
 
 
 
 

Inputs and Outputs in th
Specification 

M

  
NISTIR 7152
e Process
Language

Conrad Bock
ichael Gruninger



NISTIR 7152 
 
 
 
 
 
 

Inputs and Outputs in the Process
Specification Language

Conrad Bock
Michael Gruninger

Manufacturing Systems Integration Division
Manufacturing Engineering Laboratory 

 
 
 
 
 

August 2004

U.S. DEPARTMENT OF COMMERCE
Donald L. Evans, Secretary

TECHNOLOGY ADMINISTRATION
Phillip J. Bond, Under Secretary of Commerce for Technology

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
Arden L. Bement, Jr., Director

  



Inputs and Outputs in the Process Specification 
Language 
 
Conrad Bock 
Michael Gruninger 
August 9, 2004 
 
Inputs and outputs are ubiquitous in flow modeling, including popular programming 
languages.  This paper examines how inputs and outputs can be formalized in the Process 
Specification Language (PSL) to reduce ambiguity and increase expressiveness compared 
to conventional flow modeling representations.  Inputs and outputs are shown to be early 
design stage notions independent of existing PSL concepts, preconditions and 
postconditions in particular.  The paper defines axioms for input and output, and 
constraints on existing PSL concepts.  Some of these relate early and late stage design, 
while others provide for multiple views of inputs and outputs.  It also identifies which 
aspects of input are metatheoretic and consequently outside the scope of PSL. 

1. Introduction 
 
This paper assumes familiarity with PSL fundamentals [1].  PSL uses language elements 
referring directly to real world processes, for example milling operations as they actually 
occur in a factory at certain times.  It defines a simple set of concepts that cover all 
possible ways these operations can happen, which is called the occurrence tree.  The 
process designer uses these concepts to write constraints on which occurrences are 
allowed, for example to specify what is required to happen during a milling process.  This 
approach allows process requirements to be written very generally or very specifically as 
needed by the stage of design.  For example, early design stages define loose constraints, 
because the domain expert is just sketching out broad requirements.  These are tightened 
as design moves forward, until the process is completely specified.  For example, a 
software program is a kind of process description that places many constraints on 
allowable executions. 
 
PSL is project 18629 at the International Organisation of Standardization, and part of the 
work is a Draft International Standard.  It is based on a long period of research stemming 
from the situation calculus and enterprise modeling.  It has been applied in scheduling, 
process modeling, process planning, production planning, simulation, project 
management, workflow, and business process reengineering.  The standard is divided into 
core theories and extensions.  The core axiomatizes a set of intuitive semantic primitives 
describing fundamental concepts of manufacturing processes.  The core concepts include 
discrete states for relating processes to states of the world, as well as subactivities, atomic 
activities, and complex activities for composition of processes.  Extensions introduce new 
terminology, to supplement the core concepts.  They define additional relations for 
activities, time and state, activity ordering, duration, and resources.  All axioms are first-
order sentences, and are written in the Knowledge Interchange Format [2]. 



 

 
The paper follows the methodology of PSL by introducing axioms in increasing levels of 
constraint they place on processes.  Section 2 gives an example highlighting the issues 
around inputs and outputs.  Section 3 first establishes that new axioms are needed to 
represent inputs and outputs in PSL.  Section 4 covers inputs and outputs occurrences, 
starting with primitive occurrences, then complex occurrences, including and multiple 
complex occurrences for the same primitive occurrence.  Section 5 gives some 
convenience relations for using inputs and outputs at the level of activities.  Section 6 
addresses input and output issues that cannot be addressed by PSL because they involve 
how inputs and outputs are chosen in the first place.  This leads to suggestions on future 
work. 

2. Inputs and Outputs 
 
Common flow modeling and process languages, whether in graphical form like the 
Unified Modeling Language (UML) [3], or textual form as in programming languages, 
usually describe inputs and outputs colloquially as entities “passed in” or “passed out” of 
a process.  Inputs are normally required to be passed in for a process to start and outputs 
are required to be passed out for it to complete.  The intuition is that the process has a 
“boundary” and the employer of the process need only provide the proper inputs to get 
the desired outputs. 
 
A simple example shows the ambiguities in this common conception of input and output.  
A milling machine changes the shape of a piece of metal based on some instructions, and 
depending on the particular machine used in the process, might require oil and electricity, 
as shown in Figure 1.  Which are the inputs and which are the outputs, and which are 
neither?  Consider these alternative views: 
 

• The piece of metal and instructions are input, and the piece of metal is output, 
whereas oil and electricity are “infrastructural” and not of concern as inputs and 
outputs. 

 
• An infrastructure view might only take the oil and electricity as inputs, and oil as 

output, since it becomes dirty and needs to be cleaned or recycled. 
 

• Another view might identify metal shavings that are produced by milling and call 
those outputs because they must be removed from the machine periodically. 

 
• It might be decided that although sound, heat, and vibration are all external effects 

of the milling process, vibration is an output, because special arrangements are 
made to absorb it. 

 

 2



 

• Perhaps the machine is controlled under an agent architecture, which determines 
the shape to be made through a brokering interaction with other agents needing 
the milling service.  In this case, the instructions are not an input because the 
machine chooses them for itself. 

 

Milling

Piece of
Metal

Instructions

Oil

Electricity

Piece of
Metal

Oil

Heat

Shavings

Milling

Piece of
Metal

Instructions

Oil

Electricity

Piece of
Metal

Oil

Heat

Shavings

Figure 1: Inputs and Outputs 

 
This simple example presents a challenge for both conventional flow models and PSL.  
Flow models, including textual programming languages, provide for only one view of a 
process, that is, one set of inputs and outputs.  And within that single view, they provide 
no guidance on what to choose as an input or output.  However, flow models support the 
temporal ordering constraints that require inputs of one process to be filled by outputs of 
another occurring earlier.  PSL supports multiple views of a single process, because any 
element of a process can also be categorized under multiple other processes.  However, 
PSL currently lacks support for representing input and output, and in particular, 
distinguishing inputs from outputs from other entities participating in a process.  It also 
lacks the temporal ordering constraints between outputs and inputs.  This paper addresses 
these issues with extensions to PSL, and identifies aspects that are not representable in 
PSL. 
 
 
 
 
 
 
 
 
 
 
 
 

 3



 

3. Independence of Inputs and Outputs from Current PSL 
Axioms 

 
PSL provides a way to refer to processes as they occur in the world (hereafter called 
“runtime” or “execution”), and a way to state constraints on those occurrences.  PSL 
defines the occurrence representation in first-order logic, so process designers can write 
constraints on it also in first-order logic, which is how process descriptions are 
constructed.  The occurrence representation covers all possible paths that a process can 
take, so process descriptions can be as loose or tight as necessary to reflect the process 
designer's intent. 
 
In this approach to process representation, it is not obvious that input and output are 
primitive concepts, rather than derivations from existing ones.  A process actually 
occurring in the world at a certain time involves many entities, for example a piece of 
metal, instruction codes, oil, heat, and so on.  There are various ways one might attempt 
to distinguish which are inputs, which are outputs, and which are neither: 
 

• Perhaps an input is any entity participating in an occurrence of the process that 
also participates in some other occurrence earlier in time, and the reverse for 
output, using PSL's support for participation.  However, such an entity is not 
always an input or an output.  For example, suppose the oil used by a drill 
happened to be the same oil used by a milling machine in the same factory, but 
was cleaned in between uses.  It would be an unusual view that took drilling as 
outputting oil for milling to take as input.  Even this hydraulic view of the factory 
would interpose the cleaning process in between drilling and milling, and not be 
concerned with the specific machines that happened to be in the factory. 

 

• Another approach is to use preconditions and postconditions, which PSL supports 
on process occurrences.  Input can be represented as a precondition on an 
occurrence requiring a particular entity to be available to the occurrence in some 
specified way, and to define an output as a postcondition that a particular entity is 
available in some specified way from the occurrence to participate in others.  For 
example, the precondition on the piece of metal input to a milling machine is that 
it is in a certain location where the operator can reach it, or the machine can detect 
it. 

 
However, it may be that this location is different for various milling machines or 
may change even for the same milling machine due to its configuration.  PSL 
takes these as different occurrences, requiring different preconditions, because the 
milling machine is different.  The flow modeler's intuition would be that milling 
processes in general take a piece of metal as input, regardless of how or where the 
machine detects its presence.  The location may change and the piece of metal is 
still an input.1

                                                           
1   An example from software is that inputs and outputs to procedures in a higher level language are often 
compiled into a lower level language that arranges for the input and output data to be copied into memory 
locations relative to the location of the called procedure, or to particular kinds of memory for that purpose.  

 4



 
• A representation for resources is being developed for PSL that defines input and 

output based on effects that the activity has on the input or output.  In this 
extension, input material is defined as any entity consumed or modified by the 
process, and output material refers to the participants that are created or modified.  
This would mean instructions to a milling are not inputs because they are not 
modified, and similarly for processes that use catalysts.  Another aspect of the 
resource extension is contention, which is not a requirement for inputs and 
outputs.  An entity can be input to two processes that operate on it at once without 
contention, for example, two machining operations on different parts of the same 
piece. 

 
• First-order logic provides for parameterized functions that can be easily mistaken 

for a representation of inputs and outputs.  For example, we might define the 
milling process as a function that specifies an activity, as the milling term does in 
Expression 1. 

 
     (forall (?a ?m ?i ?o) 

    (implies (= ?a milling(?m ?i ?o)) 
    (and (activity ?a) 

    (metal ?m) 
    (instructions ?i) 
    (oil ?o)))) 

Expression 1: Parameterized Term for Activities 

 
However, parameterized terms do not differentiate inputs from outputs, or entities 
that are neither.  It is a useful technique to build on, however, as shown in the 
remainder of this article. 

 
These examples suggest that the notions of input and output are justifiably primitive for a 
language that takes actual process occurrences as its base.  In particular, inputs and 
outputs cannot be reduced to existing PSL concepts such as participation, 
pre/postconditions, or resources.  In addition, the examples show that inputs and outputs 
relative to viewpoint are not currently addressed in PSL, though PSL provides a key 
enabler for process views that is missing from conventional flow models, as shown in 
section 4.3. 
 
 
 
 
 
 

                                                                                                                                                                             
The inputs and outputs of the procedure do not need to change when the compiler chooses a different way 
to pass inputs into a procedure. 

 5



 
 

4. Input and Output Axioms at Occurrence Level 
 
When defining axioms in PSL, one consideration is whether they should apply to 
occurrences of a process, or processes defined independently of when they occur, which 
are called activities in PSL.  Axioms on activities usually constrain all occurrences of the 
activity.  This is fine for many applications of input and output, however, for flexibility, 
such as for optional inputs and outputs, it is best to acknowledge that some occurrences 
of the same activity will have an input or output that others may not.  In addition, 
constraints on which outputs are provided to which inputs is defined at the occurrence 
level, because activities are usually defined independently of how they are connected 
together by input and output in any particular usage.  To support these applications, we 
define input and output for occurrences, and provide convenience axioms for inputs and 
outputs at the activity level in Section 5. 
 
The two subsections 4.1 and 4.2 below cover input and output with and without processes 
composed of other processes.  These are called complex occurrences and activities in 
PSL.  Process designers will almost always use complex processes, because processes are 
intended to reach a desired goal, which is achieved by coordination of other processes.  
For example, drilling and milling a piece of metal can occur together, to attain a specific 
shape for the metal.  They are coordinated by a complex process that has the shape as its 
aim.  For simplicity of presentation, and application to early stage design, we begin with 
inputs and outputs without complex processes in Section 4.1, to introduce ordering and 
flows, then in Section 4.2 show how these are modified in the context of complex 
processes. 

4.1 Without Complex Occurrences 
 
We begin by defining relations for input and outputs of occurrences.  Expression 2 
constrains the application of the occurrence input and output relations to particular kinds 
of elements.  Expression 3 and Expression 4 tie occurrence input and output to the 
existing PSL PARTICIPATES_IN relation, which is used to constrain which objects are 
involved in a particular occurrence of an activity.  Expression 3 generalizes 
PARTICIPATES_IN so that participation at any time during the occurrence satisfies a new 
relation called PARTICIPATES.  Expression 4 requires that inputs and outputs are always 
participants. 
 
       (forall (?x ?s) 
          (implies (or (occurrence-input ?x ?s) 
                       (occurrence-output ?x ?s)) 
                   (and (object ?x) 
                        (not (state ?x)) 
                        (activity_occurrence ?s)))) 

Expression 2: Types for Occurrence Inputs and Outputs 

 6



 

       (forall (?x ?s) 
          (iff (participant ?x ?s) 
               (exists (?t) 
                  (participates_in ?x ?s ?t)))) 

Expression 3: Participant Extension 
 
            (forall (?x ?s) 
               (implies (or (occurrence-input ?x ?s) 
                            (occurrence-output ?x ?s)) 
                        (participant ?x ?s))) 

Expression 4: Participation Axiom for Inputs and Outputs 

 
One of the basic intuitions of inputs and outputs is that inputs of an occurrence are 
provided by the outputs of another one happening earlier than the first.  For simplicity, 
we assume that an occurrence cannot begin without its inputs, and cannot provide outputs 
before it ends.2  This means an occurrence needing an input must begin after the 
occurrence providing the output has ended, as shown in Expression 5.  The PSL relation 
EARLIER is true for an occurrence that is before another in the occurrence tree defined by 
the PSL relation SUCCESSOR.3
 
           (forall (?x ?s2) 
               (implies (and (occurrence-input ?x ?s2) 
                             (legal ?s2)) 
                        (exists (?s1) 
                           (and (occurrence-output ?x ?s1) 
                                (earlier ?s2 ?s1))))) 

Expression 5: Basic Input and Output Ordering 

 
The definition of the milling term in Expression 1 can be used with other activities to 
constrain occurrence ordering.  For example, if a drilling activity term were defined, 
Expression 6 ensures that drilling happens before milling, once at least (see Section 4.2 
for stronger process constraints).  The constraint in Expression 5 would not necessarily be 
satisfied by Expression 6, however, because Expression 6 allows a situation where there 
is no occurrence providing input of metal to drilling.  This is how Expression 5 ensures 
that the inputs and outputs are well formed in constraints defined by the process designer.  
Expression 6 also does not address whether the other parameters of drilling and milling, 
such as oil, are inputs or outputs, see section 4.3. 

                                                           
2 See Footnote 11. 
3 Purely physical applications might also require the object being passed to not participate in any 
occurrence in between the output and input.  However, almost all processes have some non-physical 
aspects to them, due to embedded software in particular.  Information objects can be referred to from 
multiple others and do not necessarily obey the constraint on participation above. 

 7



 
 

     (exists (?sDrill ?sMill ?m ?i ?o) 
        (and (occurrence_of ?sDrill drilling(?m ?i ?o) 
             (occurrence_of ?sMill milling(?m ?i ?o) 
             (occurrence-input ?m? sDrill) 
             (occurrence-output ?m ?sDrill) 
             (occurrence-input ?m ?sMill) 
             (occurrence-output ?m ?sMill) 
             (earlier ?sDrill ?sMill) 
             (legal ?sMill))))) 

Expression 6: Example Process Constraint Using Occurrence Inputs and Outputs 

 
Expression 6 highlights that Expression 5 is weaker than normally required, because 
Expression 5 allows any earlier occurrence that outputs the needed input entity to satisfy 
the constraint.  For example, the occurrence of any process outputting the needed piece of 
metal earlier than an occurrence of the milling process satisfies the axiom.  This is fine as 
a general rule, but usually flow models specify a particular output that must “flow” to a 
particular input. 
 
As with Expression 5, formalizing flow intuitions in PSL requires determining how they 
constrain which occurrences are legal.  The approach taken here has two parts: 
 

1. Link input and output to preconditions and postconditions on occurrences, which 
reflects the relation of early and late stage design as outlined in Section 2.  For 
example, a milling machine might have a sensor that detects when a piece of 
metal has arrived to work on.  The piece of metal will need to be in a certain 
location to be noticed.  This is a precondition for the milling process, as well as a 
concrete realization of the abstract notion of input to the process. 

 
Expression 7, Expression 8, and Expression 9 represent this by introducing 
relations that identify which pre/postconditions are the realization of which inputs 
and outputs, called INPUT-STATE and OUTPUT-STATE.  Expression 7 constrains the 
application of these relations to specific elements.  Expression 8 and Expression 9 
show how the relations connect occurrence inputs and outputs to PSL 
preconditions and postconditions, PRIOR and HOLDS.  These expressions also 
constrain input objects to exist at the beginning of the occurrence and output 
objects to exist at the end.4  The PSL relation ACHIEVED means that an occurrence 
caused a state to be true, that is, it was not true before the occurrence and is true 
afterwards.5  Expression 10, Expression 11, and Expression 12 require that input 
and output states are unique to occurrences of the same activity, and different 
from each other on the same occurrence.  Otherwise, for example, a milling 
process could take an input intended for a drilling process. 
 

                                                           
4 Ideally input and output states could be constrained to be “about” the input and output objects, but this is 
not frst order.  See Section 6. 
5 An alternative to introducing new relations would be to extend OCCURRENCE-INPUT and  OCCURRENCE-
OUTPUT with a state.  This would reduce the number of relations, but make specification of the abstract 
level of input and output more cumbersome by requiring existentials for the state. 

 8



 

          (forall (?x ?s ?f) 
             (implies (or (input-state ?x ?s ?f) 
                          (output-state ?x ?s ?f)) 
                     (and (object ?x) 
                           (not (state ?x)) 
                           (activity_occurrence ?s) 
                           (state ?f)))) 

Expression 7: Types for Input and Output States 

     
      (forall (?x ?s ?f) 
             (implies (input-state ?x ?s ?f) 
                      (and (occurrence-input ?x ?s) 
                           (prior ?f ?s) 
                           (exists_at ?x (begin_of ?s))))) 

Expression 8: Preconditions for Occurrence Inputs 
          (forall (?x ?s ?f) 
             (implies (output-state ?x ?s ?f) 
                      (and (occurrence-output ?x ?s) 
                           (achieved ?f ?s) 
                           (exists_at ?x (end_of ?s))))) 

Expression 9: Postconditions for Occurrence Outputs 

 
          (forall (?x1 ?s1 ?a1 x2 ?s2 ?a2 ?f) 
             (implies (and (input-state ?x1 ?s1 ?f) 
                           (input-state ?x2 ?s2 ?f) 
                           (activity_occurrence ?s1 ?a1) 
                           (activity_occurrence ?s2 ?a2)) 
                      (and (= ?x1 ?x2) 
                           (= ?a1 a2)))) 

Expression 10: Input State Uniqueness 

 
          (forall (?x1 ?s1 ?x2 ?s2 ?f) 
             (implies (and (output-state ?x1 ?s1 ?f) 
                           (output-state ?x2 ?s2 ?f) 
                           (activity_occurrence ?s1 ?a1) 
                           (activity_occurrence ?s2 ?a2)) 
                      (and (= ?x1 ?x2) 
                           (= ?a1 a2)))) 

Expression 11: Output State Uniqueness 

 
          (forall (?x1 ?x2 ?s ?f) 
              (not (and (input-state ?x1 ?s ?f) 
                        (output-state ?x2 ?s ?f)))) 

Expression 12: Input and Output State Uniqueness 

 

 9



 

2. Connect occurrence inputs and outputs with flows that constrain preconditions 
and postconditions.  For example, a drilling process that comes before a milling 
process must ensure that the piece of metal is placed in the proper position to start 
milling.6  It is required that no other process puts the piece of metal on the milling 
machine or takes it away before milling starts.  This prevents any process 
preceding drilling from passing the piece in too early, and any process occurring 
after milling from flowing it out too early. 

 
Expression 13, Expression 14, Expression 15, and Expression 16 represent this by 
introducing a relation that identifies which entities are flowing between the 
outputs and inputs of which occurrences, called OCCURRENCE-FLOW.  Expression 
13 constrains which elements this relation applies to.  Expression 14 constrains 
flows to go between earlier and later occurrences, to match output to input states, 
and to have no occurrences in between that alter these states.7  Finally, some 
approaches might require outputs to have inbound flows, and inputs to have 
outbound flows, as shown in Expression 15 and Expression 16.8
 

          (forall (?x ?s1 ?s2) 
             (implies (occurrence-flow ?x ?s1 ?s2) 
                      (and (object ?x) 
                           (not (state ?x)) 
                           (activity_occurrence ?s1) 
                           (activity_occurrence ?s2)))) 

Expression 13: Types for Flows 

                                                           
6 Usually there would be a separate transport process in between drilling and milling, such as a conveyor 
belt.  This is omitted from the example for simplicity of presentation. 
7 The relation CHANGED is an addition to PSL.  It is defined to require that an occurrence either change a 
state from true to false or false to true: 
       (forall (?f ?s) 
          (iff (changed ?f ?s) 
               (or (achieved ?f ?s) 
                   (falsified ?f ?s)))) 
8  Purely physical applications could require only one outflow per output of an occurrence, because 
physical objects can only flow to one place at a time.  However, this would eliminate the application of 
multiple processes to the same object at the same time, for example oiling and cutting a piece of metal.  
Some applications might constrain the number of input and output objects of the same type.  These 
constraints are cumbersome to write in first-order logic, because it does not have operators for referring to 
the number of elements in a set, but see extensions in [4]. 

 10



 

          (forall (?x ?s1 ?s2) 
             (implies (and (occurrence-flow ?x ?s1 ?s2) 
                     (legal ?s2)) 
                (and (occurrence-output ?x ?s1) 
                     (occurrence-input  ?x ?s2) 
                     (forall (?f) 
                        (iff (ouput-state ?x ?s1 ?f) 
                             (input-state ?x ?s2 ?f))) 
                     (earlier ?s1 ?s2) 
                     (not (exists (?s3) 
                             (and (changed ?f ?s3) 
                                  (earlier ?s1 ?s3) 
                                  (earlier ?s3 ?s2))))))) 

Expression 14: Basic Flow Constraint 
          (forall (?x ?s2) 
             (implies (occurrence-input ?x ?s2) 
                      (exists (?s1) 
                         (occurrence-flow ?x ?s1 ?s2)))) 

Expression 15: Inbound Flow Constraint 
          (forall (?x ?s1) 
             (implies (occurrence-output ?x ?s1) 
                      (exists (?s2) 
                         (occurrence-flow ?x ?s1 ?s2)))) 

Expression 16: Outbound Flow Constraint 

 
Applying these relations to Expression 6, we get Expression 17, which identifies the 
piece of metal that flows between the occurrences of drilling and milling.  The flow 
axioms above can infer the output of drilling and the input of milling, as well as the 
equivalence of the output state of drilling and the input state of milling.  They also restrict 
other occurrences from being introduced that alter that state between the drilling and 
milling.  Expression 17 does not satisfy Expression 5, Expression 15, or Expression 16, 
because Expression 17 allows a situation where there is no output providing the metal 
input to drilling. 

 11



 

     (exists (?sDrill ?sMill ?m ?i ?o 
              ?fDrillMetalOutState ?fMillMetalInState) 
        (and (occurrence_of ?sDrill drilling(?m ?i ?o)) 
             (occurrence_of ?sMill milling(?m ?i ?o)) 
             (occurrence-input ?m ?sDrill) 
             (occurrence-output ?m ?sMill) 
             (earlier ?sDrill ?sMill) 
             (legal ?sMill) 
             (input-state ?m ?sMill ?fMillMetalInState) 
             (occurrence-flow ?m ?sDrill ?sMill))) 

Expression 17: Example Process Constraint Using Flows 

 

4.2 With Complex Activity Occurrences 
 
The axioms and examples of the previous sections allow processes to happen on their 
own, uncoordinated by any larger process.  These axioms are too weak, because normally 
processes are part of larger ones that also have inputs and outputs, and coordinate 
subprocesses to achieve particular goals.  For example, Expression 5 and Expression 14 
only say that an input must be provided sometime earlier than the corresponding output, 
without regard to an overall coordinating process aimed at making a piece of metal of a 
certain shape.  Expressions 6 and Expression 17 are similar in saying that there exists a 
sequence of drilling and milling sometime, without any other requirement.  Processes that 
coordinate others are called complex activities in PSL and their occurrences are complex 
occurrences.  Processes that do not are called primitive activities and primitive 
occurrences. 
 
In this section, we revise the axioms of the last section to support complex processes, and 
add new ones to relate inputs and outputs of complex occurrences to inputs and outputs 
of contained primitive occurrences.  Providing for the specification of inputs and outputs 
on complex occurrences separately from primitive occurrences means that complex 
inputs and outputs can be specified even when primitive occurrences have not, as usually 
happens at an early stage of design.  This requires more relations and consistency rules 
than simply deriving complex inputs and outputs from primitive ones, but supports 
incremental construction of process models, resulting in designs that are more robust. 
 
First, Expression 5 is updated to apply to complex occurrences as well as primitive, 
because the PSL relation EARLIER applies only to primitive occurrences.  Expression 18 
uses the PSL relations ROOT_OCC and LEAF_OCC to identify beginning and ending 
primitive suboccurrences of complex ones.  The updated axiom also applies to primitive 
occurrences, because primitives are roots and leaves of themselves, see Expression 7 of 
[1].  Expression 14 has the same problem, and requires updates for complex occurrences, 
see Expression 31 and following. 

 12



 

            (forall (?x ?s2 ?root2) 
               (implies (and (occurrence-input ?x ?s2) 
                             (root_occ ?root2 ?s2) 
                             (legal ?root2)) 
                        (exists (?s1 ?leaf1) 
                           (and (occurrence-output ?x ?s1) 
                                (leaf_occ ?leaf1 ?s1) 
                                (earlier ?leaf1 ?root2))))) 

Expression 18: Revised Expression 5 for Primitive and Complex Occurrences  

A common characteristic of complex flow models, including procedures in programming 
languages, is that inputs and outputs must either pass between suboccurrences of the 
same complex occurrence, or through inputs and outputs of their complex occurrence, 
that is, across the complex occurrence “boundary,” as shown in Expression 19 through 
Expression 22.  Expression 19 constrains suboccurrence inputs to come from earlier 
suboccurrences under the complex one, or from the complex occurrence itself.  It uses the 
PSL relation MIN_PRECEDES, which is a partial ordering of legal occurrences that happen 
as part of a complex occurrence, and SUBACTIVITY_OCCURRENCE, which relates complex 
occurrences to the suboccurrences in them.9,10  Expression 20 is the corresponding 
constraint for the outputs of suboccurrences.  Expression 21 is the constraint for inputs to 
complex occurrences, that they must be matched to the output of some suboccurrence.  
The constraint does not allow a complex output to be provided directly from a complex 
input, because some occurrence must change the input state to the output state, due to 
PSL’s “inertia” principle, and Expression 9.  Expression 22 is the corresponding 
constraint for outputs of complex occurrences.  Many flow models consider Expression 
22 optional, because a process may be predefined and provide an output that happens not 
to be needed in any particular usage.  Some models also consider Expression 21 optional, 
but a process with unused inputs is usually not properly defined. 

                                                           
9 The SUBACTIVITY_OCCURRENCE relation should apply between complex occurrences as well as primitive 
and complex occurrences, but one of the PSL axioms inadvertantly prevents this.  Axiom3 of the Activity 
Occurrence theory should be restricted to atomic occurrences:  
   (forall (?a ?occ ?s1 ?s2) 
        (implies  (and  (occurrence_of ?occ ?a) 
                        (subactivity_occurrence ?s1 ?occ) 
                        (subactivity_occurrence ?s2 ?occ) 
                        (atomic ?s1) 
                        (atomic ?s2) 
                  (or   (min_precedes ?s1 ?s2 ?a) 
                        (min_precedes ?s2 ?s1 ?a) 
                        (= ?s1 ?s2)))) 
10 Expression 19 uses the same technique as Expression 18 and Expression 31 to apply to both primitive 
and complex activities.  The inequality is needed to prevent an occurrence input providing input to itself 
(PSL occurrences are subactivity occurrences of themselves). 

 13



 

        (forall (?x ?s2 ?root2) 
           (implies (and (occurrence-input ?x ?s2) 
                         (root_occ ?root2 ?s2) 
                         (legal ?s2)) 
                    (or (exists (?s1 ?leaf1 ?a) 
                           (and (occurrence-output ?x ?s1) 
                                (leaf_occ ?leaf1 ?s1) 
                                (min_precedes ?leaf1 ?root2 ?a))) 
                        (exists (?occ) 
                           (and (occurrence-input ?x ?occ) 
                                (subactivity_occurrence ?s2 ?occ) 
                                (not (= ?occ ?s2))))))) 

Expression 19: Suboccurrence Inputs 

 
        (forall (?x ?s1 ?leaf1) 
           (implies (and (occurrence-output ?x ?s1) 
                         (leaf_occ ?leaf1 ?s1) 
                         (legal ?s1)) 
                    (or (exists (?s2 ?root2 ?a) 
                           (and (occurrence-input ?x ?s2) 
                                (root_occ ?root2 ?s2) 
                                (min_precedes ?leaf1 ?root2 ?a))) 
                        (exists (?occ) 
                           (and (occurrence-output ?x ?occ) 
                                (subactivity_occurrence ?s1 ?occ) 
                                (not (= ?occ ?s1))))))) 

Expression 20: Suboccurrence Outputs 

 
        (forall (?x ?occ ?a) 
           (implies (and (occurrence-input ?x ?occ) 
                         (occurrence_of ?occ ?a) 
                         (not (primitive ?a))) 
                    (exists (?s) 
                       (and (occurrence-input ?x ?s) 
                            (subactivity_occurrence ?s ?occ) 
                            (not (= ?s ?occ)))))) 

Expression 21: Complex Inputs 

 
        (forall (?x ?occ ?a) 
           (implies (and (occurrence-output ?x ?occ) 
                         (occurrence_of ?occ ?a) 
                         (not (primitive ?a))) 
                    (exists (?s) 
                       (and (occurrence-output ?x ?s) 
                            (subactivity_occurrence ?s ?occ) 
                            (not (= ?s ?occ)))))) 

Expression 22: Complex Outputs 

 14



 
 

 
Expression 24 is the complex version of Expression 6.  It constrains the suboccurrences 
of all occurrences of a complex activity drillAndMill, shown in Expression 23, to happen 
in a certain order and have certain inputs and outputs.  It satisfies the input and output 
axioms of complex activities above.  In particular, the input of drilling is matched to the 
input of the complex occurrence containing it.  It still does not address the question of 
input and output from other parameters beside metal, see Section 4.3. 
 
      (forall (?a ?m) 
         (implies (= ?a drillAndMill(?m ?i1 ?i2)) 
                  (and (activity ?a) 
                       (metal ?m) 
                       (instructions ?i1) 
                       (instructions ?i2) 
                       (exists (?o) 
                          (subactivity drilling(?m ?i1 ?o) ?a)) 
                       (exists (?o) 
                          (subactivity milling(?m ?i2 ?o) ?a))))) 

Expression 23: Example Parameterized Term for a Complex Activity 

 
(forall (?occDrillAndMill ?m ?i2 ?i2) 
   (implies 
      (occurrence_of ?occDrillAndMill drillAndMill(?m ?i2 i2)) 
      (exists (?sDrill ?sMill ?m ?o ?root ?leaf) 
         (and (occurrence_of ?sDrill drilling(?m i1 ?o)) 
              (occurrence_of ?sMill milling(?m i2 ?o)) 
              (subactivity_occurrence ?sDrill ?occDrillAndMill) 
              (subactivity_occurrence ?sMill ?occDrillAndMill) 
              (occurrence-input ?m ?occDrillAndMill) 
              (occurrence-input ?m ?sDrill) 
              (occurrence-output ?m ?sDrill) 
              (occurrence-input ?m ?sMill) 
              (occurrence-output ?m ?sMill) 
              (occurrence-output ?m ?occDrillAndMill) 
              (root_occ ?root ?sDrill) 
              (min_precedes ?root ?sDrill drillAndMill) 
              (min_precedes ?sDrill ?sMill drillAndMill) 
              (min_precedes ?sMill ?leaf drillAndMill) 
              (leaf_occ ?leaf ?sMill))))) 

Expression 24: Example Process Constraint for a Complex Occurrence 

 
The boundary intuitions also require loosening Expression 10 and Expression 11 to allow 
input and output states to be in common between complex occurrences and their 
suboccurrences, as shown in Expression 25 and Expression 26.  An occurrence is its own 
subactivity_occurrence, so these expressions do not weaken Expression 10 and 
Expression 11 for primitive occurrences. 
 

 15



 

    (forall (?x1 ?s2 ?x2 ?s2 ?f) 
       (implies (and (input-state ?x1 ?s1 ?f) 
                     (input-state ?x2 ?s2 ?f)) 
                (and (= ?x1 ?x2) 
                     (subactivity_occurrence ?s1 ?s2)))) 

Expression 25: Revised Expression 10 for Complex Activities 

 
    (forall (?x1 ?s2 ?x2 ?s2 ?f) 
       (implies (and (output-state ?x1 ?s1 ?f) 
                     (output-state ?x1 ?s2 ?f)) 
                (and (= ?x1 ?x2) 
                     (subactivity_occurrence ?s1 ?s2)))) 

Expression 26: Revised Expression 11 for Complex Activities 

 
Applying boundary intuitions to flows between outputs and inputs of complex processes 
requires that preconditions, postconditions, input states, output states, and flows between 
complex occurrences must be consistent with the corresponding aspects of the 
occurrences they contain.  The most basic constraint is that preconditions and 
postconditions for roots and leaves respectively are the same as their containing complex 
occurrences, as shown in Expression 27 and Expression 28.  These are general axioms, 
independent of inputs and outputs, but apply to input and output states also.  Expression 
27 combined with Expression 8 provides the typical constraint on complex input states 
that they are established before the complex occurrence starts.  This still allows a 
suboccurrence that is not a root to take the complex input as its own input. 
 
       (forall (?occ ?s ?f) 
           (iff (and (prior ?f ?s) 
                     (root_occ ?s ?occ)) 
                (prior ?f ?occ))) 

Expression 27: Complex Preconditions 

 
         forall (?occ ?s ?f) 
           (iff (and (holds ?f ?s) 
                     (leaf_occ ?s ?occ)) 
                (holds ?f ?occ))) 

Expression 28: Complex Postconditions 

 
The analogous constraint on complex output states is stronger, because these are usually 
only established by the leaf occurrences.  This corresponds to the intuition that outputs 
are available from a process all at once at the end, which is necessary to prevent later 
processes from being triggered by an output state of the complex occurrence before it is 
complete.  This is shown in Expression 29, which requires the complex output state to be 
achieved by the leaf only.  The expression still allows a suboccurrence that is not a leaf to 
provide the complex output object as output, and even achieve a postcondition that is 
required of the output object by the goals of the complex occurrence, see Section 6, as 

 16



 

long it does establish the complex output state.  For example, a step in the milling process 
may achieve the required shape for the metal, but it will not place the piece of metal in 
the location defined as the output of the milling process until the process is completely 
done.11

 
       (forall (?occ ?s ?f ?x ?s2) 
           (implies (and (output-state ?x ?f ?occ) 
                         (leaf_occ ?s ?occ)) 
                    (and (achieved ?f ?s) 
                         (implies (holds ?f ?s2) 
                                  (= ?s ?s2))))) 

Expression 29: Complex Output States 

 
The most basic consistency rule about flows between complex occurrences is that a flow 
exists between their suboccurrences, and vice-versa, as shown in Expression 30.  This 
follows PSL's general principle of representing processes at the most concrete level, 
which means that flows between complex occurrences are just views onto the flows 
between primitive occurrences. 
 
       (forall (?occ1 ?occ2 ?x ?a1 ?a2) 
           (iff (and (occurrence-flow ?x ?occ1 ?occ2) 
                     (occurrence_of ?occ1 ?a1) 
                     (occurrence_of ?occ2 ?a2) 
                     (not (primitive ?a1))     
                     (not (primitive ?a2))) 
                (exists (?s1 ?s2) 
                   (and (occurrence-flow ?x ?s1 ?s2) 
                        (subactivity_occurrence ?s1 ?occ1) 
                        (subactivity_occurrence ?s2 ?occ2) 
                        (not (= ?s1 ?occ1)) 
                        (not (= ?s2 ?occ2)))))) 

Expression 30: Flow Between Complex Activities 

 
Expression 30 does not restrict which suboccurrences realize the flows between complex 
occurrences.  To specify this requires loosening Expression 14 to allow flows between 
complex inputs and those of suboccurrences, and likewise for complex outputs, as well as 
updating it to apply between complex occurrences, as Expression 18 does for occurrence 
inputs and outputs.  These can be achieved in a single axiom, as shown in Expression 31.  
It uses the root and leaf technique of Expression 18, but narrows from Expression 14 to 
only the occurrences that are not subactivities of one another. 
 

                                                           
11 Expression 8, Expression 9, and Expression 29 are usually true, but too restrictive for some applications.  
A process might take input or provide output while it is executing, rather than just at the beginning and end. 
These are called streaming parameters in UML 2.  For example, a milling machine will take in and put out 
oil as it is running.  Additional axioms can be defined to distinguish these kinds of inputs and outputs, and 
temporal constraints loosened for these kinds. 

 17



 

    (forall (?x ?s1 ?s2 ?leaf1 ?root2) 
       (implies (and (occurrence-flow ?x ?s1 ?s2) 
                     (not (subactivity_occurrence ?s1 ?s2)) 
                     (not (subactivity_occurrence ?s2 ?s1)) 
                     (root_occ ?root2 ?s2) 
                     (legal ?root2)) 
                (and (occurrence-output ?x ?s1) 
                     (occurrence-input  ?x ?s2) 
                     (forall (?f) 
                        (iff (ouput-state ?x ?s1 ?f) 
                             (input-state ?x ?s2 ?f))) 
                     (leaf_occ ?leaf1 ?s1) 
                     (earlier ?leaf1 ?root2) 
                     (not (exists (?s3 ?root3 ?leaf3) 
                             (and (changed ?f ?s3) 
                                  (root_occ ?root3 ?s3) 
                                  (leaf_occ ?leaf3 ?s3) 
                                  (earlier ?leaf1 ?root3) 
                                  (earlier ?leaf3 ?root2))))))) 

Expression 31: Revised Expression 14 for Primitive and Complex Occurrences 

 
This opens the way to constraints on complex inputs and outputs and those of 
suboccurrences, as shown in Expression 32 and Expression 33.  Expression 32 requires 
that the input state of the complex occurrence only be modified by the suboccurrence to 
which the input flows.  For example, if a piece of metal must appear at a certain location 
to be input to a milling process, only the specific suboccurrence to which the part is 
flowing can move the piece of metal once it is taken as input.  Expression 33 is similar, 
but places weaker constraints on the effects of occurrences between the suboccurrence at 
the source of the flow and the leaf of the complex occurrence.  This is to adhere to the 
requirement that only leaves achieve output states, in Expression 29. 

 18



 

  (forall (?x ?s1 ?s2 ?root1 ?root2 ?a) 
     (implies (and (occurrence-flow ?x ?s1 ?s2) 
                   (subactivity_occurrence ?s2 ?s1) 
                   (root_occ ?root2 ?s2) 
                   (legal ?root2)) 
              (and (not (= ?s1 s2)) 
                   (occurrence-input ?x ?s1) 
                   (occurrence-input ?x ?s2) 
                   (forall (?f) 
                      (iff (input-state ?x ?s1 ?f) 
                           (input-state ?x ?s2 ?f))) 
                   (root_occ ?root1 ?s1) 
                   (occurrence_of ?s1 ?a) 
                   (not (exists (?s3 ?root3 ?leaf3) 
                           (and (changed ?f ?s3) 
                                (root_occ ?root3 ?s3) 
                                (leaf_occ ?leaf3 ?s3) 
                                (earlier ?root1 ?root3 ?a) 
                                (earlier ?leaf3 ?root2 ?a))))))) 

Expression 32: Flows from Complex Inputs to Suboccurrences 

 
 
  (forall (?x ?s1 ?s2 ?leaf1 leaf2 ?a) 
     (implies (and (occurrence-flow ?x ?s1 ?s2) 
                   (subactivity_occurrence ?s1 ?s2) 
                   (leaf_occ ?leaf2 ?s2) 
                   (legal ?leaf2)) 
              (and (not (= ?s1 s2)) 
                   (occurrence-output ?x ?s1) 
                   (occurrence-output ?x ?s2) 
                   (leaf_occ ?leaf1 ?s1) 
                   (occurrence_of ?s1 ?a) 
                   (not (exists (?s3 ?root3 ?leaf3) 
                           (and (participant ?x ?s3) 
                                (root_occ ?root3 ?s3) 
                                (leaf_occ ?leaf3 ?s3) 
                                (earlier ?leaf1  ?root3 ?a) 
                                (earlier ?leaf3 ?leaf2 ?a))))))) 

Expression 33: Flows from Complex Suboccurrences to Outputs 

 
The loosened Expression 31 also lets us relate suboccurrence inputs and outputs to flows 
by updating Expression 19 through Expression 22 to require flows connecting inputs and 
outputs within complex activities, as shown in Expression 34 through Expression 37.  
Expression 38 shows the complex version of Expression 17 conforming to the updated 
flow axioms. 
 

 19



 

      (forall (?x ?s2 ?root2) 
         (implies (and (occurrence-input ?x ?s2) 
                       (root_occ ?root2 ?s2) 
                       (legal ?s2)) 
                  (or (exists (?s1 ?leaf1 ?a) 
                         (and (occurrence-flow ?x ?s1 ?s2) 
                              (leaf_occ ?leaf1 ?s1) 
                              (min_precedes ?leaf1 ?root2 ?a))) 
                      (exists (?occ) 
                         (and (subactivity_occurrence ?s2 ?occ) 
                              (not (= ?occ ?s2)) 
                              (occurrence-flow ?x ?occ ?s2)))))) 

Expression 34: Suboccurrence Input Flows 
      (forall (?x ?s1 ?leaf1) 
         (implies (and (occurrence-output ?x ?s1) 
                       (leaf_occ ?leaf1 ?s1) 
                       (legal ?s1)) 
                  (or (exists (?s2 ?root2 ?a) 
                         (and (occurrence-input ?x ?s2) 
                              (root_occ ?root2 ?s2) 
                              (min_precedes ?leaf1 ?root2 ?a))) 
                      (exists (?occ) 
                         (and (subactivity_occurrence ?s1 ?occ) 
                              (occurrence-output ?x ?occ) 
                              (not (= ?occ ?s1)) 
                              (occurrence-flow ?x ?s1 ?occ)))))) 

Expression 35: Suboccurrence Output Flows 
      (forall (?x ?occ ?a) 
         (implies (and (occurrence-input ?x ?occ) 
                       (occurrence_of ?occ ?a) 
                       (not (primitive ?a)))      
                  (exists (?s) 
                     (and (occurrence-input ?x ?s) 
                          (subactivity_occurrence ?s ?occ) 
                          (not (= ?s ?occ)) 
                          (occurrence-flow ?x ?occ ?s))))) 

Expression 36: Complex Input Flows 
      (forall (?x ?occ ?a) 
         (implies (and (occurrence-output ?x ?occ) 
                       (occurrence_of ?occ ?a) 
                       (not (primitive ?a))) 
                  (exists (?s) 
                     (and (occurrence-output ?x ?s) 
                          (subactivity_occurrence ?s ?occ) 
                          (not (= ?s ?occ)) 
                          (occurrence-flow ?x ?s ?occ))))) 

Expression 37: Complex Output Flows 

 20



 

 
(forall (?occDrillAndMill ?m ?i2 ?i2) 
   (implies 
      (occurrence_of ?occDrillAndMill drillAndMill(?m ?i2 i2)) 
      (exists (?sDrill ?sMill ?m ?o ?root ?leaf) 
         (and (occurrence_of ?sDrill drilling(?m i1 ?o)) 
              (occurrence_of ?sMill milling(?m i2 ?o)) 
              (subactivity_occurrence ?sDrill ?occDrillAndMill) 
              (subactivity_occurrence ?sMill ?occDrillAndMill) 
              (root_occ ?root ?sDrill) 
              (min_precedes ?root ?sDrill drillAndMill) 
              (min_precedes ?sDrill ?sMill drillAndMill) 
              (min_precedes ?sMill ?leaf drillAndMill) 
              (leaf_occ ?leaf ?sMill) 
              (occurrence-flow ?m ?occDrillAndMill ?sDrill) 
              (occurrence-flow ?m ?sDrill ?sMill) 
              (occurrence-flow ?m ?sMill ?occDrillAndMill))))) 

Expression 38: Example Complex Process Using Flows 

All common process models require occurrences of complex processes to be “strongly 
nested.”  In PSL terminology, this means: 
 

• Occurrences of a process cannot be directly under more than one complex 
occurrence.  For example, the occurrences for drilling and milling within a 
complex occurrence for making a metal part cannot be directly contained in any 
other complex occurrence.  This means SUBACTIVITY_OCCURRENCE forms a tree, 
rather than a directed acyclic graph. 

 
• The boundary for inputs, outputs, and flows is the immediately containing 

complex process in the subactivity occurrence tree.  For example, the complex 
occurrence immediately containing the occurrences of drilling and milling is the 
one through which entities are passed from outside processes to drilling and 
milling, and vice versa.  This affects in Expression 19 through Expression 22 and 
Expression 34 through Expression 37.12 

 
PSL does not impose the above constraints, but they can be added for applications that 
need them.  The first one is established by Expression 39 and Expression 40 defining 
DIRECT_SUBACTIVITY_OCCURRENCE, a special kind of SUBACTIVITY_OCCURRENCE that 
requires no intervening complex occurrences, then using it to require at most one directly 
containing subactivity occurrence.  The second constraint above can be written by using 
DIRECT_SUBACTIVITY_OCCURRENCE to revise Expression 19, as shown in Expression 41 
(the equality tests are not needed with DIRECT_SUBACTIVITY_OCCURRENCE.  Expression 
20, Expression 21, and Expression 22 can be similarly tightened.13

                                                           
12 Some software languages provide for lexical and “spaghetti stack” scoping that gives deeply nested 
processes access to the inputs and outputs of more than the immediately containing process.  PSL 
constraints could also be written for these applications. 
13 All common process models also provide named inputs and outputs, so the same object can be input or 
output in different ways to the same occurrence.  For example, a process that finds home and work phone 

 21



 

  (forall (?s ?occ1) 
     (iff (direct_subactivity_occurrence ?s ?occ1) 
          (and (subactivity_occurrence ?s ?occ1) 
               (not (= ?s ?occ1)) 
               (not (exists (?occ2) 
                       (and (subactivity_occurrence ?s ?occ2) 
                            (subactivity_occurrence ?occ2 ?occ1) 
                            (not (= ?occ2 ?s)) 
                            (not (= ?occ2 ?occ1)))))))) 

Expression 39: Direct Subactivity Occurrences 

 
    (forall (?s ?occ1 ?occ2) 
       (if (and (direct_subactivity_occurrence ?s ?occ1) 
                (direct_subactivity_occurrence ?s ?occ2)) 
           (= ?occ1 ?occ2))) 

Expression 40: Strong Subactivity Occurrence Nesting  

 
(forall (?x ?s2 ?root2) 
   (implies (and (occurrence-input ?x ?s2) 
                 (root_occ ?root2 ?s2) 
                 (legal ?s2)) 
            (exists (?occ) 
               (and (direct_subactivity_occurrence ?s2 ?occ) 
                    (or (exists (?s1 ?leaf1 ?occ ?a) 
                           (and (occurrence_of ?occ ?a) 
                                (occurrence-output ?x ?s1) 
                                (leaf_occ ?leaf1 ?s1) 
                                (min_precedes ?leaf1 ?root2 ?a))) 
                        (occurrence-input ?x ?occ)))))) 

Expression 41: Revised Expression 19 for Strong Nesting 

 

4.3 With Multiple Activity Occurrences 
 
In PSL, occurrences can be contained directly under multiple complex ones, as long as 
the strong nesting constraints of Expression 40 and Expression 41 are not applied, 
providing a representation for multiple views of the same occurrences.  For example, the 
milling process partially overlaps other processes, such as lubricating the milling 
machine, supplying power to it, and so on.  In a typical flow model, the only way to bring 
these partially overlapping processes together is to make one large process.  In PSL, each 
suboccurrence can be shared under multiple separate complex occurrences, each 
providing its own constraint on the occurrence, and supporting partially overlapping 

                                                                                                                                                                             
numbers for a person may return the same number for both.  If these two outputs are to be treated 
differently, then they need to be uniquely identified for flows to unambiguously refer to them.  This can be 
axiomitized by introducing names as a kind of PSL object and extending the input, output, and flow 
relations with names. 

 22



 

complex occurrences.  This makes the construction of the process description incremental 
and flexible. 
 
We can formalize this by defining input and output relations that are relative to a 
complex occurrence, along with constraints limiting the earlier input and output 
constraints to hold only on relative inputs and outputs.  Expression 42 extends the 
OCCURRENCE-INPUT and OCCURRENCE-OUTPUT relations from Expression 2 to include an 
additional complex occurrence that the inputs and outputs are relative to.  This means 
inputs and outputs of the same occurrence can vary depending on which of the many 
complex occurrences it might be under.  This should not apply to multiple containment 
due to strong nesting, as required by Expression 43 and Expression 44.  For example, the 
inputs and outputs of the steps involved in milling a piece of metal should be the same 
when viewed from the overall factory process that contains it.  Since occurrences are 
subactivity occurrences of themselves, these expressions also say that an occurrence can 
act as a view of its own inputs and outputs. 
 
        (forall (?x ?s) 
           (implies (or (occurrence-input-rel ?x ?s ?occ) 
                        (occurrence-output-rel ?x ?s ?occ)) 
                    (and (object ?x) 
                         (not (state ?x)) 
                         (activity_occurrence ?s) 
                         (activity_occurrence ?occ) 
                         (subactivity_occurrence ?s ?occ) 
                         (not (= ?s ?occ))))) 

Expression 42: Relative Inputs and Outputs 
 
        (forall (?x ?s ?occ1 ?occ2) 
           (implies (and (occurrence-input-rel ?x ?s ?occ1) 
                         (subactivity_occurrence ?occ1 ?occ2)) 
                    (occurrence-input-rel ?x ?s ?occ2))) 

Expression 43: Relative Inputs Consistency 

 
        (forall (?x ?s ?occ1 ?occ2) 
           (implies (and (occurrence-output-rel ?x ?s ?occ1) 
                         (subactivity_occurrence ?occ1 ?occ2)) 
                    (occurrence-output-rel ?x ?s ?occ2))) 

Expression 44: Relative Outputs Consistency 

 
With these relations, Expression 19 through Expression 22 can be updated to use relative 
inputs and outputs.  Expression 45 shows this for Expression 19 and the others can be 
similarly amended, along with the flow axioms. 
 

 23



 

  (forall (?x ?s2 ?viewocc ?root2) 
     (implies (and (occurrence-input-rel ?x ?s2 ?viewocc) 
                   (root_occ ?root2 ?s2) 
                   (legal ?s2)) 
              (or (exists (?s1 ?leaf1 ?a) 
                     (and (occurrence-output-rel ?x ?s1 ?viewocc) 
                          (leaf_occ ?leaf1 ?s1) 
                          (min_precedes ?leaf1 ?root2 ?a))) 
                  (exists (?s1 ?occ) 
                     (and (occurrence-input-rel ?x ?occ viewocc) 
                          (subactivity_occurrence ?s ?occ) 
                          (not (= ?occ ?s1))))))) 

Expression 45: Relative Suboccurrence Inputs 

 
Applying relative inputs and outputs to the milling and drilling example of Expression 
24, the drillAndMill complex activity is broken into aspects related to movement of metal 
from drilling to milling and aspects related to moving oil from a reservoir, as shown in 
Expression 46, Expression 47, and Expression 48.  Inputs and outputs to drilling and 
milling are specified under two complex activities, as shown in Expression 49 and 
Expression 50.  The lubricating activity involves pumping oil from a reservoir, since 
milling and drilling would not normally use the same oil.  The outputs of oil from drilling 
and milling back to the reservoir or a cleaning activity are omitted, for simplicity.  
Finally, Expression 51 ensures the same occurrences of milling and drilling are under 
both of the complex occurrences, while allowing the occurrences of pumping to be only 
under one.14  The expressions for drillAndMillShape and drillAndMillLubricate do not 
require them to be used together, even though they are in the example.  This means 
alternative lubrication processes can be combined with drilling and milling, or vice versa. 
 
(forall (?a ?m) 
   (implies (= ?a drillAndMill(?m ?i1 ?i2 ?r)) 
            (and (activity ?a) 
                 (metal ?m) 
                 (instructions ?i1) 
                 (instructions ?i2) 
                 (reservoir ?r) 
                 (subactivity drillAndMillShape(?m ?i1 ?i2) ?a) 
                 (subactivity drillAndMillLubricate(?m ?r) ?a)))) 

Expression 46: Example Parameterized Term for Complex Activity 

                                                           
14 Additional constraints are needed to prevent inference engines from introducing other occurrences of 
drilling and milling other than the ones required to exist in Expression 49, Expression 50, and Expression 
51.  These are the closure constraints as described in Section 7 of [1]. 

 24



 

 
      (forall (?a ?m) 
         (implies (= ?a drillAndMillShape(?m ?i1 ?i2)) 
                  (and (activity ?a) 
                       (metal ?m) 
                       (instructions ?i1) 
                       (instructions ?i2) 
                       (exists (?o) 
                          (subactivity drilling(?m ?i1 ?o) ?a))) 
                       (exists (?o) 
                          (subactivity milling(?m ?i2 ?o) ?a))))) 

Expression 47: Example Parameterized Term for Shaping 
     (forall (?a ?m) 
         (implies (= ?a drillAndMillLubricate(?m ?r)) 
                  (and (activity ?a) 
                       (metal ?m) 
                       (reservoir ?r) 
                       (exists (?o) 
                          (subactivity drilling(?m ?i1 ?o) ?a))) 
                       (exists (?o) 
                          (subactivity milling(?m ?i2 ?o) ?a))))) 

Expression 48: Example Parameterized Term for Lubricating 
(forall (?occDrillAndMillShape ?m ?i1 ?i2 ?r) 
   (implies 
      (occurrence_of ?occDrillAndMillShape 
                     drillAndMillShape(?m ?i1 ?i2)) 
      (exists (?sDrill ?sMill ?m ?o1 ?o2 ?root ?leaf) 
         (and (occurrence_of ?sDrill drilling(?m ?i1 ?o1)) 
              (occurrence_of ?sMill milling(?m ?i2 ?o2)) 
              (subactivity_occurrence ?sDrill  
                                      ?occDrillAndMillShape) 
              (subactivity_occurrence ?sMill  
                                      ?occDrillAndMillShape) 
              (occurrence-input ?m ?occDrillAndMillShape) 
              (occurrence-input-rel ?m ?sDrill  
                                    ?occDrillAndMillShape) 
              (occurrence-output-rel ?m ?sDrill  
                                     ?occDrillAndMillShape) 
              (occurrence-input-rel ?m ?sMill  
                                    ?occDrillAndMillShape) 
              (occurrence-output-rel ?m ?sMill  
                                     ?occDrillAndMillShape) 
              (occurrence-output ?m ?occDrillAndMillShape) 
              (root_occ ?root ?sDrill) 
              (min_precedes ?root ?sDrill drillAndMillShape) 
              (min_precedes ?sDrill ?sMill drillAndMillShape) 
              (min_precedes ?sMill ?leaf drillAndMillShape) 
              (leaf_occ ?leaf ?sMill))))) 

Expression 49: Example Complex Occurrences for Shaping 

 25



 

(forall (?occDrillAndMillLubricate ?m ?r) 
   (implies 
      (occurrence_of ?occDrillAndMillLubricate  
                     drillAndMillLubricate(?m ?r)) 
      (exists (?sDrill ?sMill ?m ?i1 ?i2 ?o1 ?o2 ?root ?leaf) 
         (and (occurrence_of ?sDrill drilling(?m ?i1 ?o1)) 
              (occurrence_of ?sMill milling(?m ?i2 ?o2)) 
              (occurrence_of ?sPumping1 pumping(?r ?o1)) 
              (occurrence_of ?sPumping2 pumping(?r ?o2)) 
              (subactivity_occurrence ?sDrill 
                                      ?occDrillAndMillLubricate) 
              (subactivity_occurrence ?sMill 
                                      ?occDrillAndMillLubricate) 
              (subactivity_occurrence ?sPumping1 
                                      ?occDrillAndMillLubricate) 
              (subactivity_occurrence ?sPumping2  
                                      ?occDrillAndMillLubricate) 
              (occurrence-output-rel ?o1 ?occPumping1 
                                     ?occDrillAndMillLubricate) 
              (occurrence-input-rel ?o1 ?sDrill) 
              (occurrence-output-rel ?o2 ?occPumping2) 
              (occurrence-input-rel ?o2 ?sMill) 
              (root_occ ?root ?sDrill) 
              (min_precedes ?root ?sPumping1  
                            drillAndMillLubricate) 
              (min_precedes ?sPumping1 ?sDrill  
                            drillAndMillLubricate) 
              (min_precedes ?sDrill ?sPumping2  
                            drillAndMillLubricate) 
              (min_precedes ?sPumping2 ?sMill  
                            drillAndMillLubricate) 
              (min_precedes ?sMill ?leaf drillAndMillLubricate) 
              (leaf_occ ?leaf ?sMill))))) 

Expression 50: Complex Occurrences for Lubricating 

 26



 

(forall (?occDrillAndMill ?m ?i1 ?i2 ?r) 
   (implies 
     (occurrence_of ?occDrillAndMill drillandMill(?m ?i1 ?i2 ?r)) 
     (exists (?occDrillAndMillShape ?occDrillAndMillLubricate 
              ?sDrill ?sMill) 
        (and (occurrence_of ?occDrillAndMillShape 
                            drillAndMillShape(?m ?i1 ?i2)) 
             (occurrence_of ?occDrillAndMillLubricate  
                            drillAndMillLubricate(?m ?r)) 
             (occurrence_of ?sDrill drilling(?m ?i1 ?r)) 
             (occurrence_of ?sMill milling(?m ?i1 ?r)) 
             (subactivity_occurrence ?occDrillAndMillShape  
                                     ?occDrillAndMill) 
             (subactivity_occurrence ?occDrillAndMillLubricate  
                                     ?occDrillAndMill) 
             (subactivity_occurrence ?sDrill  
                                     ?occDrillAndMillShape) 
             (subactivity_occurrence ?sDrill  
                                     ?occDrillAndMillLubricate) 
             (subactivity_occurrence ?sMill   
                                     ?occDrillAndMillShape) 
             (subactivity_occurrence ?sMill   
                                   ?occDrillAndMillLubricate))))) 

Expression 51: Occurrences Under More Than One Superoccurrence 

 

5. Input and Output Axioms at the Activity Level 
 
In typical flow modeling and programming languages, inputs and outputs are defined for 
activities, rather than occurrences.  This reflects the common pattern that inputs and 
outputs of multiple occurrences of the same activity are usually the same.  In addition, it 
is useful to delay the introduction of relative inputs and outputs to later stages of design.  
Convenience relations can be defined for early stage representation of inputs and outputs, 
as shown in Expression 52, Expression 53, and Expression 54.  These can be used to 
extend activity terms, such as milling in Expression 1, to include inputs and outputs, as 
shown in Expression 55.  Similar axioms can be defined for input and output states, and 
used with activity terms. 
 
            (forall (?x ?a) 
               (implies (or (activity-input ?x ?a) 
                            (activity-output ?x ?a)) 
                        (and (object ?x) 
                             (not (state ?x)) 
                             (activity ?a)))) 

Expression 52: Activity Input and Output Types 

 27



 

            (forall (?x ?a ?s) 
              (implies (and (activity-input ?x ?a) 
                            (occurrence_of ?s ?a)) 
                       (exists (?occ) 
                          (occurrence-input-rel ?x ?s ?occ)))) 

Expression 53: Activity Input Constraint 
            (forall (?x ?a ?s) 
              (implies (and (activity-output ?x ?a) 
                            (occurrence_of ?s ?a)) 
                       (exists (?occ) 
                          (occurrence-output-rel ?x ?s ?occ)))) 

Expression 54: Activity Output Constraint 
      (forall (?a ?m ?i ?o) 
         (implies (= ?a milling(?m ?i ?o)) 
                  (and (activity ?a) 
                       (metal ?m) 
                       (instructions ?i) 
                       (oil ?o) 
                       (activity-input ?m ?a) 
                       (activity-input ?i ?a) 
                       (activity-input ?o ?a) 
                       (activity-output ?m ?a) 
                       (activity-output ?o ?a)))) 

Expression 55: Example Activity Input and Output 

 
Concurrency in PSL is represented by combining multiple activities into one, with the 
restriction that only occurrences of the combined activity appear in the occurrence tree.  
This is because the synergistic effects of the activities happening together often are 
different from the activities happening alone.15  PSL provides the CONC function to 
combine activities concurrently into one.  Whatever the synergistic effects of 
concurrency, it is still expected that inputs and outputs will combine without interference, 
as shown in Expression 56 and Expression 57.  PSL happens to consider the occurrence 
of a combined activity as not having subactivity occurrences, but if this were to be 
allowed, then these axioms could be written on occurrences and generalized for activities 
as done above for activity inputs and outputs. 
 
      (forall (?a1 ?a2) 
         (implies (activity-input ?x ?a1) 
                  (activity-input ?x (conc ?a1 ?a2)) 

Expression 56: Concurrent Activity Inputs 
      (forall (?a1 ?a2) 
         (implies (activity-output ?x ?a1) 
                  (activity-output ?x (conc ?a1 ?a2)) 

Expression 57: Concurrent Activity Outputs 
                                                           
15 See section 5.2 of [1].  

 28



 

6. Metatheoretic Issues 
 
Some aspects of the concepts of input and output are not representable in PSL, because 
they concern how process specifications are written, rather than how a process executes 
at runtime.  For example, some flow modeling languages support optional inputs and 
outputs.  These objects are not required to participate in the occurrences of an activity, 
but can if they are available, which is a statement that the allowable process 
specifications include those that do not provide a certain input or output.  It is not a 
statement about process execution, because it may be that the optional inputs and outputs 
of an activity happen to always participate in the occurrences, but rather it is a statement 
about what inputs and outputs are allowed to be specified.  This means if all legal 
occurrences of the activity happen to use the optional inputs and outputs, there is no first-
order constraint on the occurrences that can say it could be otherwise.  It is a statement 
about PSL statements (“metatheoretic”) or involves the quantification over relations 
(“second-order”).16

 
Another metatheoretic issue is to determine whether a participant is an input, output, or 
neither.  The axioms of the previous sections specify the consequences of identifying a 
participant as input or output, but not the requirements for making the identification in 
the first place.  For example, the milling machine is a participant in the milling process, 
but would not normally be considered an input, even though it is affected by the process 
as much as any other participant, due to wear and tear.  A view could be constructed in 
which the machine was an input to the factory process as a whole and output much later 
as a worn out machine.  We might take the position that all participants are either inputs 
or outputs, as shown in Expression 58, which narrows the problem to distinguishing input 
from output. 
 
    (forall (?x ?s) 
       (implies (participant ?x ?s) 
                (exists (?occ) 
                   (or (occurrence-input-rel ?x ?s ?occ) 
                       (occurrence-output-rel ?x ?s ?occ))))) 

Expression 58: No Side Effects 

 
An important metatheoretic issue is to categorize views of inputs and outputs, as enabled 
by the relations defined in Section 4.3.  For example, Section 2 lists multiple possibilities 
for inputs and outputs of the milling activity.  These views are intimately connected with 
the purposes of the process designer.  For example, if the goal of the milling process were 
to produce the part that is most needed at any particular moment, then the shape of the 
part would be determined dynamically by the milling process itself, perhaps though a 
brokering architecture, rather than given as input. 
 

                                                           
16 It is possible to prevent an activity from having optional inputs, however, but requiring all occurrences of 
an activity to have the same inputs and outputs. 

 29



 

Automating the categorization of views requires two steps: 
 

1. Formalizing goals as kinds of preconditions and postconditions 
 

Not all preconditions and postconditions are goals, because some of the 
requirements and effects of an activity are not the reasons for defining the 
activity.  For example, a milling process might make oil dirty, which is a state that 
holds after milling, but it is not the reason for milling.  In particular, output states 
are not usually goals.  The fact that a milling machine places a finished piece of 
metal at a certain location to pass it out to the next step in a factory process is not 
the goal of the milling process, which is just to produce a certain change in shape 
of the metal.  Goals may vary by stakeholders of the process. 

 
2. Using goals to determine inputs and outputs 

 
This hinges on the observation that process goals usually involve only some of the 
participants in the process [5].  For example, oil might not be referred to in the 
goals for milling, because a technique for milling might exist that does not need 
oil.  Non-goal participants are only required for particular ways of reaching a 
goal, not for reaching the goal in general.  They might still be inputs and outputs, 
but would be under a separate view from those related to the goal.  The relation of 
participants and goals is complicated by the fact that process designers often 
assume certain technologies are available or not for implementation of their goals 
[6]. 

 
Extensions to PSL can be easily added for the first step above, as shown in the axioms of 
Expression 59, but there is little benefit without the second, which requires metatheoretic 
statements about the objects involved in the preconditions and postconditions.  This 
aspect is difficult in PSL, because it represents preconditions and postconditions as 
primitive elements, rather than statements that might be examined in a metatheoretic way.  
Even if relations are defined to expose the objects referred to by preconditions and 
postconditions, as shown in Expression 60, there is nothing to require the process 
designer to expose all the objects, defeating formalization of the metatheoretic constraints 
between goals and inputs and outputs. 

 30



 

        (forall (?f ?stakeholder ?s) 
           (implies (goal ?f ?stakeholder ?s) 
                    (and (state ?f) 
                         (object ?stakeholder) 
                         (not (state ?stakeholder)) 
                         (activity_occurrence ?s)))) 
 
        (forall (?f ?stakeholder ?s) 
           (implies (goal ?f ?stakeholder ?s) 
                    (holds ?f ?s))) 
 
        (forall (?f ?stakeholder ?s >x) 
           (implies (and (goal ?f ?stakeholder ?s) 
                         (about ?x ?f)) 
                    (participant ?x ?s))) 

Expression 59: Goals 

 
        (forall (?x ?f) 
           (implies (about ?x ?f) 
                    (and (state ?f) 
                         (object ?x) 
                         (not (state ?x))))) 
 
        (forall (?f ?s ?x) 
           (implies (and (about ?x ?f) 
                         (changes ?f ?s)) 
                    (participant ?x ?s))) 

Expression 60: Relation of States to Participants 

 
However, the metatheoretic approach above can provide a more rigorous understanding 
of categories of inputs and outputs, for example, as provided in IDEF0 [7], a popular 
high-level input/output dependency graph.  IDEF0 distinguishes three kinds of inputs, as 
shown in Figure 2: regular inputs, mechanisms, and controls.  Regular inputs can be 
understood as those directly mentioned by the goal of a process, such as a piece of metal 
in a milling process.  Mechanisms are those inputs that are not directly mentioned by the 
goal, but involved in reaching it and consumed or depleted at least partially in the 
process.  Controls are inputs that are not consumed, because they represent information 
used to direct the process,17 and can be required by goals or not.  This approach suggests 
that IDEF0 could be extended with mechanism outputs, which are the outputs not 
involved in the goals of the process, for example dirty oil output by milling. 

                                                           
17 A PSL theory of consumable resources is under development that is applicable to formalizing control 
inputs. 

 31



 

Manufacturing
Function

Inputs Outputs

Mechanisms

Controls

Manufacturing
Function

Inputs Outputs

Mechanisms

Controls

 
Figure 2: IDEF0 

 
Once inputs and outputs are categorized into goal- and mechanism-related, we can define 
processes purely with activities that use goal-driven inputs and outputs, without 
committing to which mechanism implements them.  We would like goal-based processes 
to be reused for many mechanisms that might achieve the goals.  This requires a way to 
use the activities with mechanism inputs and outputs in the goal-driven processes without 
replacing all the goal-based activities with mechanism-based ones.  In effect, the 
mechanism-based activities are special cases of the goal-driven activities.  The relation of 
inputs and outputs to activity specialization [1] will be addressed in a later article. 
 

7. Conclusion 
 
This paper defines a formalization of inputs and outputs for PSL at increasing levels of 
detail, for application in early and late stages of design.  Inputs and outputs are shown to 
be early stage notions independent of existing PSL concepts.  They constrain application 
of some PSL concepts in later stages, preconditions and postconditions in particular.  The 
paper defines these constraints, providing a concrete semantics for input and output.  The 
constraints are defined both inside and outside the context of composed processes, and in 
multiple composed processes to support multiple views of inputs and outputs.  Goals are 
identified as an important metatheoretic issue that is outside the scope of PSL, but useful 
in providing rigor and extensions to IDEF0.  This points the way to further ontology 
development in the areas of process specialization and goal implementation. 
 

8. References 
 
[1] Bock, C., Gruninger, M., “PSL: A Semantic Domain for Flow Models,” to appear in 

Journal of Software and Systems Modeling, 2004. 
 
[2] Hayes, P., Menzel, C., “A Semantics for the Knowledge Interchange Format,” 

Workshop on the IEEE Standard Upper Ontology, IJCAI, Seattle, 2001. 
 

 32



 

[3] Object Management Group, “UML 2.0 Superstructure Specification,” 
http://www.omg.org/cgi-bin/doc?ptc/03-08-02, August 2003. 

 
[4] Barwise, J., Etchemendy, J., “The Language of First-Order Logic,” The University of 

Chicago Press, 1993. 
 
[5] Bock, C., “Goal-driven Modeling,” Journal Of Object-Oriented Programming, Vol. 

13, No. 5, September 2000 
 
[6] Swartout, W., Balzer, R., “On the Inevitable Intertwining of Specification and 

Implementation,” Communications of the ACM, Vol. 25, No. 7, July 1982. 
 
[7] National Institute of Standards and Technology, “Integration Definition For Function 

Modeling (IDEF0),” http://www.idef.com/idef0.html, December, 1993. 

 33

http://www.idef.com/idef0.html

	1. Introduction
	2. Inputs and Outputs
	3. Independence of Inputs and Outputs from Current PSL Axioms
	4. Input and Output Axioms at Occurrence Level
	4.1 Without Complex Occurrences
	4.2 With Complex Activity Occurrences
	4.3 With Multiple Activity Occurrences

	5. Input and Output Axioms at the Activity Level
	6. Metatheoretic Issues
	7. Conclusion
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200034002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


		Superintendent of Documents
	2022-04-13T07:47:48-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office




