10^{21} T ⁻¹	1.478 x 10 ¹⁵	7.244 .x 10 ¹⁹ T-1
1 (mm Hg) $^{-1}s^{-1} = \cdot$	6.236 x 10 ⁴ T	62.36 T	6.236 x 10 ⁻² T	1.035 x 10 ⁻¹⁹ T	1	760	4.56 x 10 ⁻²	7.500
1 atm ⁻¹ s ⁻¹ =	82.06 T	8.206 × 10 ⁻² T	8.206 x 10 ⁻⁵ T	1.362 × 10 ⁻²² T	1.316 x 10 ⁻³	1	6 × 10 ⁻⁵	9.869 x 10 ⁻³
$1 ppm^{-1}min^{-1} = at 298K, 1 atm. total pressure$	4.077 x 10 ⁸	4.077 x 10 ⁵	407.7	6.76 x 10 ⁻¹⁶	21.93	1.667 x 10 ⁴		164.5
$1 m^2 k N^{-1} s^{-1} =$	8314 T	8.314 T	8.314 × 10 ⁻³ T	1.38 x 10 ⁻²⁰ T	0.1333	101.325	6.079 x 10 ⁻³	
To convert a ra and multiply th	te constant fr e old value by	om one set of tt, e.g. to c	units <u>A</u> to a onvert cm ³ mol	new set <u>B</u> find the ecule ⁻¹ s ⁻¹ to m ³ mol	conversion fact -1s-1 multiply	or for the ro by 6.023 x 10	w <u>A</u> under Co 17	lumn <u>B</u>

Table adapted from High Temperature Reaction Rate Data No. 5, The University, Leeds (1970)

EQUIVALENT THIRD ORDER RATE CONSTANTS

A B	cm ⁶ uo1 ⁻² s ⁻¹	dm ⁶ mo1 ⁻² s ⁻¹	m ⁶ mo1 ⁻² ^{s-1}	cm ⁶ molecule ⁻² s ⁻¹	(mm Hg) ⁻² s ⁻¹	atm ⁻² s ⁻¹	ppm-2_min-1	$m^4 kN^{-2} s^{-1}$
1 cm ⁶ mol ⁻² s ⁻¹ =	1	10 ⁻⁶	10 ⁻¹²	2.76 x 10 ⁻⁴⁸	2.57 x 10 ⁻¹⁰ T ⁻²	1.48 x 10 ⁻⁴ T ⁻²	1.003 x 10 ⁻¹⁹	1.447 x 10 ⁻⁸ T ⁻²
1 dm ⁶ mol ⁻² s ⁻¹ =	10 ⁶	1	10-6	2.76 x 10 ⁻⁴²	2.57 x 10 ⁻⁴ T ⁻²	148 T ⁻²	1.003 x 10 ⁻¹³	1.447 x 10 ⁻² T ⁻²
1 m ⁶ mol ⁻² s ⁻¹ =	10 ¹²	10 ⁶	1	2.76 x 10 ⁻³⁶	257 T ⁻²	1.48 × 10 ⁸ T ⁻²	1.003 × 10 ⁻⁷	1.447 x 10 ⁴ T ⁻²
1 cm ⁶ molecule ⁻² s ⁻¹ =	3.628 x 10 ⁴⁷	3.628 × 10 ⁴¹	3.628 × 10 ³⁵	-1	9.328 × 10 ³⁷ T ⁻²	5.388 x 10 ⁴³ T ⁻²	3.64 x 10 ²⁸	5.248 x 10 ³⁹ T ⁻²
1 (mm Hg) ⁻² s ⁻¹ =	3.89 x 10 ⁹ T ²	.3.89 × 10 ³ T ²	3.89 x 10 ⁻³ T ²	1.07 x 10 ⁻³⁸ T ²	1	5.776 x 10 ⁵	3,46° x 10 ⁻⁵	56.25
1 atm ⁻² s ⁻¹ =	6.733 x 10 ³ T ²	6.733 × 10 ⁻³ T ²	6.733 x 10 ⁻⁹ T ²	1.86 x 10 ⁻⁴⁴ T ²	1.73 x 10 ⁻⁶	-1	6 × 10 ⁻¹¹	9.74 x 10 ⁻⁵
<pre>1 ppm⁻²min⁻¹ = at 298K, 1 atm. total pressure</pre>	9.97 x 10 ¹⁸	9.97 x 10 ¹²	9.97 x 10 ⁶	2.75 x 10 ⁻²⁹	2.89 x 10 ⁴	1.667 x 10 ¹⁰	1	1.623 x 10 ⁶
1 m ⁴ kN ⁻² s ⁻¹ =	$6.91 \\ \times 10^{7} r^{2}$	69.1 T ²	6.91 x 10 ⁻⁵ T ²	1.904 x 10^{-40} r ²	0.0178 .	1.027 x 10 ⁴	6.16 x 10 ⁻⁷	

117

۰

See note to Table for Second Order Rate Constants

CONVERSION FACTORS FOR UNITS OF MOLECULAR ENERGY

1 2. 390057 9. 86923 2. 77778 0. 429923 18400 1 41. 2929 1. 162222 1. 798796 18400 1 41. 2929 1. 162222 1. 798796 1013250 2. 42173 1 2. 81458 4. 35619 1013250 2. 42173 1 2. 81458 4. 35619 1013250 2. 42173 1 2. 81458 4. 35619 1013250 2. 42173 1 2. 81458 4. 35619 1013250 2. 42173 1 2. 81458 4. 35619 1013250 2. 42173 1 2. 81458 4. 35619 1013250 2. 42173 1 2. 81076 1. 547, 721 1000 860, 421 3. 555292 1 1, 547, 721 $1. 325600$ 5. 559277 2. 22. 9558 6. 46111 1 $1. 322604$ 5. 14299 $1. 3. 32294$ 5. 14299 $1. 96258$ 2. 85912 118. 0614 $3. 32294$ 5. 14299	J/ mol	cal/mol	cm ³ atnı/mol.	kWh/mol	Btu/lb•mol	cm ⁻ 4 molecule	eV/molecule
0 1 41, 2929 1, 162222 1, 798796 250 2, 42173 1 2, 81458 4, 35619 250 2, 42173 1 2, 81458 4, 35619 $x 10^{-2}$ 3, 55292 1 1, 547, 721 00 860, 421 3, 55292 1 1, 547, 721 00 5, 55927 1 1, 547, 721 1 $x 10^{-1}$ 22, 9558 6, 46111 1 $x 10^{-1}$ 23, 32, 946 5, 142, 99 58 2, 85912 118, 0614 3, 32, 2946		2. 390057 x 10 ⁻¹	9 . 8 6923	2.77778 x 10 ⁻⁷	0.429923	8.35940 x 10 ⁻²	1.036409 x 10 ⁻⁵
250 2.42173 1 2.81458 4.35619 $x \ 10^{-2}$ 1 2.81458 4.35619 000 $860, 421$ 3.55292 1 $1, 547, 721$ 000 $860, 421$ 3.55292 1 $1, 547, 721$ 00 5.55927 22.9558 6.46111 1 00 5.55927 22.9558 6.46111 1 $x \ 10^{-1}$ 2.85912 $118, 0614$ 3.322946 5.14299	01		41.2929	1, 162222 x 10-6	l. 798796	3.49757 x 10 ⁻¹	4.33634 x 10-5
000 $860, 421$ 3.55292 1 $1, 547, 721$ $x 10^7$ $x 10^7$ $x 10^{-7}$ $1, 547, 721$ 00 5.55927 22.9558 6.46111 1 $x 10^{-1}$ 22.9558 6.46111 1 $x 10^{-7}$ 22.9558 6.46111 1 58 2.85912 118.0614 3.32294 5.14299	22	0 2.42173 x 10-2	-1	2.81458 x 10-8	4, 35619 x 10 ⁻²	8.47016 x 10-3	i. 050141 x 10-6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	00 860, 421	3. 55292 × 10 ⁷	1	1, 547, 721	300, 938	37, 3107
58 2.85912 118.0614 3.32294 5.14299 . x 10 ⁻⁶ . x	ŏ	5.55927 x 10 ⁻¹	.22, 9558	6. 46111 x 10 ⁻⁷ ,	Ţ	1.944396 x 10 ⁻¹	2.41069 x 10-5
	2	8 2.85912	118, 0614	3.32294 . x 10 ⁻⁶	5.14299	1	1, 239812 x 10-4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		23060.9	952, 252	2.68019 • $x 10^{-2}$	41482。0	8065, 73	1

118

The underlined numbers represent the fundamental values used in deriving this table. The remaining factors were obtained by applying the relationships:

 $n_{ij} = n_{ik} \cdot n_{kj}$ $n_{ii} = n_{ik} \cdot n_{ki} = 1$

 $R = 8.3143 \pm 0.0012$ J/K mol = 1.98717 cal/K mol = 82.056 cm³ atm/K mol = $0.69502 \text{ cm}^{-1}/\text{K}$ molecule = 3.6170×10^{-5} ev/K molecule Gas constant.

(From NBS Technical Note 270-3)

UNITS OF OPTICAL ABSORPTION COEFFICIENTS

The molar (linear) absorption coefficient ϵ is defined by the Lambert-Beer equation: $\epsilon = (1/\ell c) \log_{10} (I_o/I_t)$ where I_o and I_t are incident and transmitted intensity, ℓ is the path length, and c is the concentration^{*}. The units for ϵ are (concentration⁻¹ length⁻¹).

A variety of equivalent forms of this equation have been used to define reported values of ε . Both logarithmic bases e and 10 have been used. Length has invariably been expressed in cm. Concentration has usually been expressed in (mol/liter). Often a pressure unit has been used instead of a concentration unit, in which case the temperature to which the value of the pressure is referred must be specified. When pressure units are used the absorption coefficient is usually denoted by k (or α) with units of [(pressure (T))⁻¹ (length)⁻¹]. When the pressure unit used is (1 atmosphere at 273 K), the value of k is expressed in any of the numerically equivalent forms: [atm at 273 K⁻¹cm⁻¹]; [(NTP)⁻¹ cm⁻¹]; or cm⁻¹. This last form is equivalent to converting the measured value of ℓ at T and P to its corresponding value ℓ_o at the reference state T_o = 273 K and P_o = 1 atm ($\ell_o = \ell \times (P/P_o) \times T_o/T$)) and using the eqn: k = $(1/\ell_o) \log (T_0/T_t)$.

Alternatively the molecular concentration, n, expressed in (molecules/ cm³) may be used. Then the molecular "cross-section", σ , is defined as $\sigma = (1/n\ell) \log_{e} (I_{0}/I_{t}).$

119

Because of the diversity of units, when using reported values in numerical calculations one must always determine what defining equation was used. When reporting absorption coefficients it is recommended that the units be given explicitly and that the defining equation appear in table and figure captions.

A table of conversion factors is attached.

*Commission on Symbols, Terminology, and Units, I.U.P.A.C., M. L. McGlashan chairman, Pure and Applied Chemistry, <u>21</u>, 1 (1970).

SION FACTORS FOR UNITS OF OPTICAL ABSORPTION COEFFICIENTS	ss section σ) (atm at 273) ⁻¹ cm ⁻¹	scule ⁻¹ base e base e dm ³ mol ⁻¹ cm ⁻¹ base 10 cm ² mol ⁻¹ base 10	4.06 x 10 ⁻²⁰ 1.09 10.6 10.6 10.6	9.35 x 10 ⁻²⁰ 2.51 24.4 2.4 x 10 ⁴	7.11 x 10^{-17} 1.91 x 10^{3} 1.86 x 10^{4} 1.86 x 10^{7}	3.72×10^{-20} I 9.73×10^{3}	8.57 x 10 ⁻²⁰ 2.303 22.4 2.24 x 10 ⁴	3.82×10^{-21} 0.103 1 1 10^3	3.82×10^{-24} 1.03×10^{-4} 10^{-3} $1 = 1$	1 2.69 x 10^{19} 2.62 x 10^{20} 2.62 x 10^{20} 2.62 x 10^{23}
NVERSION FACTORS FOR UNITS OF	(cross section J) (atm at	1 molecule ⁻¹ base e base	4.06 x 10 ⁻²⁰ 1.(9.35 x 10 ⁻²⁰ 2.	7.11 \times 10 ⁻¹⁷ 1.	3.72 × 10 ⁻²⁰ 1	8.57 x 10 ⁻²⁰ 2.	3.82×10^{-21} 0.	3.82 x 10 ⁻²⁴ 1.	1 2.
CC	В	A	1 (atm at 298) ⁻¹ cm ⁻¹ base e =	1 (atm at 298) ⁻¹ cm ⁻¹ base 10=	1 (mm Hg at 298) ⁻¹ cm ⁻¹ base 10=	<pre>1 (atm at 273)⁻¹cm⁻¹ base e=</pre>	<pre>1 (atm at 273)⁻¹cm⁻¹ base 10=</pre>	$1 dm^3 mol^{-1} cm^{-1} base 10 =$	1 cm ² mol ⁻¹ base 10 =	1 cm ² molecule ⁻¹ base e =

To convert an absorption coefficient from one set of units \underline{A} to a new set \underline{B} , multiply by the value tabulated for row \underline{A} under column \underline{B} , e.g. to convert the value of the absorption coefficient expressed in $dm^3 mol^{-1}cm^{-1}$ base 10 to (atm at 273) $^{-1}cm^{-1}$ base e, multiply by 0.103.

7

NBSIR 73-203 ERRATA (Supersedes errata dated 27 July 73)

- 1) On report cover change NBSIR-203 to NBSIR 73-203.
- In table 1 (pages 8-51) make the following changes or additions. In each case a complete line for the table is shown and is identified by page number and reaction. The corrections or additions are underlined. 2)

Page No.	Reaction/Reference * = Preferred Value	Temp. Range/K	Reaction Rate Constant k/cm ³ molecule ⁻¹ s ⁻¹	Notes and Reliability o log k
44	0 ₃ + S0 -> 0 ₂ + S0 ₂ Schofield (1971) review	223-303	2.5 x 10 ⁻¹² exp(-1050/T)	±0.5
46	HO + CH ₄ -> CH ₃ + H ₂ O *Wilson (1972) review	300-2000	4.7 x 10 ⁻¹¹ exp(-2500/T)	+0.7
47	CH ₂ O + O → CHO + OH *Demerjian, et al (1972) review	300	1.6×10^{-13}	
47	HO + CH ₂ O -> H ₂ O + CHO * <u>Morris, Niki</u> Wilson (1972) review	<u>300</u> 300-1600	$\frac{1.4 \times 10^{-11}}{8 \times 10^{-11}}$	±0.1 ±1
47,48	HO ₂ + CH ₂ O -> H ₂ O ₂ + CHO *Lloyd (1971) review	300-1000	<u>8 x 10⁻¹³ exp(-3300/T)</u>)±1
48	$CH_30 + 0_2 \rightarrow CH_20 + HO_2$ (1)			
	etc. Demerjian, et al (1972) review	300	$\frac{k_{2b}/k_{2a} = 0.17}{k_{3b} = 3.3 \times 10} - 13$	

C III	upersedes errata dated 27 July 73 Reaction/Reference <u>* = Preferred Value</u>	3) Temp. <u>Range/K</u>	Reaction Rate Constant k/cm ³ molecule ⁻¹ s ⁻¹	Notes and Reliability of log k
CH CH S	<pre> + CH₃0 -> CH₃0₂H + 0₂ inge reaction to read: H0₂ + 0, + N0 -> CH₂0,N0 (a)</pre>	$c_{H_30_2} \rightarrow c_{H_30_2}$ H	+ 0 ₂	
Dem	2 3^{2} CH ₂ 0 + HONO (b) -> CH ₂ 0 + NO ₂ (c) -> CH ₃ 0 + NO ₂ (c) erjian, et al (1972) review	300	k _c = 3.3 x 10 ⁻¹² exp(-500/T)	estimate
03 Der	+ C ₂ H ₄ -> products merjian, et al (1972) review	300	2.7×10^{-18}	
0 ₃ DeN	+ C ₃ H ₆ -> products 4ore (1969)	183, 193, 300	1.65 x 10 ⁻¹⁵ exp(-1600/T)	(q)
*11	iis survey (D.G.)	200-300	2 x 10 ⁻¹³ exp(-1600/T)	(a)
Add	the following references:			
Mor	ris, E. D. and Niki, H., "Mas Formaldehyde," J. Chem. Phy	ss Spectrometric ys. <u>55</u> , 1991-1992	Study of the Reaction of Hydroxyl (1971).	Radical with
Wes	tenberg, A. A. and de Haas, l Range," J. Chem. Phys. <u>58</u> ,	N., "Rates of CO 4061-4065 (1973)	+ OH and H ₂ + OH Over an Extended	Temperature

,

2

7 Aug 73

ERRATA-NBSIR 73-206, second printing

page 13 Reaction Mechanism, 5th line: delete and NO2

- page 17 Table III: Heading for columns D, E, F, G, H and I should read: Absolute rate constants, k/10⁻¹⁰ cm³ molecule⁻¹s⁻¹
- page 38 Table I: 1) The values given for $\epsilon(T \leq 300 \text{ K})$ for $\lambda = 230$, 240, 250, 260, and 270 nm are in units of $10^5 \text{ cm}^2/\text{mol}$
 - 2) The value of ϵ (T = 1100 K) at λ = 260 nm should be 1.9 x 10 cm²/mol

July 24, 1973

FORM NBS-114A (1-71) U.S. DEPT, OF COMM. BIBLIOGRAPHIC DATA	DRT NO. 2. Gov't No.	Accession 3. Recipie	nt' Accession No.
4. TITLE AND SUBTITLE Chemical Kinetics Data Survey		5. Public Augus	ation Date t 1973
VI. Photochemical and Rate Data for T Reactions of Interest for Atmospheric	welve Gas Phase Chemistry	6. Perform	ing Organization Code
7. AUTHOR(S) Robert F. Hampson		8. Perform	un _e Organization NBSIR 73-207
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. Projec 316040	t/Task/Work Unit No. 9 3160520
NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20234		11. Contra	ct/Grant No.
12. Sponsoring Organization Name and Address		13. Type (of Report & Period
Department of Transportation Depart	ment of Navy	Covere	e d
Washington, D. C. 20590 Naval	Ordnance Systems	Command Inte	erim
Washington, D. C. 20234	gton, D. C. 2036	0	ning agency code
15. SUPPLEMENTARY NOTES		I	
16. ABSTRACT (A 200- word or less factual summary of mos bibliography or literature survey, mention it here.)	t significant information	. If document includes	a significant
Photochemical and rate data have be	en evaluated for	twelve cas phe	ά
reactions of interest for the chemistr	y of the stratos	phere. The rest	ilts are
presented in data sheets, one for each	reaction. For	each reaction th	ne data are
summarized. A preferred value is give	n for the rate c	onstant or the p	orimary
quantum yreid and photoabsorption cros	s section.		
17. KEY WORDS (Alphabetical order separated by semicol	ns) Atmospheric	hamietrus charie	al bination
data evaluation; gas phase reaction; o quantum yield; rate constants.	ptical absorptio	n cross section;	; photochemistry;
18. AVAILABILITY STATEMENT	19	• SECURITY CLASS (THIS REPORT)	21. NO. OF PAGES
X UNLIMITED.		UNCL ASSIFIED	124
FOR OFFICIAL DISTRIBUTION. DO NOT RE TO NTIS.	LEASE 2	0. SECURITY CLASS (THIS PAGE)	22. Price

.

.