
A 11 ID 2 h^bfllS

U.S. DEPARTMENT OF COMMERCE • National Bureau of Standards

NBS

PUBLICATIONS

Institute for

Computer
Sciences and
Technology

OONPUTERLEASUFELENT
RESEARCHFACUTY

RCR HIGH PERFORMANCE
PARALLELCOMPUTATION

-QC

100

• U56

#87-3585

1987

C.2

NBSIR 87-3585

Hardware-Assisted
Multiprocessor

Performance Measurements

Alan Mink
Jesse M.Draper
John W. Roberts

Robert J. Carpenter

Advanced Systems Division

June 1987

Sponsored by the

Defense Advanced Research Projects Agency
under ARPA order number 5520,

July 23, 1985, and July 28, 1986.

5**“"* ^formation CenterAa‘ionai bureau of s* ,

Gaith. i

ieau ot Standards
Gaitiiersburg,

Marykud 20899

Hardware-Assisted Multiprocessor Performance Measurements
'U

Alan Mink

Jesse M. Draper

John W. Roberts

Robert J. Carpenter

Advanced Systems Division

Institute for Computer Sciences and Technology

National Bureau of Standards

Gaithersburg, MD 20899

Partially sponsored by the

Defense Advanced Research Projects Agency

1400 Wilson Boulevard

Arlington, Virginia 22209

ARPA Order No. 5520, July 23, 1985

U.S. Department of Commerce, Malcolm Baldrige, Secretary

National Bureau of Standards, Ernest Ambler, Director

June 1987

Hardware-Assisted Multiprocessor Performance Measurements

Alan Mink

Jesse M.Draper**

John W. Roberts

Robert J. Carpenter

This report describes the implementation and use of a hardware-assisted trace

measurement system (TRAMS) used to obtain performance measurements of parallel

cooperating processes executing on a multiprocessor computer. The benefit of

TRAMS is that the overhead required to obtain timing information is approximately

two orders of magnitude better than the standard system timing call, thus providing

more accurate results with little perturbation to the measured processes. This level of

accuracy allows measurement of fine-grain portions of these parallel processes which

cannot be reasonably measured using standard techniques, and are therefore usually

presented as negligible. Some measurements that have been obtained using TRAMS
on a tightly-coupled, shared-memory parallel processor are reported here and include

basic programming constructs, process creation, process synchronization, and shared

memory allocation.

Key words: Multiprocessor computers; parallel computers; performance measurement;

hardware.

1. INTRODUCTION

Ferrari [1] has classified measurement tools as either hardware or software/firmware based. In his

taxonomy non-interference and high resolution are the main advantages of hardware tools, since they

use probes to capture information from the system under test without any time or space interference.

While software/firmware tools do cause interference to the system under test, they provide more

flexibility than the hardware tools since the measurements obtained can be tailored to the specific

application. Ferrari also states [l,pg 46] that these two classes of tools are complementary, and

suggests that an integrated tool could provided the most convenient solution to a measurement

This National Bureau of Standards report is not subject to copyright in the United States. Certain com-

mercial equipment, instruments, or materials are identified in this paper in order to adequately specify

the experimental procedure. Such identification does not imply recommendation or endorsement by the

National Bureau of Standards, nor does it imply that the materials or equipment identified are necessari-

ly the best available for the purpose.

* Present address of Jesse M. Draper is Supercomputing Research Center, Lanham, Maryland.

This work was partially sponsored by the Defense Advanced Research Projects Agency.

- 1 -

technique.

The traditional software approach to instrument a program for measuring performance is to insert

supervisory calls to the operating system to obtain a timestamp at the beginning and end of an event, to

store this information in a buffer area in memory, and later write it to a file at some convenient time.

A major problem with this approach is that it perturbs the original program with extra overhead. In

particular, additional execution time is required for the operating system to provide the timestamp and

for the code added to the program being tested to store the timestamp with the data describing the

event This time overhead is on the order of hundreds of microseconds, or worse. In a uniprocessor

running a non-time critical application such time perturbations merely increases execution time, but

does not otherwise effect the execution path of the program. In a multiprocessor and in a uniprocessor

running real-time applications it can greatly distort the execution path and, therefore, dramatically

change the performance.

Schrott [2] in an attempt to measure the performance of a real-time system, consisting of a single

processor, has used an integrated hardware and software approach to measurement In his approach a

second processor is used to capture event data generated by the real-time processor. The time ordered

sequence of entrances and exits to the operating system are the events of interest The operating system

is instrumented at each entrance and exit point with code (one or two instructions) that writes to the

second processor via an interprocessor link. The purpose of the second processor is to minimize the

interference to the real-time system and not alter its timing behavior, while capturing the timestamped

data for on the fly or later reduction and processing.

A similar problem exists for multiprocessor systems where the timing behavior of the activities on

each of the processors is critical to performance measurement of such systems. In a multiprocessor

environment a software measurement approach can greatly distort synchronization of cooperating

parallel processes. Timing overhead is suffered only by the processor asking the operating system for

the timestamp information; all other processors proceed without delay. The higher the measurement

overhead that is introduced, the more pronounced the effect. In the worst case these synchronization

delays can produce a domino effect that can make the instrumented program behave completely

differently from the uninstrumented version. Hardware tools could be used to measure "microscopic"

events such as cache hit ratios, bus delays, bus duty cycles, etc., just as they can for uniprocessor

systems. When the activities of the application or system processes on multiprocessor systems are of

interest, then these "macroscopic" events cannot be effectively measured by traditional software

measurement approaches. Therefore, the problem is to obtain timestamped event data with minimum
interference to the timing behavior of each of the processes.

An integrated hardware and software measurement tool developed for the CONCERT
multiprocessor system [3] is described by Mitchell [4]. The CONCERT multiprocessor is comprised of

a set of clusters, each cluster consists of a group of tightly coupled processors with shared memory.

For each cluster a hardware device is accessible via the shared memory bus. This device is designed to

accumulate event timing information during the execution of a program and the results can be read

back after the program terminates. The user must embed software commands in the program indicating

to the device the beginning and end of an event along with the event number. The device preprocesses

the time information yielding a fix set of metrics. As in Schrott’ s approach, the embedded software

minimally perturbs the original program.

Again, an integrated hardware and software tools approach seems the most promising, and our

specific approach is discussed in the remainder of this paper. Unlike Schrott, we have provided a

general software interface to the hardware device that captures and timestamps the event data. Rather

than embedding the software interface only in the operating system, we have provided the applications

-2-

programmer as well as the systems programmer access to this measurement tool, similar to Mitchell’s

approach. Unlike Mitchell’s approach we have left the information describing the event to be defined

by the user, rather than predefined, and in addition we capture each individual timestamped event rather

than preprocess them into fixed performance metrics. In addition to the timestamp, each event is also

processor stamped to indicate the processor it is currently executing on, since precesses can migrate

among the various processors. As a result we can also reconstruct the specific sequence of events, in

addition to computing performance metrics. The TRAce Measurement System (TRAMS) is designed as

a memory-mapped device which maintains its own clock for timestamping. From the programmer’s

point of view TRAMS is treated as a memory location which, when written to, will store and timestamp

the information designating an event. The interference incurred by the additional TRAMS measurement

software added to the program is as little as a single memory assignment statement per timestamp.

The TRAMS concept is quite general and can be applied to various multiprocessor architectures.

In this paper we describe our implementation of TRAMS for a tightly-coupled, shared-memory

multiprocessor system. We also present a sample of the various performance measurements made on

our multiprocessor system using TRAMS. We made fine-grain measurements on the overhead

introduced by TRAMS itself and on standard looping language constructs, followed by measurements of

larger-grain system activities such as process creation, synchronization locking, and software timing.

The final measurements show the overhead involved in dynamically initializing and allocating shared

memory for a large-grain application program.

2. TRAMS IMPLEMENTATION

The overall configuration of TRAMS is illustrated in Figure 1. At selected test points in the

programs, events are written to a specially designed board called the Event Data Card, which has been

installed in the normal I/O space of the system under test These writes are called edc measurement

statements, and contain data specified by the user to identify an event such as process ID, values of

variables, or other state information. Only a few microseconds are required for the computer being

measured to execute each edc statement, since no supervisory calls are made to the operating system.

(The system being tested contains eight commercial 32-bit processors with separate floating point and

memory management units, running at 10 MHz.) In our current implementation the event data is fixed

at 11 bits. Used as one field, this is sufficient to identify 2048 unique events; used as two fields of 3

and 8 bits each, it can identify 8 separate processes and 256 unique events. The Event Data Card then

adds hardware signals including a 32-bit microsecond timestamp, a 4-bit processor identification, and a

1-bit user/supervisor mode status, and sends a trigger signal to a FIFO to enter the data into its 48-bit-

wide buffer. Thus, in addition to being plugged into the IEEE 796 bus of the system under test, the

EDC has a number of direct connections (probes) to each of the processors. These probes are necessary

to obtain state information that is not available on the bus (e.g., processor identification). While the

computer under test could read the data out of the FIFO at a later time, that task is currently performed

by a separate analysis computer which can either store the raw data for later processing or process it

immediately.

Obtaining measurements with TRAMS requires familiarity with the application program being

measured. The programmer determines the events to be measured and the data that will be output to

the Event Data Card to identify each event. Intervals and frequencies are two major categories of

metrics. Intervals require paired events, the start of the interval and the end. Frequencies may require

-3 -

one or two events, depending on the variation of the metric. In the simplest form, only one event is

necessary to keep a simple count (e.g., the number of times per second that a loop is executed. In more

complex variants, two or more events are necessary to determine ratios (e.g., that part of a loop

accounts for 90% of the loop’s execution time). The programmer must insert special edc measurement

statements in the source code of the application program. These statements write data to the Event

Data Card identifying each measurement event An analysis program must be written that will take the

timestamped application-specific data, match interval boundaries of each event and output a statistical

summary for each event. We have primarily been using a fixed format for the event data (e.g., process

ID and event number) and, therefore, have developed a table-driven analysis program which can be

used by only modifying the table describing the events without modifying the program.

The major design goal of the Event Data Card was to produce a simple, straightforward interface

between the multiprocessor system being tested and the measurement storage and analysis equipment,

and to develop this interface with a minimum of design effort This goal was accomplished by use of

commercially available assemblies. The Event Data Card logic consists of an IEEE 796 interface, an

address recognizer, a data latch, a timestamp counter, a synchronization circuit, an interface for

hardware probes, and logic for intermediate processing of signals from the hardware probes. The

availability of a reliable 10MHz clock signal on the backplane makes it unnecessary to include a clock

circuit The interfaces between these modules are reasonably simple. To minimize the implementation

effort we chose a logic analyzer as the FIFO in our TRAMS, which had the added benefit of

simplifying the EDC output function. Since the output signals are tapped directly from the appropriate

locations on the EDC board by the logic analyzer, output drivers are not needed.

The data latch has sixteen outputs, which are currently wired to take in eleven bits of software-

determined data from the processor initiating the write, plus five bits of data from the hardware probe

logic. In the current implementation of the Event Data Card, the hardware probes are used to identify

the processor initiating any particular write to the measurement system, and to determine whether that

processor is operating in user or supervisor mode. Because of pipelining in the system under test, the

hardware probe logic must use a register to retain the state information until it is written.

In our current implementation a logic analyzer with a 512-word buffer is used as the FIFO to store

event data. One complete item of data, including the timestamp, is captured every time it is triggered.

The logic analyzer link in the measurement chain suffers from limitations in capacity, speed, and

functionality. Its 5 12-word buffer size is a serious limitation; a much larger on-board memory would

be considerably better. In our current implementation the effective transmission speed of event data

from the logic analyzer to the analysis computer via the IEEE 488 interface is on the order of seconds

for the entire buffer contents. Moreover, the logic analyzer cannot capture samples while it is

transmitting its buffer contents via the IEEE 488 interface. Nor can it report the number of samples it

has captured or lost; therefore, it is important to plan each experiment carefully around this limitation.

3. LOW LEVEL MEASUREMENTS

A series of experiments were planned to test TRAMS and to determine the program and execution

overhead involved in its use. In the following discussions, the macro ”edc(<data>)" represents the edc

measurement statement, which actually is coded (in C) as

-4 -

*address_of_Event_Data_Card = event_data;

3.1 Determination of Measurement Overhead

The first test program did nothing but write to the Event Data Card to determine the overhead of

the edc() measurement statement. In this program there is only one kind of event, the edc statement.

Therefore, no encoding of the data is necessary and, in fact, the data written is irrelevant. Only the

timestamp is of interest to determine the length of each successive interval. Also the amount of data is

not significant since whatever window of data was captured is as valid as those lost Each experiment

consisted of three variations to the program structure. The first variation used a constant in the edc

measurement statement.

edc(0xFA);

edc(0xFA);

edc(OxFA);

etc.

The second variation used a variable.

edc(q);

edc(q);

edc(q);

etc.

The third variation used a constant ORed with a variable.

edc(proclOxFA);

edc(proclOxFA);

edc(proclOxFA);

etc.

This last variation was indicative of the type of data expected in other experiments, where the variable

may represent a process number and the constant may represent a specific event.

3.2 Measurement of Loop Structures

We next measured the intervals between successive edc measurement statements embedded in

typical programming looping structures. The second experiment consisted of a single edc statement

embedded in a DO-WHILE loop construct,

do

{ edc(cone of the above three variations hero);

)while(-q);

The interval between successive executions of the edc statement measured the speed of the DO-WHILE
construct plus one edc execution. The third experiment consisted of a single edc statement embedded
in a WHILE loop construct

while(q-)

{ edc(cone of the above three variations hero);

};

The fourth experiment consisted of a single edc statement embedded in a FOR loop construct.

for(i=l; ic=q; i++)

(edc(cone of the above three variations hero);

}

This resulted in a measure of the speed of the FOR construct.

-5 -

3.3 Data Analysis

Our analysis program converted the raw timestamp data to intervals. On the first pass it computed

statistics for all interval data. On its second pass it used the smallest interval as a baseline and

discarded all intervals greater than four times as large. Since the intervals between events were small

and regular, this culling operation filtered out time intervals not attributable to the application test code.

These longer intervals are from sources such as interrupts, in which the processor serviced some other

task in the middle of the execution of the test loop structure. For each experiment the statistics include

the number of culled sample points (events), their range and mean. The distribution of the values for

the culled data is provided for later plotting (See figures 2 - 13). This includes the percentage of data

in each one-microsecond interval.

3.4 Results

Each experiment shows a narrow range of time for the event being measured, which is consistent

with expected results. One may initially expect a single time value for the event interval for such a

repetitious series, but after some thought a narrow range seems more reasonable. First, the resolution of

the Event Data Card timestamp is one microsecond. Since the events are asynchronous to the Event

Data Card clock, a plus-or-minus one microsecond variation is possible due to the phase difference of

the clock on the Event Data Card and the 10-MHz clock on the system under test Second, a variation

of a few microseconds may be expected due to the instruction prefetch of the multiprocessor computer

under test Due to the structure of the code, no time variation is expected based on the operation of the

cache, and translation look-aside buffer misses in the memory management unit are not expected to be

frequent in this test The environment in which these initial measurements were made was that of an

unloaded system — no other active users and only a single (non-parallel) active process. The

measurement results are summarized in Table 1, but are more graphically presented in figures 2-13.

Figures 2-4 show the results from the first experiment, which measured the speed of the edc

statement for three different types of arguments. In the first case, writing a simple constant (See figure

2) took approximately 3 microseconds. In this, as in all other histograms in this paper, only the culled

data is plotted. Each plot shows the percentage of the unculled data points which were discarded.

Writing a simple variable (See figure 3) took about 3-4 microseconds, and writing a variable ORed
with a constant (See figure 4) took an average of 6 microseconds.

We next measured the intervals between successive edc measurement statements embedded in

typical programming loop structures. The histograms in figures 5-13 show results ranging from 7 to

11 microseconds for various loop structures. Subtracting the basic measurement overhead (Figures 2

through 4) from the corresponding times in Figures 5 through 13 allows evaluation of the execution

time of the loop mechanisms in the presence of different types of embedded instructions. The

appropriate columns in Table 1 show the substantial consistency of the results.

-6-

4. OVERHEAD MEASUREMENTS

Parallel programming on a multiprocessor requires some knowledge about the costs of parallelism.

Creating and synchronizing parallel processes incurs overhead that must be weighed carefully against

the benefits of concurrency. Shared memory itself can be expensive to implement, even without the

effects of contention. In the following discussion we first describe the costs of software timing and

then give details about the overhead for some of the most important functions involved in setting up

and running a divide-and-conquer parser consisting of six parallel cooperating processes.

4.1 Software Timing

A software timing call requires some overhead (obviated by TRAMS), which we measured using

TRAMS. Table 2 shows maximum, minimum, average, and median times for the two basic Berkeley

UNIX 1

timing calls, gettimeofday and getrusage. Each of the system calls is at least two orders of

magnitude slower than the six-microsecond writes to TRAMS, although getrusage provides considerably

more information.

Table 2a

Run

Software Timing Overhead

(microseconds)

Calls to gettimeofdayO

Number of

Samples
Maximum Minimum Average Median

1 170 999 659 682.08 660.00

2 170 989 647 669.47 648.00

3 170 985 647 668.40 648.00

4 169 1050 648 670.80 648.00

5 169 985 647 670.53 648.00

TOTAL 848 1050 647 672.26 649.00

1 . UNIX is a trademark of Bell Laboratories.

Table 2b

Run

Software Tuning Overhead

(microseconds)

Calls to getrusageQ

Number of

Samples
Maximum Minimum Average Median

1 170 1218 857 885.01 857.00

2 170 1209 839 868.65 839.00

3 170 1186 841 866.92 842.00

4 170 1191 841 866.79 841.00

5 170 1220 842 869.87 843.00

TOTAL 850 1220 839 871.45 843.00

These measurements show that a hardware-assisted trace measurement system can be dramatically less

perturbing than software measurements.

4.2 Synchronization

We measured locking and unlocking overhead during the period when one process was doing

useful work and the other five identical processes were in constant contention for a single lock guarding

a critical section. Because the locking call spins until it succeeds, the locking times reported in Table

3a directly reflect the contention. Each of the populations included a significant number of long times

that probably reflect device interrupts. As a consequence, we have reported both the number of

anomalies (values at least an order of magnitude greater than the minimum) and the median, which in

this case may give a more reliable indication of contention times than the mean. Calls to unlock the

lock generally take between 18 and 22 microseconds (see Table 3b), with a median of 19 microseconds

for all seven programs. If we subtract six microseconds (the average overhead of one write to TRAMS)
from the median, we get 13 microseconds as the real cost of unlocking a lock. Direct measurements of

locking and unlocking a lock without contention give mean values of 41 and 16 microseconds,

respectively. Subtracting the measurement overhead from each of these produces 35 and 11

microseconds, respectively; hence, the minimum synchronization overhead for this multiprocessor is 46

microseconds plus the time to execute the critical section.

-8 -

Table 3a

Longest

Parsable

Locking Overhead

(microseconds)

String
Number of

Samples

Number of

Anomalies
Maximum Minimum Average Median

50 500 31 2477 43 197.85 130.00

100 500 29 1562 44 180.76 123.00

200 500 17 948 44 172.29 123.00

300 500 22 945 44 181.21 123.00

400 500 31 816 44 181.51 123.00

500 501 32 1122 47 184.92 128.00

600 500 29 2211 43 192.61 125.00

Table 3b

Longest

Parsable

Unlocking Overhead

(microseconds)

String
Number of

Samples

Number of

Anomalies
Maximum Minimum Average Median

50 516 2 2267 18 23.97 19.00

100 516 3 455 18 20.97 19.00

200 516 0 22 15 19.00 19.00

300 516 3 726 17 21.66 19.00

400 516 0 22 18 19.04 19.00

500 516 0 24 18 19.02 19.00

600 516 2 1993 18 23.53 19.00

4.3 Process Creation

Some strategically placed print statements had earlier shown that process creation was taking

considerably longer for programs that could parse long strings than for those with less capability. We
therefore preceded each "fork 0" system call by a write to TRAMS. For each child the first executable

instruction is another write to TRAMS to identify the return from the fork call. Since the size of the

program’s parsing tables varies dramatically with the size of the longest input string that can be parsed,

we measured seven different versions. We ran each version four times, keeping the input string

constant and small enough that even the smallest program could parse it Table 4 shows the maximum,
minimum, and average fork times for each program.

-9-

Table 4

Longest

Parsable

String

Shared

Memory
Size

(Kbytes)

Number
of

Samples

Overhead for Process Creation

(milliseconds)

Maximum Minimum Average

50 33 24 166 121 130

100 125 24 162 127 137

200 490 24 178 149 161

300 1096 24 203 191 198

400 1941 24 288 197 254

500 3026 24 360 317 329

600 4351 24 426 401 410

For comparison, we measured a simple kernel with similar data requirements but no shared memory.

Process creation took approximately 90 milliseconds and did not increase with data size, even though

for each fork both program and data would presumably be copied in their entirety rather than shared.

Whatever the cause of the high overhead for creating processes that share memory, it appears that, on

this system, programs with large shared data structures will require coarse-grain rather than fine-grain

parallel tasks. Otherwise, the overhead of process creation will be too costly to recoup from process

concurrency.

4.4 Dynamic Initialization and Allocation of Shared Memory

The computer under test has both static and dynamic shared memory. We could not measure the

overhead of static initialization and allocation of shared memory without instrumenting the operating

system since those events occur before the beginning of the "main" program. We could, however,

measure the times for the calls to library routines that dynamically initialize and allocate shared

memory. As Tables 5a and 5b show, those times can be quite long for programs with large

requirements for shared memory. As a result we were able to establish that static shared memory is

considerably faster in this system.

Table 5a

Longest

Parsable

String

Shared

Memory
Size

(Kbytes)

Number
of

Samples

Overhead for Shared Memory Initialization

(milliseconds)

Maximum Minimum Average Median

50 33 41 389 184 209 189

100 125 42 450 283 337 337

200 490 40 1773 431 923 1002

300 1096 42 5830 701 2113 965

400 1941 40 4753 1083 1949 1323

500 3026 40 3837 1568 1870 1602

600 4351 43 6965 2128 2779 2330

- 10-

Table 5b

Longest

Parsable

String

Shared

Memory
Size

(Kbytes)

Number
of

Samples

Overhead for Shared Memory Allocation

(milliseconds)

Maximum Minimum Average Median

50 33 41 83 71 72 72

100 125 42 271 265 267 267

200 490 40 1080 1032 1050 1047

300 1096 41 2862 2597 2652 2621

400 1941 40 12891 5054 5421 5225

500 3026 40 16960 9025 9552 9354

600 4351 40 14888 13359 13827 13753

These values, like those for process creation, suggest that on the system under test programs with large

requirements for shared memory should use coarse-grain rather than fine-grain parallelism.

5. LIMITATIONS AND FURTHER APPLICATIONS

The current TRAMS implementation is useful for measurements on uniprocessors or

multiprocessors using a globally-available IEEE 796 bus. It is possible, however, to enhance the system

in several straightforward ways. Providing substantial memory on the Event Data Card itself would

make it possible to collect more samples per run and hence remove some of the current constraints on

how much we can measure at a single time. Users who need different measurements could change both

the counting rate of the timestamp counter and the allocation of bits for processor data and hardware

signals.

To expand the system substantially or to apply it to a non-global-memory multiprocessor

architecture would require redesign. The principles of the design, however, can be applied to a wide

range of multiprocessor architectures. The basic philosophy is to build a general hardware assist to the

standard software measurement approach that will minimize both the requirements for hardware design

and the perturbation of the system under test. Similar memory-mapped devices can be installed in

many systems. Since the TRAMS approach is reasonably simple, it could be applied to each processor

in a distributed system.

The TRAMS concept allows the user to identify the process number and event in the data field of

the edc measurement statement, while the Event Data Card appends a timestamp, a processor ID, and a

bit to tell whether the processor is in user or supervisor state. The Event Data Card could be further

simplified if multiprocessor manufacturers would provide both the processor ID and the user/supervisor

state for the current bus cycle on the bus itself. This addition would eliminate the need for hardware

probes and their associated logic.

- 11 -

6. SUMMARY

The results shown here demonstrate that a relatively simple hardware attachment makes it possible

to measure execution times of programs, and small segments of programs, with few-microsecond

accuracy and without substantially perturbing the execution of the program. The measurement

examples of system overhead for parallel programs on the testbed computer show that this

multiprocessor being measured is suitable primarily for coarse-grain rather than fine-grain parallelism.

While synchronization is not costly, process creation can take almost half a second for programs with

large requirements for shared memory. In addition, the costs of dynamically initializing and allocating

shared memory make static shared memory considerably more attractive for programming with

cooperating parallel processes. Overall, these results make it clear that a simple trace measurement

system can provide invaluable information for parallel programming on a multiprocessor.

7. REFERENCES

[1] Ferrari, D. "Computer System Performance Evaluation", Prentice-Hall, Inc., Englewood Cliffs, NJ.,

1978.

[2] Schrott, G. and Tempelmeier, T., "Monitoring of Real Time Systems By a Separate processor",

Proc. of the 12th IntemT Federation of Automatic Controls / 1F1P Workshop: Real Time

Programming 1983, Hatfield, UK, Mar. 1983, pp 69-79.

[3] Anderson, T. L., "The Design of a Multiprocessor Development System", Masters Thesis, MIT,

Dept of Electrical Engineering and Computer Science, Sept. 1982.

[4] Mitchell, S., "SySM Functional Requirements Description", Harris Corp., P.O. Box 98000,

Melbourne, FI. 32902, Feb. 1986.

USCOMM-NBS-DC

- 12-

S.H4A (REV- 2-80

U.s. DEPT. OF COMM.

bibliographic data
SHEET (See instructions)

1. PUBLICATION OR
REPORT NO.

NBSIR 87-3585

2. Performing Organ. Report No. 3. Publication Date

JUNE 1987

TITLE AND SUBTITLE

Hardware-Assisted Multiprocessor Performance Measurements

AUTHOR(S)

John W. Roberts, Alan Mink, Jesse M. Draper, Robert J. Carpenter

PERFORMING ORGANIZATION (If joint or other than NBS, see instructions)

NATIONAL bureau of standards
department of commerce
WASHINGTON, D.C. 20234

7. Contract/Grant No.

8. Type of Report & Period Covered

SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City. State, ZIP)

Defense Advanced Research Projects Agency

1400 Wilson Boulevard
Arlington, Virginia 22209

SUPPLEMENTARY NOTES

J Document describes a computer program; SF-185, FIPS Software Summary, is attached.

ABSTRACT (A 200-word or less factual summary of most si gnificant information. If document includes a si gnificant
bibliography or literature survey, mention it here)

This report describes the implementation and use of a hardware-assisted trace

measurement system (TRAMS) used to obtain performance measurements of parallel

cooperating processes executing on a multiprocessor computer. The benefit of

TRAMS is that the overhead required to obtain timing information is approximately

two orders of magnitude better than the standard system call, thus providing more

accurate results with minimum perturbation to the measured processes. This level

of accuracy allows measurement of fine-grain portions of these parallel processes

which cannot be reasonably measured using standard techniques, and are therefore

usually presented as negligible. Some measurements that have been obtained using

TRAMS on a tightly-coupled, shared-memory parallel processor are reported here

and include basic programming constructs, process creation, process synchronization,

and shared memory allocation.

KEY WORDS (Six to twelve entries ; alphabetical order; capitalize only proper names; and separate key words by semicolon s)

hardware; multiprocessor computers; parallel computers; performance measurement

AVAILABILITY
' ~ ~ ' —

i~XI Unlimited

For Official Distribution. Do Not Release to NTIS

[i

Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
20402.

2] Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

15

15. Price

$9.95

USCOMM-DC 6043-P80

		Superintendent of Documents
	2022-04-13T05:24:19-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

