NBS
 TECHNICAL NOTE

A Fortran Program for Analysis of Ellipsometer Measurements

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards

UNITED STATES DEPARTMENT OF COMMERCE
Maurice H. Stans, Secretary NATIONAL BUREAU OF STANDARDS • A. V. Astin, Director

A Fortran Program for Analysis of Ellipsometer Measurements

Frank L. McCrackin

Polymers Division
Institute for Materials Research
National Bureau of Standards
Washington, D.C. 20234

NBS Technical Notes are designed to supplement the Bureau's regular publications program. They provide a means for making available scientific data that are of transient or limited interest. Technical Notes may be listed or referred to in the open literature.

Contents

Page

1. Introduction 1
2. Data Input Required for Calculations 3
2.1. Table of Values for Δ, ψ, P, A, and Reflection Coefficients for a Film- Covered Surface - CTABLE 3
2.2. Optical Constants of a Film-Free Substrate - CNS 8
2.3. Input of Ellipsometer Readings, P, A, and Q 9
2.4. Corrections to Ellipsometer Readings: ALINE, AT, CAT, CATA 10
2.5. Film Thickness for a Film of Known Refractive Index - CD 12
2.6. Film Thickness and Refractive Index - CND 13
2.7. Confidence Limits of Film Thickness and Refractive Index - CNDE and CNDC. 15
2.8. Calculations Involving Multiple Films - FILM. 16
2.9. Inhomogeneous Films - IFILM 17
2.10. Multiple Reflections of the Light 19
2.11. Films Composed of a Mixture of Materials. 19
2.12. New Pages, Reset of Variables, and Comments 20
2.13. Optical Constants of an Adsorbing Film of Given Thickness - CNK, FT 21
3. Theory and Calculations 22
3.1. Computation of Δ and ψ from Ellipsometer Readings 22
3.2. Computation of Constants T_{c} and Δ_{c} of the Wave Plate. 24
3.3. Computation of the Angle of Tilt of the Reflecting Surface. 25
3.4. Calculation of the Thickness of a Film from Δ and 27
3.5. Calculation of Both the Refractive Index and Thickness of a Film From Values ofΔ and ψ28
3.6. Confidence Limits for the Refractive Index and Thickness of a Film 31
3.7. Volume Fractions and Total Amount of Material for a Film Composed of a Mixture of Two Materials 32
3.8. Computation of Ellipsometer Readings from Δ and ψ 33
3.9. Computation of n and x of a Film of Given Thickness 33
4. The Fortran Program. 37
4.1. Fortran IV Program. 38
4.2. Subprograms 56
4.3. Variables Used in Program 58
a. Variables in Common 58
b. Complex Variables Not in Common 60
5. References 62
Appendix I. Use of the ALINE Instruction in Relation to Alinement of the Ellipsometer. 64
Appendix II. Derivation of Equation 3 67

> A Fortran Program for Analysis of Ellipsometer Measurements

Frank L. McCrackin

A general Fortran program is given that performs the calculations required to analyze ellipsometer measurements. This program replaces the program given in NBS Technical Note 242, entitled "A Fortran Program for Analysis of Ellipsometer Measurements and Calculation of Reflection Coefficients From Thin Films." The main changes from the previous program are: 1) the new program is in Fortran IV and V rather than Fortran II; 2) the relative transmission of the wave plate is considered in analyzing ellipsometer readings; 3) an improved method is used for calculating the refractive index of a film; 4) the form of the input data is improved; 5) a method for calculating and correcting for tilt of the reflecting surface is given; 6) an improved method of calculating confidence limits for the calculated values of thickness and refractive index of a film is used; and 7) a method for calculating the optical constants of an adsorbing film of given thickness is included.

Key words: Computer programs; ellipsometry; Fortran program; multiple films; optical constants; reflection coefficients; thin films.

1. Introduction

The reflection of polarized light from surfaces and thin films has been discussed by various authors [1-4].* The reflection is expressed in terms of the reflection coefficients R^{P} for light polarized parallel to the plane of incidence and R^{5} for light polarized perpendicular to the plane of incidence. Since these coefficients are complex quantities, they represent both the change of amplitude and phase of the light on reflection.

[^0]The ellipsometer is an optical instrument used to study surfaces and surface films by reflection of light from the surface. The ellipsometer measures the ratio of the reflection coefficients

$$
\begin{equation*}
\rho=R^{P} / R^{S}=\tan \psi e^{i \Delta} . \tag{1}
\end{equation*}
$$

In the ellipsometer, as considered by this program, monochromatic light passes through a polarizer and a wave plate (linear retarder). It is then reflected from the surface under investigation, and passes through another polarizing prism called an analyzer and to a detector. The wave plate is generally set at a fixed azimuth and the polarizer and analyzer rotated until the light is extinguished as determined by the detector. The azimuths of the polarizer, fast axis of the wave plate, and analyzer (P, Q, and A), measured from the plane of incidence are recorded. From the reading P, Q, and A, Δ and ψ of eq (l) are first calculated, then the optical constants of the surface or of films on the surface are calculated from Δ and ψ.

In order to calculate Δ and ψ from the ellipsometer readings, the constants of the wave plate must be known. Until recently, the relative phase retardance, Δ_{c}, along the fast and slow axes was believed to describe the optical properties of the wave plate. However, it has been shown [5-8] that the transmissions along the two axes are different. Therefore, the ratio T_{C} of the transmission along the fast axis to the transmission along the slow axis of the wave plate must also be considered. In addition, Oldham [6] has shown that a tilt in the mounting of the wave plate can cause Δ_{C} and T_{C} to vary with the azimuth of the wave plate. This program takes both Δ_{C} and T_{c} and their variation with Q into consideration in computing Δ and ψ. The values of Δ_{C} and T_{C} may also be computed from the ellipsometer readings.

Another possible source of error is a tilt of the reflecting surface. The instrument is alined so that P, Q, and A are read with respect to the reflecting surface. If the reflecting surface is changed, and the new surface is tilted with respect to the
surface with which the ellipsometer was aligned, the readings of P, Q, and A will be in error. This error could be eliminated by realinement, but this is time consuming. Therefore, the program has been written to calculate the angle of tilt from the ellipsometer readings and correct for the tilt.
2. Data Input Required for Calculations

The data and instructions are given to the computer by punched cards. Each card requires an instruction starting in column 1. The data required for the instruction start in columns $10,20,30$, 40, 50, and 60. All numbers must contain a decimal point.

Instructions that start with C cause the computer to perform calculations. These instructions are listed in table l. The other instructions are used to give data for future calculations. Table 2 gives the required data with each instruction.

> 2.1. Table of Values for Δ, ψ, P, A, and Reflection Coefficients for a Film-Covered Surface - CTABLE

The instruction CTABLE will produce calculation of ellipsometer readings and reflection coefficients for reflection of light from a film-covered surface. The thickness of the film is given on the same card as the instruction. However, before the CTABLE instruction is given, instructions NM, NF, NS or CNS, AI, and WL (see table 2) must be used to give values of the refractive index of the medium, film, and substrate and the angle of incidence and wave length of the light, respectively. For example,

1	10	20	30
NM	1.		
NF	1.4		
NS	1.7		
AI	65.		
WL	4800.		
CTABLE	40.		

Table l. Computations

Instruction	Computes	Preceding Instructions Required If Standard Values Are Not Used
CAT	Angle of tilt of reflecting surface	WP or CWP
CD	Thickness of film	NM, NF, NS or CNS, AI, NREF, WL^{1}
CND	Refractive index and thickness of film	NM, NF, NS or CNS, AI, NREF, WL, ELDP ${ }^{1}$
CNDC	Refractive index and thickness of film with allowed combination of values	NM, NF, NS or CNS, AI, NREF, WL, ELDP, EDP ${ }^{1}$
CNDE	Refractive index and thickness of film with confidence limits	NM, NF, NS or CNS, AI, NREF, WL, ELDP, EDP ${ }^{1}$
CNK	Refractive index and x of film of given thickness	NM, NF, NS or CNS, AI, NREF, WL, FT ${ }^{1}$
CNS	Refractive index of substrate	NM, AI, NREF ${ }^{1}$
CTABLE	Table of Δ and ψ and reflection coefficients	NM, NF, NS or CNS, AI, NREF, WL
CWP	Constants T_{c} and Δ_{c} of wave plate	None

[^1]Card Column No.

1	10	20*	30	40	50*	60
AI	$I(\varphi)$	$\delta(\varphi)$	$E(\varphi)$			
ALINE	$\Delta \mathrm{P}$	$\triangle \mathrm{A}$	$\Delta \mathrm{Q}$			
AT	Angle					
CAT	P_{1}	A_{1}	P_{2}	A_{2}	Q	
CATA	P_{1}	A_{1}	P_{2}	A_{2}	Q	
$C D \quad)$						
CND	Δ	ψ				
CNDC $\}$	P	A	Q			
	P_{1}	${ }^{\text {a }} 1$	P_{2}	A_{2}	Q	
CNK	blank					
CTABLE	I(d)	$\delta(\mathrm{d})$	$E(d)$	Q**		
CWP	P_{1}	${ }^{\text {A }} 1$	P_{2}	A_{2}	Q	
EDP	E Δ	E ψ				
ELDP	ELA	EL ψ				
FILM	No.	d	n	x		
FT	I (d)	8(d)	$E(\mathrm{~d})$			
IFILM	No. films	d	$\mathrm{n}_{\text {top }}$	$x_{\text {top }}$	nbottom	Ubottom
MIXED	ρ_{1}	ρ_{p}	n_{p}			
NF	$I(\mathrm{n})$	$\delta(n)$	$E(n)$	$I(x)$	$\delta(x)$	$E(x)$
NM	I (n)	$\delta(\mathrm{n})$	$E(\mathrm{n})$			
NREP	No. Reflections					
NS	I (n)	$\delta(n)$	$E(n)$	$I(x)$	$\delta(x)$	$E(x)$
PAGE	See Section 2.12					
RESET	See Section 2.12					
STøP						
WL	$I(\lambda)$	$\delta(\lambda)$	$E(\lambda)$			
WP	T_{c}	Δ_{c}				
(other)	Comment					

[^2]> Table 3. Assigned Values

Symbol	Data	Instruction	Assigned Values
N_{n}	Index of medium	NM	1
N_{2}	Index of film	NF	1
N_{5}	Index of substrate	NS	1
φ_{1}	Angle of incidence	AI	70°
λ	Vacuum wavelength of light	WL	5461
$\mathrm{T}_{\mathrm{C}}, \Delta_{C}$	Constants of wave plate	WP	1, 90°
	Number of reflections of light	NREF	1
	Experimental errors of Δ and ψ	EDP	.015, .015
	Error limits of Δ and ψ used for computing n_{2}	ELDP	.002, . 002
	Angle of tilt	AT	0

will compute Δ and ψ and reflection coefficients for the condition: Refractive index of medium $=1$. Wave length of light $=4800 . \AA$ Angle of incidence $=650^{\circ}$ Thickness of film $=40$. \AA Refractive index of film $=1.4$ Refractive index of substrate $=1.7$

A range of values of the input parameters may also be specified by giving the initial value, increment, and final value to be used. Thus, the input data

1	10	20	30
NM	1.		
NF	1.4	0.1	1.6
NS	1.7		
AI	65.		
CTABLE	0.	20.	100.

will produce tables for films of refractive index of $1.4,1.5$, and 1.6. In each table, the ellipsometer readings and reflection coefficients will be given for films $0,20,40,60,80$, and $100 \AA$ thick. The results are given in the upper portion of figure 1. The other parameters may also be similarly varied.

In this figure the values of Δ and ψ for the sample, then the complex reflection coefficients for light polarized parallel and normal to the plane of incidence, are printed. For the complex reflection coefficients, the ratios of reflected to incident amplitudes and the change in degrees of the phase of the light are given. The intensity ratios for parallel and normally polarized light are the squares of the corresponding amplitude ratios.

The refractive index and value of x for the film and substrate are next printed. In this example, the film and substrate are nonabsorbing so the values of x are zero.

A setting, Q, for the wave plate starting in column 40 , may also be given with the CTABLE instructions. In this case, the two sets of ellipsometer readings, P1,A1 and P2,A2, (see Section 2.3) that will produce extinction of the light are also calculated and printed, as shown in figure 1.

Listed in table 3 are values for certain of the input parameters. These assigned values are automatically used for following calculations unless instructions are given to change them. Thus, in the above examples, the NM instruction was not necessary as the assigned value of 1 . was used for the index of the medium.

The film or substrate may also be absorbing. In this case the optical constants are n and x of the complex refractive index $n-n x i$. The values of n and x are given starting in columns 10 and 40. Thus, the card

Column No.				
1	10	20	30	40
NS	3.316		1.4	

defines an absorbing substrate with $n=3.316$ and $x=1.4$ or of complex refractive index of 3.316(1-1.4i).

The value of n may be varied by giving the initial, incremental, and final values starting in columns 10,20 , and 30 , and x may be varied by giving the initial, incremental, and final values starting in columns 40,50 , and 60.

2.2. Optical Constants of a Film-Free Substrate - CNS

The instruction CNS calculates the optical constants n_{s} and u_{s} of a substrate from measurements of Δ and ψ for the substrate without a film. The values of Δ and ψ start in columns 10 and 20 of the card containing CNS. The values of n_{s} and x_{s} are printed and also retained by the computer so they will be used in following calculations, such as CTABLE, for which they are required. Thus, the optical constants of the substrate may be given by either an NS or CNS instruction.

Ellipsometer readings of P, A, and Q, rather than values of Δ and ψ may be used with the CNS instruction, as explained in the next section.

2.3. Input of Ellipsometer Readings P, A, and Q

As previously described, the ellipsometer readings must first be analyzed to obtain the values of Δ and ψ that describe the reflection of the light from the surface before the instruction CNS, or the instructions CD, CND, CNDC, CNDE to be later described, may be used. However, the ellipsometer readings may also be used as input data with these instructions if the components of the ellipsometer are arranged in the order of light source, polarizer, wave plate, reflecting surface, analyzer, and detector.

Let the wave plate be set with its fast axis at an azimuth Q and let extinction of the light be obtained with the polarizer and analyzer at azimuths P and A (see Reference 4). All azimuthal angles are measured positive counterclockwise from the plane of incidence. Then these readings of P, A, and Q may be used with the above instructions, as shown in table 2 . The computer first calculates the values of Δ and ψ and uses them in the following calculations.

Let P_{l} and A_{l} be settings of the polarizer and analyzer that produce extinction of the light for a given value of Q. Then, settings of for example $\mathrm{P}_{1}+180^{\circ}$, $\mathrm{A}_{1} ; \mathrm{P}_{1}, \mathrm{~A}_{1}+180^{\circ}$; and $P_{1}+180^{\circ}, A_{1}+180^{\circ}$ produce the same effect on the polarized light so will also give extinction. That is, P and A are indeterminate to $\pm 180^{\circ}$. This duplication of settings may be eliminated by, for example, taking only P and A readings between 0 and 180°. After eliminating duplicate readings, two sets of readings P_{1}, A_{1} and P_{2}, A_{2} will be found to give extinction for a given setting Q of the wave plate. Both sets of readings may be used with the instructions $C D$, CND, CNDE, and CNS. They are given in the order $P_{1}, A_{1}, P_{2}, A_{2}, Q$.

The computer calculates values of Δ and ψ from each set of readings and uses the averages of them in the following calculations.

In order for the computer to calculate Δ and ψ from the ellipsometer readings, the constants of the wave plate must have been previously made available to the computer. The constants are the ratio, T_{c}, of the transmittance of the wave plate along the fast axis to the transmittance along the slow axis and the phase retardance along the fast axis minus the phase retardance along the slow axis, Δ_{c}. They may be given in the order T_{c}, Δ_{c} with the instruction $W P$ or may be calculated from a set of readings P_{1}, A_{1}, P_{2}, A_{2} and Q by the CWP instruction.

More than one calculation may be performed with a single set of ellipsometer readings. In this case, a set of ellipsometer readings from a film-free metal surface is used to first calculate the constants of the wave plate by the CWP instruction, and then is used to calculate the optical constants of the metal by the CNS instruction. The readings do not have to be repeated with the CNS instruction.
2.4. Corrections to Ellipsometer Readings:

ALINE, AT, CAT, CATA
The ellipsometer angular readings of P, A, and Q must sometimes be corrected to obtain angles measured from the plane of incidence of the reflection from the surface, as is required for this program. For example, if a dial reads from the plane of the surface, 90° must be added to the dial readings. As another example, in alining the ellipsometer the dial readings when the component is alined in the plane of incidence may be recorded and used as a correction to future readings of the dial, rather than adjusting the dial or the vernier on the dial to read correctly. This method of alinement is described in Appendix I.

The corrections ($\Delta P, \Delta A$, and ΔQ) may be given by the ALINE Instruction (see table 2). Then the corrections will be added to values of P, A, and Q given with all following instructions.

A correction to the ellipsometer readings may also be required due to tilting of the reflecting surface. This may occur when the ellipsometer is alined with one surface, and then the surface is replaced by another surface that is to be measured. The second surface may be tilted with respect to the orientation of the first surface so the ellipsometer will no longer be properly alined but all its readings must be corrected by the angle of tilt. This correction may be given to the computer by the AT instruction. The AT instruction differs from the ALINE instruction in that one correction is given to be added to all values of P, A, and Q, while different corrections for P, A, and Q are given with the ALINE instruction.

The angle of tilt of the reflecting surface is generally unknown. It may be computed from ellipsometex readings by the instruction CAT. The instruction CAT requires the two sets of P and A readings for a setting of Q and the constants T_{C} and Δ_{C} of the wave plate. The calculated value of the angle of tilt will be added to all ellipsometer readings given by following instructions.

The theory of this calculation is given in Section 3.3. This theory requires that the angle of tilt is small. The calculation has been found to be accurate for angles of tilt up to one degree。

The constants of the wave plate may not be calculated from the same readings used to compute the angle of tilt, since readings. from an untilted surface are required to compute the wave plate constants. The usual procedure is to aline the ellipsometer and calculate the constants of the wave plate from ellipsometer readings. Then, every time the surface is changed, its angle of tilt is calculated using the previously determined constants of the wave plate. The angle of tilt of the surface is then used to correct all ellipsometer readings obtained using the surface。

Often two sets of ellipsometer readings are taken for the same surface. For example, readings may be taken for two readings of Q or readings may be taken both before and after a film forms on the surface. Values for the angle of tilt of the surface may be calculated by the instruction CAT for both sets of readings and should be nearly equal. However, subsequent ellipsometer readings will be corrected by the angle of tilt calculated by the last CAT instruction, while for greatest accuracy, the average of the angles computed by the two CAT instructions should be used. This is迕ccomplished by using the instruction CATA to compute the second angle of tilt. The instruction CATA performs the same calculations as CAT, then averages the computed and previously computed values of the angle of tilt. Subsequent ellipsometer readings will then be corrected by the average angle of tilt.

2.5. Film Thickness for a Film of
 Known Refractive Index - CD

The instruction CD computes the thickness of a film from values of Δ and ψ. The ellipsometer readings P, A, and Q may also be used as described in the previous section. Before this instruction is used, the following data must have been previously given to the computer or standard values will be used:

1) Wave Length of Light by instruction WL
2) Angle of Incidence by instruction AI
3) Refractive Index of Film by instruction NF
4) Refractive Index of Substrate by instruction NS or CNS
5) Refractive Index of Medium by instruction NM.

If ellipsometer readings are given, the wave plate constants must also be given by instruction WP or CWP, or the standard values will be used.

For example, suppose a film-free surface was measured under water (refractive index of l.33) with a perfect quarter wave plate set with its fast axis at $45 .^{\circ}$ from the plane of incidence. Let the values obtained be $P=86.35, A=25.19$ and $P=176.35$, $A=154.81$ for the two zones. Then let an absorbing film of refractive index $2.5(1-0.3 i)$ be placed on the surface and measurement $P=94.30$, $A=24.44$ be obtained in one zone. Let the angle of incidence be $65 .^{\circ}$ and the vacuum wavelength of the light be 5461. \AA. Then the following input data will calculate the refractive index of the substrate and the thickness of the film.

Column No.

1	10	20	30	40	50
NM	1.33				
NF	2.5			0.3	
AI	65.				
CNS	86.35	25.19	176.35	154.81	45.
CD	94.30	24.44	45.		

Notice that the wavelength is not given since its assigned value is used. The computer output is shown in figure 2 .

2.6. Film Thickness and Refractive Index - CND

The instruction CND calculates both the thickness and refractive index of a film from ellipsometer measurements Δ and ψ or from ellipsometer readings P, A, and Q. The data given to the computer before this instruction is the same as for the CD instruction. However, values for the refractive index of the film given by the NF instruction do not have their usual meaning. Consider first the case that the film has a real refractive index (nonabsorbing film). Then the CND instruction causes the computer to search for the refractive index of the film between the limits of the initial value and the sum of the initial and increment values.

Then the search is repeated between the sum of the initial value and increment and the sum of the initial value and twice the increment. This is continued until the final value is reached. For example, if the instruction
NF $\quad 1.4 \quad .1 \quad 1.6$
is followed by a CND instruction, the computer will search for values of n_{f} between 1.4 and 1.5 , and between 1.5 and 1.6 . If the increment is not given, the computer will perform a single search between the initial and final values.

The search procedure is explained in section 3.5. The limits of film refractive index given by the NF instruction must be chosen with care. If the limits do not include the solution for the film refractive index, the solution will not be found. On the other hand, if the limits are too broad, a solution may be missed.

An example of instruction CND is given in figure 3. In this example, the values of Δ and ψ are given with the instruction CND. The solution of a film of refractive index of 1.2 and thickness of $1000 \AA$ is found. This solution reduces the error terms $\triangle D E L, \triangle P S I$, and ERROR to be essentially zero. The terms labeled ADSORPTION and WT FRACTION have no meaning since the instruction MIXED was not given (see 2.1l). For the meaning of K, see section 4.3.

Consider next the case that the film is absorbing but its value of x is known. Therefore, only the real part of the refractive index and the thickness of the film are to be determined. In this case the imaginary part of the refractive index of the film is given, starting in column 40 of the NF instruction card and the calculations are the same as the previous case.

In the most difficult case, the film is absorbing and both the real and imaginary part of its refractive index as well as its thickness are to be determined. For this case the range of values of the imaginary part is given by the NF instruction and the real
part of the index and thickness of the film is calculated for each value. Thus, the instructions

Column No.

1	10	20	30	40	50	60
NF	1.0		2.0	0.	0.1	1.
CND	152.30	29.00				

will compute the real part of the refractive index and thickness of the film for assumed values of the imaginary part of the refractive index of $0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8 ; 0.9$, and 1. The real part of the refractive index is assumed to lie between 1. and 2。. In order to determine which of the calculations correspond to the actual film, additional information is required. Obviously, three values describing the film cannot be determined from the two ellipsometer measurement Δ and ψ 。 For example, if the thickness of the film was known independently of the ellipsometer readings, the refractive index of the film can be read from the calculations. Other possible methods of determining the refractive index of adsorbing films have been given by McCrackin and Colson [9].
> 2.7. Confidence Limits of Film Thickness and Refractive Index CNDE and CNDC

The instruction CNDC performs the same calculations as instruction CND discussed in the previous section and, in addition, computes limits of error for the calculated refractive index corresponding to the experimental errors in the ellipsometer measurement Δ and ψ. The experimental errors, $E \Delta$ and $E \psi$ in Δ and ψ must have been previously given by an EDP instruction or their standard values of 0.015° are used. This instruction is illustrated in figure 4.

The 95% confidence limits of the experimental errors based on a large number of degrees of freedom must be used for $E \Delta$ and $E \psi$. That is, the true value of Δ lies in the range $\Delta-E \Delta$ to $\Delta+E \Delta$ with 95% probability, and likewise for ψ. An ellipse is then calculated such that the true values of Δ and ψ will lie within it with 95% probability. Figure 5 shows the ellipse for the conditions of figure 4. (When the errors are equal, this ellipse becomes a circle.)

After calculating the best values for the refractive index n_{f} and the thickness d_{f} of the film from the measured Δ and ψ readings, the computer chooses eight evenly-spaced pairs of values from the probability ellipse and computes values of n_{f} and d_{f} for each pair. An example is shown infigure 4. The best way to represent these values is to plot n_{f} versus d_{f} as shown in figure 6. The points define a curve (approximately an ellipse) surrounding the best value. The true values of n_{f} and d_{f} lie within this curve with 95\% probability.

This error analysis only takes the errors in the eliipsometer readings into account. Other errors, such as errors in the refractive indexes of the medium and substrate, errors in the angle of incidence, etc., will, of course, increase the error in the calculated values of n_{f} and d_{f}.

2.8: Calculations Involving Multiple Films - FILM

The calculations previously described may also be performed for a number of films on the substrate. Three films on a substrate are represented infigure 7. In order to compute the values of Δ and ψ for reflection from this surface, the optical constants and thickness of the three films and the optical constants of the medium and substrate must be given. The films are numbered starting from the surrounding medium. The optical constants of the surrounding medium, film no. l, and the substrate are given by NM, NF, and NS or CNS instructions as previously described. The thickness of film
number 1 is treated in the same way as previously described for a single film, i.e., it is given with the CTABLE instruction when the CTABLE instruction is used, or is calculated by the CD, CND, CNDE, or CNDC instructions. The optical constants and thicknesses of the films are given by the FILM instruction. With this instruction: FILM starts in column l, the number of the film starts in column 10, the thickness of the film in column 20, and the optical constants of the film, n and x, start in columns 30 and 40 . Up to 900 films may be specified.

2.9. Inhomogeneous Films - IFILM

All the previously described computations are for homogeneous films, i.e., films for which the optical constants are the same at all points in the film. However, inhomogeneous films for which the optical constants vary along the thickness of the film may be accurately approximated by multiple homogeneous films [9] by use of the instruction FILM described in the previous section. To illustrate, consider a film $100 \AA$ thick whose optical constants vary from $\mathrm{n}=1, x=0$ adjacent to the surrounding medium to $\mathrm{n}=3, x=1.4$ adjacent to the substrate. Let the variation be linear with distance. Then the film may be approximated by 10 homogeneous films as shown in figure 8. Let the optical constants of the substrate be $n=3$ and $x=1.4$ and the other parameters of the system have their standard values. Then the reflection coefficients and Δ and ψ for reflection from the film are calculated by the instructions given below.

Column No.

1	10	20	30	40
NS	3.			1.4
NF	1.1			.07
FILM	2.	10.	1.3	.21
FILM	3.	10.	1.5	.35
FILM	4.	10.	1.7	.49
FILM	5.	10.	1.9	.63
FILM	6.	10.	2.1	.77
FILM	7.	10.	2.3	.91
FILM	8.	10.	2.5	1.05
FILM	9.	10.	2.7	1.19
FILM	10.	10.	2.9	1.33
CTABLE	10.			

The results are shown in figure 9. Approximating this inhomogeneous film with 60 homogeneous films gives $\Delta=117.625^{\circ}$ and $\psi=30.852^{\circ}$ 。 Thus, approximating this inhomogeneous film by 10 homogeneous films gave results accurate to 0.1° in this case.

The amount of input data for this type of calculation may be reduced by using the instruction IFILM. The data given with IFILM are the number of homogeneous films to be used to represent the inhomogeneous film, the thickness of the inhomogeneous film, the optical constants of the surface and the inhomogeneous film in contact with the immersion medium, and the optical constants of the surface of the film in contact with the substrate. However, film number l (the film next to the surrounding medium) is not assigned a thickness or optical constants by IFILM. Thus, the previous calculation may be obtained from the data:

Column No.

1	10	20	30	40	50	60
NS	3.		1.4			
NF	1.					
IFILM	10.	100.	1.	0.	3.	1.4
CTABLE	0.					

The inhomogeneous film is represented by films 2 to ll. Film number l is given zero thickness so has no effect on the results. The values given with IFILM are the number of homogeneous films used to approximate the inhomogeneous film, the thickness of the inhomogeneous film, the values of n and x at the top (next to surrounding medium) of the inhomogeneous film, and the values of n and x at the bottom (next to substrate) of the inhomogeneous film, respectively. (See table 2, page 5.) Note that all data, including the number of films, must contain a decimal point.
2.10. Multiple Reflections of the Light

The sensitivity of ellipsometer readings to a thin film on a reflecting surface may be increased by reflecting the light from the surface a number of times. An example of this technique, as well as a discussion of the increase of sensitivity, has been given by Stromberg, Passaglia, and Tutas [10]. To analyze such results the number of reflections may be entered, starting in column l0, on a NREP instruction. The number of reflections must have a decimal point even though it is an integer. All following calculations will then be performed for multiple reflection of the light.

Notice that this instruction is not necessary for the multiple reflections of the light that occur from the surfaces of multiple films, but only for the case that the light emergent from reflection from the surface is again incident on and reflected from the surface.
2.11. Films Composed of a Mixture of Materials

In some applications of ellipsometry, the film being studied is a mixture of a material with the medium above the film. For example, polymer films adsorbed from a solvent on a solid surface [10]
consist of a mixture of the polymer and solvent. As another example, a rough clean substrate may be approximated by the system of the substrate, a film consisiing of a mixture of the substrate and the medium, and the medium. For these applications, after the refractive index of the film, n_{f}, is determined by ellipsometry, the fraction of the film composed of the material and the amount of material per unit area of the surface is desired. These quantities are computed by the instructions CD, CND, CNDC, and CNDE. The amount of the material per unit area of the surface in units of $\mathrm{mg} / \mathrm{cm}^{2}$ is printed in the column labeled ADSORPTION and the weight fraction of material in the film is printed in the column labeled WT FRACTION.

In order for these calculations to be meaningful, the density of the medium, ρ_{1}, the density of the material in the film, ρ_{p}, and the refractive index, n_{p}, of the material in the film must have been previously given by the instruction MIXED (see table 2 on page 5). The refractive index of the material in the film of the medium are assumed to be real.

The calculations are described in Section 3.
2.12. New Pages, Reset of Variables, and Comments

The instruction PAGE will start a new page of output. For the. Fortran V version of the program, comments may be punched in columns 10 to 80 on the same card and will appear on the new page of output. For the Fortran IV version, the comment must be punched on a card following the card containing the instruction PAGE. For this case, any location on the card is satisfactory.

The instruction RESET has the same function as the instruction PAGE and in addition resets all the parameters to the values given in table 3. This instruction placed between two sets of calculations insures that none of the data given for the first set will be used in the second set of calculations.

In addition, for the Fortran V version of the program, any card that does not contain one of the instructions listed in table 2 starting at the first column of the card will be printed as a comment. Therefore, comments may be freely interpreted with the data cards. For the Fortran IV version of the program, comments can only be inserted following a PAGE or RESET instruction.

The instruction STØP is placed at the end of the program.

2.13. Optical Constants of an Adsorbing Film of Given Thickness - CNK, FT

The instruction CNK computes values of n and x of a film from ellipsometer readings. Values of Δ or ψ or the ellipsometer readings are given with the CNK instruction in the same way as described in section 2.3 for instructions CD, CND, etc. The instruction CNK must be preceded by instructions FT, NF, and NS or CNS. Also, CWP or WP must be given if ellipsometer readings are given with the CNK instruction and NM, AI, and WL instructions if values other than the assumed values are to be used for the refractive index of the medium, the angle of incidence, and the wavelength of the light.

The instruction FT gives the thickness or thicknesses of the film for which the optical constants are to be calculated. The values given with the FT instruction are the same as for the CTABLE instruction (table 2)。

The values given with the NF instruction give the ranges in which the computer will search for values of n and x that correspond to the given ellipsometer measurements. Multiple solutions may be found, in which case, means other than the ellipsometer measurements must be used to chose the correct solution. The incremental values for n and x given with the NF instruction determine the fineness of the search for the values of n and x. If two solutions for n and x exist, the n values or x values must differ by more than the incremental values for both solutions to be found.

An example of these instructions is given in figure 10. The assumed values are used for the index of the medium, angle of incidence, and wavelength of light. For every given value of film thickness, three solutions for n and x (NF and KAPPA) are found in this example. The accuracy to which they are determined is given in the $\triangle N F$ and $\triangle K A P P A$ columns.

Thus, for these data, the exact solutions of n and x may differ by up to . 0002 and . 00002, respectively, from the solutions given.

For each solution of n and x and each film thickness, values of Δ and ψ are calculated. The differences between these calculated values and the values given with the CNK instruction are given in the $\triangle D E L T A$ and $\triangle P S I$ columns. These values shall be less than the inaccuracies of the given values of Δ and ψ for the solution to be satisfactory. If Δ and ψ are correct to 0.01°, some of the solutions, for example the first solution, are not satisfactory. These data could be rerun with smaller incremental values for n and x on the $N F$ instruction in order to locate the solutions more accurately.
3. Theory and Calculations

The theory of the ellipsometer has been given by various investigators [1-8]. Therefore, only special points of the theory necessary to understand the calculations performed by this program will be given.
3.1. Computation of Δ and ψ From Ellipsometer Readings

Let P, A, and Q be the azimuths of the polarizer, analyzer, and wave plate, respectively, for extinction of the light by the ellipsometer. For the calculations described in this section, the components of the ellipsometer must be arranged in the order of light source, polarizer, wave plate, reflecting surface, analyser,
and light detector. All azimuths are measured counter-clockwise from the plane of incidence looking into the light beam.

The wave plate is characterized by the ratio, T_{c}, of the transmittance along its fast axis to the transmittance along its slow axis* and the relative phase retardation, Δ_{c}, along the axes. In the following equation it is characterized by the complex number

$$
\begin{equation*}
\rho_{c}=T_{c} \exp \left(-i \Delta_{C}\right)=T_{C} \cos \Delta_{C}-i T_{C} \sin \Delta_{C} \tag{1}
\end{equation*}
$$

that has been previously computed. The surface is characterized by the complex value

$$
\begin{equation*}
\rho=R_{p} / R_{s}=\tan \psi \exp (i \Delta) \tag{2}
\end{equation*}
$$

where R_{p} and R_{s} are the complex reflection coefficients for light polarized parallel and normal to the plane of incidence of the light beam. The value of ρ is to be calculated from readings P, A, and Q, and ρ_{C}. This calculation is based on the formulas derived by Holmes and Feucht [7]. Modifying their equations 19 and 21 for the conventions used in this report for measurement of P, A, and Q gives

$$
\begin{equation*}
\rho=\frac{\tan A\left[\tan Q+\rho_{C} \tan (P-Q)\right]}{\rho_{C} \tan Q \tan (P-Q)-1} \tag{3}
\end{equation*}
$$

for extinction of the light. A derivation of eq (3) is also given in Appendix II.
Δ and ψ are computed from eqs 1 through 3. If two sets of values of P and A are given, ρ is computed for each set and the average of the two values used to compute Δ and ψ.

[^3]3.2. Computation of Constants T_{C} and Δ_{C} of the Wave Plate

For computation of the constants of the wave plate, two sets of readings of P and $A\left(P_{1}\right.$ and A_{1} and P_{2} and $\left.A_{2}\right)$, that produce extinction of light for the same value of Q are required. Then, by eq 3

$$
\begin{aligned}
\rho & =\frac{\tan A_{1}\left[\tan Q+\rho_{c} \tan \left(P_{1}-Q\right)\right]}{\rho_{c} \tan Q \tan \left(P_{1}-Q\right)-1} \\
& =\frac{\tan A_{2}\left[\tan Q+\rho_{c} \tan \left(P_{2}-Q\right)\right]}{\rho_{c} \tan Q \tan \left(P_{2}-Q\right)-1} .
\end{aligned}
$$

Solving for ρ_{C} gives

$$
\begin{equation*}
\rho_{C}=\frac{B \pm j\left[-B^{2}-\tan \left(P_{1}-Q\right) \tan \left(P_{2}-Q\right)\right]^{\frac{1}{2}}}{-\tan \left(P_{1}-Q\right) \tan \left(P_{2}-Q\right)} \tag{4}
\end{equation*}
$$

where

$$
\begin{align*}
B= & \frac{\tan A_{1}\left[\tan \left(P_{2}-Q\right) \tan Q-\tan \left(P_{1}-Q\right) / \tan Q\right]}{2\left(\tan A_{1}-\tan A_{2}\right)} \\
& -\frac{\tan A_{2}\left[\tan \left(P_{1}-Q\right) \tan Q-\tan \left(P_{2}-Q\right) / \tan Q\right]}{2\left(\tan A_{1}-\tan A_{2}\right)} . \tag{5}
\end{align*}
$$

Using eq 1 we find

$$
\begin{equation*}
T_{c}=\frac{1}{ \pm\left[-\tan \left(P_{1}-Q\right) \tan \left(P_{2}-Q\right)\right]^{\frac{1}{2}}} \cdot \tag{6}
\end{equation*}
$$

Since T_{C} is real and positive, tan $\left(P_{1}-Q\right)$ tan ($P_{2}-Q$) must be negative and the plus square root is used. Also,

$$
\begin{equation*}
\tan \Delta_{c}=\frac{ \pm\left[-\mathrm{B}^{2}-\tan \left(\mathrm{P}_{1}-\mathrm{Q}\right) \tan \left(\mathrm{P}_{2}-\mathrm{Q}\right)\right]^{\frac{1}{2}}}{B} \tag{7}
\end{equation*}
$$

Δ_{c} is defined as the phase of light transmitted along the fast axis of the wave plate minus the phase of light transmitted along its slow axis. Therefore, $0 \leq \Delta_{c} \leq 180^{\circ}$, so sin Δ_{c} is positive.

Then, by eq 1 , the imaginary part of p_{c} is negative. This requires the negative sign for the imaginary term in eq 4 to be used since the denominator has been shown to be positive. Thus,

$$
\begin{equation*}
\tan \Delta_{c}=\frac{+\left[-B^{2}-\tan \left(P_{1}-Q\right) \tan \left(P_{2}-Q\right)\right]^{\frac{1}{2}}}{B} \tag{8}
\end{equation*}
$$

3.3. Computation of the Angle of Tilt of the Reflecting Surface

For this calculation, the reflecting surface is assumed to be rotated through a small angle δ around an axis of the intersection of the specimen and the plane of incidence. This rotation or tilting of the specimen has many effects. The angle of incidence to the surface will be changed, but by a negligible amount for small angles of tilt. The direction of the reflected light beam will be changed but is assumed to still pass through the aperatures in the instrument. The main effect will be a reading error of the azimuths of the polarizer, analyzer, and wave plate. Since these elements are alined with respect to the reflecting surface, a tilt of the surface by an angle δ will change the readings of these azimuths by δ. That is

$$
\begin{array}{ll}
P_{1}=P_{1}^{\prime}+\delta & P_{2}=P_{2}^{\prime}+\delta \\
A_{1}=A_{1}^{\prime}+\delta & A_{2}=A_{2}^{\prime}+\delta \\
Q=Q^{\prime}+\delta & \tag{9}
\end{array}
$$

where $P_{1}{ }^{\prime}, A_{1}{ }^{\prime}, P_{2}^{\prime}, A_{2}^{\prime}$, and Q^{\prime} are readings of the azimuths and $P_{1}, A_{1}, P_{2}, A_{2}$, and Q are the true azimuths that would be measured by a properly alined instrument.

By eq 3, for the first set of readings

$$
\begin{equation*}
\rho=\frac{\tan \left(A_{1}^{\prime}+\delta\right)\left[\tan \left(Q^{\prime}+\delta\right)+\rho_{c} \tan \left(P_{1}^{\prime}-Q^{\prime}\right)\right]}{\rho_{c} \tan \left(Q^{\prime}+\delta\right) \tan \left(P_{1}^{\prime}-Q^{\prime}\right)-1} \tag{10}
\end{equation*}
$$

The tangents are expanded in δ and only the term in δ retained, since δ is small.

$$
\begin{align*}
& \tan \left(A_{1}{ }^{\prime}+\delta\right) \cong \tan A_{1}{ }^{\prime}+\delta / \cos ^{2} A^{\prime} \\
& \tan \left(Q^{\prime}+\delta\right) \cong \tan Q^{\prime}+\delta / \cos ^{2} Q^{\prime} \tag{11}
\end{align*}
$$

Eqs 11 are substituted in eq 10 and the result simplified to give

$$
\begin{equation*}
\rho=\frac{\alpha_{1}+\beta_{1} \delta}{\gamma_{1}} \tag{12}
\end{equation*}
$$

where

$$
\begin{align*}
\alpha_{1}= & \tan A_{1}^{\prime}\left[\tan Q^{\prime}+\rho_{c} \tan \left(P_{1}^{\prime}-Q^{\prime}\right)\right] \\
\gamma_{1}= & \rho_{c} \tan \left(P_{1}^{\prime}-Q^{\prime}\right) \tan Q^{\prime} \\
\beta_{1}= & a_{1} /\left(\sin A_{1}^{\prime}\right)+ \\
& {\left[\tan A_{1}^{\prime}-a_{1} \rho_{c} \tan \left(P_{1}^{\prime}-Q^{\prime}\right) / \gamma_{1}\right] / \cos ^{2} Q^{\prime} . } \tag{13}
\end{align*}
$$

Similar formulas apply to the other set $\left(P_{2}, A_{2}\right.$, and $\left.Q\right)$ so

$$
\begin{equation*}
\rho=\frac{a_{1}+\beta_{1} \delta}{\gamma_{1}}=\frac{a_{2}+\beta_{2} \delta}{\gamma_{2}} \tag{14}
\end{equation*}
$$

Solving for the angle of tilt gives

$$
\begin{equation*}
\delta=\frac{a_{2} \gamma_{1}-a_{1} \gamma_{2}}{\beta_{1} \gamma_{2}-\beta_{2}^{\gamma_{1}}} \tag{15}
\end{equation*}
$$

When δ is calculated, the azimuths are corrected by eq 9 and ρ is calculated by eq 3 .
3.4. Calculation of the Thickness of a Film from Δ and ψ

This calculation has been previously described [4], but since the final formulas were not given, they are summarized here. The total reflection coefficients R^{P} and R^{5} for light polarized parallel and perpendicular to the plane of incidence are given by

$$
\begin{align*}
R^{p} & =\frac{r_{12}^{p}+r_{23}^{p} Y}{1+r_{12}^{p} r_{23}^{p} Y} \\
R^{n} & =\frac{r_{12}^{n}+r_{23}^{n} Y}{1+r_{12}^{n} r_{23}^{n} Y} \tag{16}
\end{align*}
$$

where ${\underset{r}{12}}_{p}^{p}, \underset{r}{p}, r_{12}^{n}$, and r_{23}^{n} are the reflection coefficients between medium and film (indices 1 and 2) and between the film and substrate (indices 2 and 3).

$$
\begin{equation*}
Y=\exp \left[-4 \pi i n_{2} \cos \varphi_{2} d_{2} / \lambda\right] \tag{17}
\end{equation*}
$$

where n_{2} and d_{2} are the index of refraction and thickness of the film and φ_{2} is the angle for light in the film given by

$$
\begin{equation*}
\cos \varphi_{2}=\left[1-\left(n_{1} \sin \varphi_{1} / n_{2}\right)^{2}\right]^{\frac{1}{2}} \tag{18}
\end{equation*}
$$

The ellipsometer readings determine

$$
\begin{equation*}
\rho=\tan \psi \exp (i \Delta)=R^{p} / R^{5} \tag{19}
\end{equation*}
$$

From eqs 16 and 19,

$$
\begin{equation*}
E Y^{2}+B Y+C=0, \tag{20}
\end{equation*}
$$

where

$$
E=\rho r_{21}^{p} r_{32}^{p} r_{32}^{n}-r_{n}^{2 l} r_{32}^{p} r_{32}^{n}
$$

$$
\begin{align*}
& \mathrm{B}=\rho\left(\mathrm{r}_{32}^{\mathrm{n}}+\mathrm{r}_{21}^{\mathrm{p}} \mathrm{r}_{21}^{\mathrm{n}} \mathrm{r}_{32}^{\mathrm{p}}\right)-r_{\mathrm{p}}^{32}-r_{21}^{\mathrm{p}} r_{21}^{\mathrm{n}} r_{32}^{\mathrm{n}} \\
& \mathrm{C}=\rho r_{21}^{\mathrm{n}}-\mathrm{r}_{21}^{\mathrm{p}} . \tag{21}
\end{align*}
$$

The two solutions of eq 20

$$
\begin{align*}
& Y_{1}=\left[-B+\left(B^{2}-4 E C\right)^{\frac{1}{2}}\right] / 2 E \tag{22}\\
& Y_{2}=\left[-B-\left(B^{2}-4 E C\right)^{\frac{1}{2}}\right] / 2 E \tag{23}
\end{align*}
$$

are calculated. Then, from each solution a value for the film thickness d_{2} is calculated. These values, called D2Cl and D2C2 are calculated by subroutine CALDX.

These values are complex numbers. Since the film thickness is a real number, the imaginary part is due to error in either the ellipsometer readings or the values of the refractive indices or in the angle of incidence used for the calculation, so must be small. Therefore, the value of D2Cl or D2C2 with the smallest imaginary part is taken as the correct solution. The real part is taken as the film thickness while the imaginary part is taken as a measure of error.

> 3.5. Calculation of Both the Refractive Index and Thickness of a Film From Values of Δ and ψ

The preceding section described the calculation of the thickness of a film for a given value of the refractive index of a film. Two complex numbers, D2Cl and D2C2, were obtained for the film thickness. The real parts of the numbers were taken as the film thickness and the corresponding imaginary parts as measures of error。

The subroutine SøLN2 determines the refractive index of the film that will minimize the absolute error of the error term.

For simplicity, we consider that the index of the film is real, i.e., $x=0$. The calculations may also be performed for a given value of χ.

The method requires limits, $\mathrm{n}_{2}{ }^{\prime}$ and $\mathrm{n}_{2}{ }^{\prime \prime}$, for the refractive index n_{2} of the film, such that $\mathrm{n}_{2}^{\prime \prime}<\mathrm{n}_{2}$ ". First, the complex film thickness D2Cl is computed with $n_{2}^{\prime \prime}$ and $n_{2}^{\prime \prime}$ used for the index. Since the error term, the imaginary part of D 2 Cl , is zero for the correct value of n_{2}, it is expected to change sign as n_{2} is varied from $n_{2}^{\prime \prime}$ to n_{2} ". Therefore, if the error terms for $n_{2}^{\prime \prime}$ and $n_{2}^{\prime \prime}$ have the same sign, it is assumed that no solution for n_{2} exists using D2Cl for the film thickness. See figure lla.

If the error terms have different signs for indices $\mathrm{n}_{2}{ }^{\prime}$ and $n_{2}{ }^{\prime \prime}$, the error term is evaluated for the intermediate index $n_{2}^{\prime \prime \prime}=\left(n_{2}^{\prime}+n_{2}^{\prime \prime}\right) / 2$. Then the interval containing the index n_{2} is narrowed by consideration of signs of the error terms. For example, suppose that the signs of the error terms for the indices $n_{2}{ }^{\prime}, n_{2}{ }^{\prime \prime \prime}$, $n_{2}^{\prime \prime}$ are -, -, + , respectively. Then the error term changes sign from $n_{2}^{\prime \prime \prime}$ to $\mathrm{n}_{2}{ }^{\prime \prime}$ so the solution for n_{2} for which the error term is zero must lie in this range. That is $\mathrm{n}_{2}{ }^{\prime \prime \prime}<\mathrm{n}_{2}<\mathrm{n}_{2}$ ".

The value of $n_{2}{ }^{\prime \prime \prime}$ is then tested to determine if it is sufficiently close to the solution for n_{2}. This is done by computing values of Δ and ψ using the real part of D2Dl for the film thickness. Of course, use of the complex value of $D 2 C l$ for the film thickness would give the experimental values of Δ and ψ, but dropping the imaginary part will change the computed values of Δ and ψ. The value of $n_{2}^{\prime \prime \prime}$ is then judged to be sufficiently close to the solution for n_{2} if the computed values of Δ and ψ are both within 0.005° of the experimental values. If the differences between the computed and experimental values of Δ and ψ are larger than 0.005°, the range is further reduced until they agree to within $.005^{\circ}$. (This value of 0.005° can be changed by the ELDP instruction.) The process is then repeated using D2C2.

Note that the values given by the ELDP instruction determine the closeness of the search for the refractive index n_{2} of the film. They should be less than the experimental errors of Δ and ψ, but if they are too small, the computation time will be excessive.

Figure lla shows a possible relationship of the error term to assumed values of the film index. For the limiting values of n_{2} ' and n_{2} " of the index, the signs of the error terms are different (- and +) so the computer will search for a solution by computing the error term for the intermediate index $\mathrm{n}_{2}{ }^{\prime \prime \prime}$. The signs of the error terms corresponding to $n_{2}{ }^{\prime}, n_{2}{ }^{\prime \prime \prime}$, and $n_{2}{ }^{\prime \prime}$ are - , - , and + , respectively. The solution is then correctly determined to lie between $\mathrm{n}_{2}{ }^{\prime \prime \prime}$ and $\mathrm{n}_{2}{ }^{\prime \prime}$ and this range will be subdivided. The procedure is seen to converge to the solution n_{2}.

Cases in which the procedure fails are shown in figures llb to lld. In figure llb the error terms are of the same sign (positive) for both $\mathrm{n}_{2}{ }^{\prime}$ and $\mathrm{n}_{2}{ }^{\prime \prime}$ so the computer assumes that no solution exists. However, there is a solution, n_{2}, outside the assumed range. In this case, too narrow a range for n_{2} was used.

In figure llc the error terms corresponding to the limits $\mathrm{n}_{2}{ }^{\prime}$ and n_{2} " are also of the same sign (positive) so no solution will be found although two solutions between n_{2}^{\prime} and $\mathrm{n}_{2}^{\prime \prime}$ exist. In this case, the assumed range was too broad. If the range has been subdivided and both sections searched for a solution, both solutions for n_{2} would have been obtained.

In figure lld the error terms for $\mathrm{n}_{2}{ }^{\prime}$ and $\mathrm{n}_{2}{ }^{\prime \prime}$ have different signs so the computer will search for a solution by first computing the error term for index $\mathrm{n}_{2}{ }^{\prime \prime \prime}$. The signs of the error corresponding to $\mathrm{n}_{2}{ }^{\prime}, \mathrm{n}_{2}{ }^{\prime \prime \prime}$, and $\mathrm{n}_{2}^{\prime \prime}$ are + , - , - , so the computer will continue the search in the interval n_{2}^{\prime} to $\mathrm{n}_{2}^{\prime \prime \prime}$ and converge to the solution. However, the two solutions between $\mathrm{n}_{2}{ }^{\prime \prime \prime}$ and $\mathrm{n}_{2}{ }^{\prime \prime}$ will be missed. Again, the range of the index must be subdivided to obtain all the solutions.

3.6. Confidence Limits for the Refractive Index and Thickness of a Film

The preceding section described the calculation of the refractive index and thickness of a film from measured values of Δ and ψ as performed by the instruction CND. Instruction CNDC performs the same calculations and, in addition, calculates the uncertainty in the refractive index and thickness due to uncertainty in the values of Δ and ψ.

Let the measured values of Δ and ψ be Δ_{0} and ψ_{0} and let their 95 percent confidence limits be $\Delta_{0}-\delta \Delta$ to $\Delta_{0}+\delta \Delta$ and $\psi_{0}-\delta \psi$ to $\psi_{0}+\delta \psi$. That is, the true value of Δ lies between $\Delta_{0}-\delta \Delta$ and $\Delta_{0}+\delta \Delta$ with 95 percent probability, and similarly for ψ. ($\delta \Delta$ and $\delta \psi$ equal 1.96 times the standard deviations of Δ and ψ when based on a large number of degrees of freedom.) Then both Δ and ψ will lie within the joint confidence ellipse (also called contour ellipse) $\left(\Delta-\Delta_{0}\right)^{2} /(\delta \Delta)^{2}+\left(\psi-\psi_{0}\right)^{2} f(\delta \psi)^{2}=1.560$ with 95 percent probability* [ll, 12]. An example is shown in figure 5. For each value of Δ and ψ on the ellipse, values of n_{2} and d_{2}, the refractive index and thickness of the film, may be calculated. Plotting these values of n_{2} versus d_{2}, a curve, approximately an ellipse, is obtained as illustrated in figure 6. This curve is the 95 percent joint confidence curve for n_{2} and d_{2}; i.e., the true values of n_{2} and d_{2} lie within this curve with 95 percent probability.

The instruction CNDC determines eight points of the joint confidence curve for n_{2} and d_{2}. The maximum and minimum values of n_{2} and d_{2} are also printed as their individual confidence limits, The instruction CNDE performs the same calculations as CNDC but prints only the individual confidence limits of n_{2} and d_{2}.
*The equation of the joint confidence ellipse is generally written in terms of standard deviations. For convenience, we have expressed it in terms of 95 percent confidence limits.

The confidence limits for Δ and $\psi, \delta \Delta$ and $\delta \psi$, are given by an EDP instruction before the CNDC or CNDE instruction. If an EDP instruction is not given, the value 0.015° is used for both $\delta \Delta$ and $\delta \psi$ 。
3.7. Volume Fractions and Total Amount of Material for a Film Composed of a Mixture of Two Materials

Consider a film that is a mixture of the immersion medium of refractive index n_{l} and density ρ_{l} and a material of index n_{p} and density ρ_{p}. Let the refractive index of the film that has been calculated be n_{f}. We desire to compute the weight fraction, f, of the material in the film.

The specific refraction, S_{f}, of the film is additive in the specific refractions of the medium, S_{1}, and the material, S_{p}. Thus

$$
\begin{equation*}
S_{f} / \rho_{f}=f S_{p} / \rho_{p}+(l-f) S_{1} / \rho_{1} \tag{24}
\end{equation*}
$$

where ρ_{f} is density of the film and $S_{f}=\left(n_{f}^{2}-1\right) /\left(n_{f}^{2}+2\right)$ and similarly for S_{1} and S_{p}. To determine the density of the film, we have the volume of a unit weight of the film as $f / \rho_{p}+(1-f) \rho_{1}$ assuming additivity of the partial volumes of the components of the film. Therefore, the density of the film is

$$
\begin{equation*}
\rho_{f}=1 /\left[f / \rho_{p}+(l-f) / \rho_{l}\right] . \tag{25}
\end{equation*}
$$

Substituting in the previous equation and solving for f gives

$$
\begin{equation*}
f=\frac{\rho_{p}}{\rho_{p}+\left(S_{f}-S_{p}\right) \rho_{l} /\left(S_{1}-S_{f}\right)} \tag{26}
\end{equation*}
$$

The amount of material per unit area of film is $\rho_{f} d_{2} f$ where d_{2} is the thickness of the film. If the densities are in $\mathrm{g} / \mathrm{cm}^{3}$ and the film thickness in \AA, the amount of material per unit area of film in $\mathrm{mg} / \mathrm{cm}^{2}$ is given by $10^{-5} \rho_{f} \mathrm{df}$ 。

3.8. Computation of Ellipsometer Readings From Δ and ψ

Substituting eqs 1 and 2 in eq 3 and rearranging gives

$$
\begin{equation*}
\frac{\tan A}{\tan \psi}=\frac{(\cos \Delta+i \sin \Delta)\left[T_{c} \tan Q \tan (P-Q)\left(\cos \Delta_{c}-i \sin \Delta_{c}\right)-I\right]}{\tan Q+T_{c} \tan (P-Q)\left(\cos \Delta_{c}-i \sin { }_{c}\right)} \tag{27}
\end{equation*}
$$

This expression is reduced to the form of a real and imaginary term. Then, the imaginary term must be zero since tanA/tan ψ is real. Solving gives

$$
\begin{equation*}
\tan (P-Q)=\left(-R \pm \sqrt{R^{2}+1}\right) / T_{c} \tag{28}
\end{equation*}
$$

where

$$
\begin{equation*}
R=\frac{\tan Q \sin \left(\Delta-\Delta_{C}\right)-\sin \left(\Delta+\Delta_{C}\right) / \tan Q}{2 \sin \Delta} \tag{29}
\end{equation*}
$$

or

$$
\begin{equation*}
P=\arctan \left[\left(-R \pm \sqrt{R^{2}+1}\right) / T_{C}\right]+Q . \tag{30}
\end{equation*}
$$

Two values of P are thus calculated. A value of A may be calculated by eq 27 for each value of P.
3.9. Computation of n and x of a Film of Given Thickness

This computation is best described by considering the instructions

NS	2.5					
FT	50.					
NF	1.1	0.1	1.3	0.2	0.2	0.2
CNK	90.5	32.				

The computer searches for a value of n between 1.1 and 1.3 and a value of x between 0.2 and 0.6 for a film of $50 \AA$ thickness that will give values of Δ and ψ near 90.5° and 32°. First, the computer increases the range of n and x by their increments. That is, the range of n becomes $1.1-0.1$ to $1.3+.1$ and the range of x becomes $0.2-0.2$ to $0.6+0.2$. This is graphically illustrated below.

	. 8	x	x	x	x	x
	. 6	x	*	*	*	x
x	. 4	x	*	0	*	x
	. 2	x	*	*	*	x
	0.0	x	x	x	x	x
		1.			1.3	

n

Increasing the ranges of n and x prevents solutions near the boundary of the range being missed in the searching procedure.

For every pair of values of n and x in this figure an error term $\left|\rho_{c}-\rho_{e}\right|$ is computed. In this error term, ρ_{c} is the value of ρ computed for the value of n, x and thickness of the film, and ρ_{e} is the value of ρ corresponding to the values of Δ and ψ (eq l) given with the CNK instruction. This error term is zero only when the values of n and x are a solution, and is small when n and x are near a solution. Therefore, the computation consists of searching for values of n and x that minimize the error time.

This is accomplished by comparing each error term with the error term at surrounding points. If the error term is less than that at the surrounding points, a minimum is assumed to occur near the value of n and x for the error term. For example, in the above figure, if the error term for $n=1.2$ and $x=0.4$ (represented by 0) is
less than the surrounding error terms represented by $*$, a minimum of the error term is tentatively assumed to occur in the range of $\mathrm{n}=1.1$ to 1.3 and $x=0.2$ to 0.6 . All interior points of the grid of n and x values are thus tested.

The next step is to search the range of n and x to locate the minimum. This procedure is illustrated by the following figure.

	7	24	8	25	9
	x	0	x	0	x
	19	20	21	22	23
	0	0	0	0	0
	4	17	5	18	6
	x	0	x	0	x
x					
	12	13	14	15	16
	0	0	0	0	0
	1	10	2	11	3
	x	0	x	0	x
			26	27	28
			0		0

n

This figure represents the ranges of n and x for which a minimum is found to occur. That is, the error terms at points l to 9 , F_{1} to F_{9} (represented by x on the figure) have been calculated and the error term to point $5, F_{5}$, has been found to be less than F_{1}, $F_{2}, F_{3}, F_{4}, F_{6}, F_{7}, F_{8}$, and F_{9}. The procedure is to calculate the error term at point $13, F_{13}$. If it is greater than F_{5}, F_{14} is calculated. If F_{14} is also greater than $\mathrm{F}_{5}, \mathrm{~F}_{15}$ is calculated, and so forth. If $F_{13}, F_{14}, F_{15}, F_{18}, F_{22}, F_{21}, F_{20}$, and F_{17} are all greater than F_{5}, they define a new reduced range for the minimum and the process is repeated.

Consider the case that one of the terms, say F_{15}, is less than F_{5}. Then F_{15} is also less than F_{2}, F_{3}, F_{6}, and F_{14} since these terms are greater than F_{5}. Terms F_{11}, F_{16}, and F_{18} are then calculated. If these terms are all greater than F_{15}, a new reduced range centered around F_{15} is found and the process is repeated. Next, consider the case that one of these terms, say F_{11}, is less than $\mathrm{F}_{15^{\circ}}$ In this case terms $\mathrm{F}_{26}, \mathrm{~F}_{27}$, and F_{28} are computed。 If these terms are all greater than F_{11}, a range centered around F_{11} is found. However, if one of these terms, say F_{26}, is less than F_{11}, another process to follow the minimum is used. All eight terms surrounding F_{26} are calculated and if any of them is less than F_{26}, its eight surrounding terms are calculated and compared with its value. This secondary process is repeated five times. If an error term less than its eight surrounding terms is obtained, the process of reducing the range continues. If not, the process is considered to fail and a diagnostic message printed.

The process of reducing the range is repeated ten times, thereby reducing the original range by a factor of about 2000 . These calculations are performed by the subroutine MIN2V and the error terms are calculated by the function FUNC.

Oldham [14] has programed and tested another method for determining the optical properties of adsorbing films of given thickness from ellipsometer readings. His method is a generalization for complex variables of Newton's method of finding roots of a function. His method probably finds solutions with less calculation than the method used in this program. However, it is more likely to fail in finding solutions and does not ordinarily give multiple solutions as does the method used in this program.

This computer program was originally written in Fortran V for use with the Univac 1108 computer. Because some of the features of this Fortran compiler do not apply to other Fortran compilers, the program in Fortran IV is given in Section 4.1. The data input preceding is identical for both programs except for the instructions discussed in Section 2.12. With the Fortran IV program the first card of the data and the card following the PAGE and RESET instructions must be a comment card, and no other comment cards may be used in the program. Also, comments may not be placed on the PAGE and RESET instruction cards. These restrictions are required because the instruction of the form, $\operatorname{READ}(0, i)$ List, in Fortran V is not generally available in Fortran IV.

The Fortran IV program used logical unit 5 for input and logical unit 6 for output. These logical unit numbers may have to be changed for some computers.

For both versions of the program, complex and real values are combined in arithmetic statements with the result being complex.

The Fortran V version of the program and both versions on cards are available from the author.

CALCULATION FOR ELLIPSOMETER
FOR IFILM．THE NUMBER OF FILMS ADD．RESET IS NECESSARY TO ERASE FILMS CHANGED TO USE KAPPA INSTEAD OF IMAGINARY PART OF REFRACTIVE INDEX DIMENSION IDT（14），FNSI（2），DFNS（2），FNSE（2）；FNSX（2），TN（8），TD（8） DIMENSION INST（31）
COMMON FN1，S1，C1，N，FNX（900），D（900），FN2，CRP，CRN，CRP32，CRN32，WL， 1 RP21，RN21，DEL，PSI，C2，C3，FN2I（2），DFN2（2），FN2E（2），FN2X（2），T1，T2，T3，
2 T4，D2，DELDX，PSIDX，ELDEL，ELPSI，DENP，FNP，DEN1，MX，K，IS
COMPLEX C2，C3，CI，CIP1，CN，CNM1，CRN，CRN21，CRN32，CRP，CRP21，CRP32
COMPLEX FN2，FNX，FNS，RHO，RN，RN21，RP，RP21，RC，SRC
COMPLEX T1，T2，T3，T4，RHOC，RHO1，RH02，CAT，ALP1，ALP2，BET1，BET2
COMPLEX GAM1，GAM2，CAT
INSTRUCTIONS TO BE COMPARED WITH INSTRUCTIONS GIVEN WITH

2	3	4	5	6	
－6HNM	－6HNF	－6HNS	－6HAI	－6HWL	－
9	10	11	12	13	
－6HEDP	－6HELDP	－6HRESET	－6HF ILM	－6HMIXED	，
16	$\begin{gathered} 17 \\ .6 \mathrm{H}_{\mathrm{NDE}} \end{gathered}$	$\begin{aligned} & 18 \\ & 6 \mathrm{HCNDC} \end{aligned}$	$\begin{gathered} 19 \\ .6 \text { HCNS } \end{gathered}$	$\begin{gathered} 20 \\ .6 \mathrm{HCWP} \end{gathered}$	
23	24	25	26	27	
－ 6 HCDNC	－6HAT	－6HCAT	－6HCATA	－6HIFILM	－

SRC IS SMALL REFLECTION COEFFICIENT（WITHOUT CONSIDERING UNDERLYING LAYERS）
$S R C(A, B)=(A-B) /(A+B)$
SIN，COS，ATAN，TAN FOR ANGLES IN DEGREES
SIND（ X ） $\operatorname{si} \operatorname{SIN}(X / 57.29578)$
$\operatorname{CoSD}(X)=\cos (X / 57.29578)$
$\operatorname{ATAND}(x)=\operatorname{ATAN}(x) * 57.29578$
$\operatorname{TAND}(x)=\operatorname{SIND}(x) / \operatorname{COSD}(x)$
S IS USED FOR CALCULATING SPECIFIC REFRACTION
$S(X N)=(X N * X N-1 \cdot) /(X N * X N+2 \cdot)$
GIVE STANDARD VALUES TO VARIABLES
10 FN1I＝1．
DFN1＝0．
FN1E＝0．
$A T=0$ ．
ALP $=0$ 。
$A L A=0$ 。
ALQ＝0．
FN2I（1）＝1．
FN2I（2）$=0$ ．
DFN2（1）$=0$ 。
DFN2（2）$=0$ 。
FN2E（1）＝0．
FN2E（2）$=0$ 。
FNSI（1）＝1。
$\operatorname{FNSI}(2)=0$ 。
DFNS（1）＝0．
$\operatorname{DFNS}(2)=0$ 。
FNSE（1）＝0．
FNSE（2）$=0$ 。
AII＝70．
AIE＝0．
$W L I=5461$ ．

```
        DWL=0.
        WLE=0.
        RHOC=(0..-1.)
        TC=1.
        DELC=90.
        DEN1=1.
        DENP=1.
        FNP=1.5
    N=2
    ELDEL=.002
    ELPSI=.002
    D2I=0.
    DD2=0.
    D2F=0.
    FN=1.
    EDEL=.015
    EPSI=.015
    12 READ(5,15) IDT
    15 FORMAT(13A6,A2)
        WRITE(6,17) IDT
    17 FORMAT (1H1.14A6)
    READ AND PRINT CARD OF DATA
    20 READ(5,25) L,Z1,Z2,Z3,Z4,Z5,Z6
    25 FORMAT(A6,3X,6F10.0)
        WRITE(6,27) L,Z1,Z2,Z3,Z4,Z5,Z6
    27 FORMAT(1H ,A6,3X,6F15.5)
                            COMPARE L WITH INSTRUCTIONS TO FIND M.
        DO 30 M=1.31
    30 IF(L.EQ.INST(M)) GO TO }3
        GO TO 20
    C M= 1 2 2 3 4 4 5 5 6 6 7
    3 5 ~ G O ~ T O ( 1 2 , 5 0 , 7 0 , 8 0 , 9 0 , 1 0 0 , 1 1 0 , 1 2 0 , 1 3 0 , 1 4 0 , 1 0 , 1 5 0 , 1 6 0 , 3 0 5 , 1 7 0 , 1 7 0 ,
C 17 18 19 17 20 21 22 23 24 25 25 26 27 28 29 29 30 31
        1 170.170.170.730.170.170.170.250.750.750.270.260.810.305.170),M
            INSTRUCTION NM.REFRACTIVE INDEX OF MEDIUM
    50 FN1I=Z1
        DFN1=22
        FN1E=1.000001*Z3
        GO TO 20
    C INSTRUCTION NF, REFRACTIVE INDEX OF TOP FILM
    70 FN2I(1)=Z1
    DFN2(1)=Z2
    FN2E (1)=1.000001*Z3
    FN2I(2)=Z4
    DFN2(2)=25
    FN2E(2)=1.000001*Z6
                    IF DFN2(1) IS LEFT BLANK ON DATA CARD, SUBSTITUTE A VALUE OF
                                    DFN2(1) SO THAT ONLY ONE CALCULATION WILL BE PREFORMED.
        IF(ABS(DFN2(1)).EQ.0.) DFN2(1)=1.000002*ABS(FN2E(1)-FN2I(1))
            INSTRUCTION NS. REFRACTIVE INDEX OF SUBSTRATE
    80 FNSI(1)=Z1
        DFNS(1)=Z2
        FNSE(1)=1.000001*Z3
        FNSI(2)=24
        DFNS(2)=25
        FNSE(2)=1.000001*26
        GO TO 20
            INSTRUCTION AI, ANGLE OF INCIDENCE
        90 AII=Z1
            DAI=Z2
            AIE=1.000001*23
```

```
    GO TO 20
    c INSTRUCTION WL, WAVE LENGTH OF LIGHT
    100 WLI=Z1
    DWL=Z2
    WLE=1.000001*Z3
    GO TO 20
C INSTRUCTION WP, CONSTANTS OF WAVE PLATE
    110 TC=Z1
    DELC=22
    RHOC=TC*CEXP((0..-1.)*DELC/57.29578)
    GO TO 20
C INSTRUCTION NREF, NUMBER OF REFLECTIONS OF THE LIGHT
    120 FN=Z1
    GO TO 20
        INSTRUCTION EDP, CONFIDENCE FIMITS FOR DELTA AND PSI
    130 EUEL=Z1
        EPSI=Z2
        GO TO 20
C INSTRUCTION ELDP, ERROR LIMITS FOR DELTA AND PSI
    140 ELDEL=21
        ELPSI=Z2
C INSTRUCTION FILM ,NUMBER. THICKNESS AND REFRACTIVE INDEX OF FILM
    150 I=1.000001*Z1+1
    D(I)=Z2
    FNX(I)=CMPLX(23,-23*ABS(Z4))
    N=MAXO(N,I)
    GO TO 20
C INSTRUCTION MIXED, DATA FOR MIXED FILMS
    160 DEN1=Z1
    DENP=Z2
    FNP=23
    GO TO 20
    VALUES OF DELTA AND PSI OR OF P,APAND Q HAVE BEEN GIVEN
                USE PREVIOUS VALUES OF DEL AND PSI IF NO DATA IS GIVEN, Z1=Z2=0
                IF FIRST VALUE(Z1) =0.USE PREVIOUSLY GIVEN VALUES OF
                DELTA AND PSI
    170 JF(ABS(Z1).EQ.O.) GO TO 310
    IF(ABS(Z5).,EQ.O.) GO TO 180
                                    Z5 NOT =0, SO P1,A1,P2,A2,Q ARE GIVEN
                                    COMPUTE TWO VALUES OF RHO
    Z1=Z1+AT+ALP
    Z2=Z2+AT+ALA
    Z3=Z3+AT+ALP
    Z4=24+AT+ALA
    Z5=25+AT+ALQ
    WRITE(6,27) L,Z1,Z2,Z3,Z4,25
    174 RHO1=TAND(Z2)*(TAND(Z5) +TAND(Z1-Z5)*RHOC)/(TAND(Z1-Z5)*TAND(Z5)*
    1 RHOC-1.)
    RHO2=TAND(Z4)*(TAND(Z5)+TAND(Z3-Z5)*RHOC)/(TAND(Z3-25)*TAND (Z5)*
    1 RHOC-1.)
                                    AVERAGE VALUES OF RHO,COMPUTE VALUES OF DELTA AND PSI
            RHO=(RHO1+RHO2)/2.
            DEL1=ATAN2(AIMAG(RHO1),REAL(RHO1))*57.29578
            PSI1=ATAND(CABS(RHO1))
            DEL2=ATAN2(AIMAG(RHO2),REAL (RH02))*57.29578
            PSI2=ATAND(CABS(RHO2))
            WRITE(6,175) DEL1,PSI1,DEL2,PSI2
        175 FORMAT(6H DEL1=^F12.6.6H PSI1=^F12.6.6H DEL2=,F12.6.
        1 6H PSI2=,F12.6)
        IF(FN.EQ.1.) GO TO 210
        GO TO 200
```

```
C
                IF 23=0, DELTA AND PSI ARE GIVEN,OTHERWISE P,A,Q ARE GIVEN
    180 IF(ABS(Z3).EQ.O.) GO TO 190
        Z1=Z1+AT+ALP
        Z2=Z2+AT+ALA
        Z3=Z3+AT+ALQ
        WRITE(6,27) L,Z1,Z2,Z3
    185 RHO=TANO}(Z2)*(TAND(Z3)+TAND(Z1-Z3)*RHOC)/(TAND(Z1-Z3)*TAND(Z3)*
        1 RHOC-1.)
        IF(FN.EQ.1.) GO TO 210
        GO TO 200
    190 DEL=Z1
        PSI=Z2
        RHO=TAND(PSI)*CEXP((0.,1.)*DEL/57.29578)
        IF(FN.EQ.1.) GO TO }31
                CORRECT FOR NUMBER OF REFLECTIONS IF FN NOT =1
    200 RHO=CEXP(1./FN*CLOG(RHO))
    210 DEL_ATAN2(AIMAG(RHO),REAL(RHO))*57.29578
        PSI =ATAND (CABS (RHO))
        IF(M.EQ.25.OR. M.EQ.26) GO TO }75
    215 WRITE゙(6.220) DEL,PSI
    220 FORMAT(6H DEL=,F13.6.5H PSI=,F13.6)
    GO TO 310
C INSTRUCTION AT. ANGLE OF TILT OF SAMPLE
    250 AT=21
    GO TO 20
C INSTRUCTION ALINE, ALINEMENT CORRECTIONS
    260 ALP=Z1
    ALA=Z2
    ALQ=23
    GO TO 20
C INSTRUCTION IFILM, CALCULATES THICKNESSES AND REFRACTIVE
C INDICES OF A SERIES OF FILMS
    270 XNF=Z1
    TH=Z2
C REMOVE ALL PREVIOULSY DESIGNATED FILMS.
C WITHOUT NEXT CARD. FILMS WILL BE PLACED BETWEEN PREVIOUSLY
                DESIGNATED FILMS AND SUBSTRATE
    N=2
            DN AND DK ARE INCREMENTS OF REFRACTIVE INDEX AND K
    DN=(Z5-Z3)/XNF
    DK=(26-24)/XNF
                                    COMPUTE INDEX AND K (KAPPA) OF TOP FILM
    Z3=23+DN/2.
    Z4=Z4+DK/2.
        INDEX OF TOP FILM IS N1, INDEX OF BOTTOM FILM IS N
    N1=N+1
    NF=1.000001*XNF
    N=N+NF
    DO 280 I=N1,N
    D(I) =TH/NF
    FNX(I)=CMPLX(Z3,-Z3*Z4)
    Z3=Z3+DN
    280 24=24+DK
    GO TO 20
C THICKNESS OF TOP FILM AND ,OPTIONALLLY, SETTING OF WAVE PLATE
    305 D2I=Z1
        DD2=22
        D2E=1.000001*Z3
        Q=Z4
        IF(M.EQ.30) GO TO 20
C SET INITIAL VALUES
    310 FN1=FN1I
```

```
    311 AI=AII
    312 SI=SIND(AI)
        C1=COSD(AI)
        IF(M.EQ.19) GO TO }71
    315 WL=WLI
        WRITE (6,316) FN1,AI,WL,TC,DELC
    316 FORMAT(17HOINDEX OF MEDIUM=,F10.5,21H ANGLE OF INCIDENCE=,F10.3.
        1 14H WAVE LENGTH=,F10.2.5H TC=,F10.5.7H DELC=,F10.3)
        IF(M.EQ.14) GO TO 320
        IF(M.EQ.31) GO TO 318
C
                                    PRINT TABLE HEADINGS EXCEPT FOR CTABLE OR CNK
        WRITE(6,317)
    3 1 7 \text { FORMAT(123HO THICK NF REAL KAPPA ADSORPTION D DEL D P}
        1SI ERROR
        2 K)
        GO TO 320
        PRINT HEADINGS FOR INSTRUCTION CNK
    318 PRINT 319
    3 1 9 \text { FORMAT(1H0,8X,2HNF,15X,5HKAPPA,9X.4HD NF,11X,7HD KAPPA,9X,}
        1. 5HERRUR,3X,7HD DELTA,5X,5HD PSI,10X,5HTHICK)
    320 NP1=N+1
C
    325 FNSX(1)=FNSI(1)
    326 FNSX(2)=FNSI (2)
    327 FNX(NP1)=CMPLX(FNSX(1),-FNSX(2)*FNSX(1))
C
                COMPUTE REFLECTION COEF BETWEEN LAYERS }3\mathrm{ AND }
        IF(N.EQ.2) GO TO }33
        X=SIND(AI) *FN1
        CN=CSQRT(1. - (X/FNX(N+1))**2)
        CNM1=CSQRT(1.-(X/FNX(N))**2)
        CRP=SRC (FNX(N+1)*CNM1,FNX(N)*CN)
        CRN=SRC(FNX(N)*CNM1,FNX(N+1)*CN)
        IF(N.EQ.3) GO TO 335
        NX=N-3
        I=N=1
        DO 330 J=1,NX
            CIP1=CSQRT(1.-(X/FNX(I+1))**2)
            CI= CSQRT(1.-(X/FNX(I)) **2)
            RP=SRC(FNX(I+1)*CI*FNX(I)*CIP1)
```



```
            T1=FNX(I+1)*CIP1*D(I+1)/WL
            CRP=RC(RP,CRP,T1)
            CRN=RC(RN,CRN,T1)
    330 I=I-1
    335 IF(M.EQ.31) GO TO 850
    340 FN2X(2)=FN2I(2)
    342 FN2X(1)=FN2I (1)
    343 FN2=CMPLX(FN2X(1),-FN2X(2)*FN2X(1))
                            CALCULATE REFLECTION COEF BETWEEN LAYERS 2 AND }
        CALL CRC
        IF(M.EQ.14) GO TO 350
        K=1
            EXCEPT FOR CTABLE,CALCULATE VALUES,T1 AND T2, OF FILM
                                    THICKNESS
    CALL CALDX (T1,T2)
    IF(M.EQ.15) GO TO 455
                    EXCEPT FOR CTABLE OR CD,CALCULATE COMPLEX VALUES.T3 AND
                    T4 OF FILM THICKNESS FOR UPPER VALUE OF FILM
                REFRACTIVE INDEX
    FN2=CMPLX(FN2X(1)+DFN2(1),-FN2X(2)*(FN2X(1)+DFN2(1)))
    CALL CRC
    CALL CALDX(T3,T4)
```

 IS=1 FOR NO SOLUTION FOUND IS=2 FOR SOLUTION FOUND
 IS=1
 IF((AIMAG(T1).GT.0..AND.AIMAG(T3).LT.O.).OR.(AIMAG(T1).LT.O..AND.
 1 AIMAG(T3).GT.0.)) GO TO 485
 NO SOLUTION FOR N2 FOR FIRST SOLUTION OF QUADRATIC
 345 IF((AIMAG(T2).GT.0..AND.AIMAG(T4).LT.0.).OR.(AIMAG(T2).LT.O.AND.
 1 AIMAG(T4).GT.0.)) GO TO 487
 C NO SOLUTION FOR N2 FOR SECOND SOLUTION OF QUADRATIC
347 IF(IS.EQ.2) GO TO 670
C NO SOLUTION FOUND. TRY OTHER QUADRANTS FOR SQRT IN CALDX
K=3
FN2=CMPLX(FN2X(1),-FN2X(2)*FN2X(1))
CALL CRC
CALL CALDX (T1,T2)
FN2=CMPLX(FN2X(1)+DFN2(1),-FN2X(2)*(FN2X(1)+DFN2(1)))
CALL CRC
CALL CALDX(T3,T4)
IF((AIMAG(T1).GT.O..AND.AIMAG(T3).LT.O.).OR.(AIMAG(T1).LT.O..AND.
1 AIMAG(T3).GT.O.1) GO TO 490
348 IF((AIMAG(T2).GT.0..AND.AIMAG(T4).LT.O.).OR.(AIMAG(T2).LT.O.AND.
1 AIMAG(T4).GT.0.)) GO TO 489
GO TO 670
C TABLES OF DEL AND PSI FOR CTABLE
350 WRITE(6,360)
360 FORMAT (1HO, 3X,5HTHICK, 4X,3HDEL,5X,3HPSI, 4X,14HRF.CF.PARALLEL,6X,
1
12HRF.CF.NORMAL, 4X,2HNF, 4X,5HKAPPA, 2X,2HNS,5X,5HKAPPA,4H,
2HP1,5X,2HA1,5X,2HP2,5X,2HA2)
390 D2=D2I
400 CRP21=RC(RP21,CRP32,FN2*C2*D2/WL)
CRN21=RC(RN21.CRN32,FN2*C2*D2/WL)
RHO=CRP21/CRN21
IF(FN.NE.1.) RHO=CEXP(1./FN*CLOG(RHO))
DEL=ATAN2 (ALMAG(RHO) ,REAL (RHO))*57.29578
IF(REAL(RHO).LT.0. .AND. ABS(AIMAG(RHO)).LT. 1.0E-6) DEL=180.
PSI=ATAND (CABS(RHO))
XM1=CABS(CRP21)
THETA1=ATAN2(AIMAG(CRP21),REAL(CRP21))*57.29578
IF(REAL(CRP21).LT.0. .AND. ABS(AIMAG(CRP21)).LT.1.0E-6)THETA1=180.
XM2=CABS(CRN21)
THETA2=ATAN2(AIMAG(CRN21), REAL(CRN21))*57.29578
IF(REAL(CRN21).LT.0. .AND. ABS(AIMAG(CRN21)).LT.1.0E-6)THETA2=180.
FN2R=REAL (FN2)
FNXR=REAL(FNX(N+1))
FK2=-AIMAG(FN2)/REAL(FN2)
FKX=-AIMAG(FNX(N+1))/REAL(FNX(N+1))
IF(ABS(Q).NE.0.) GO TO 420
WRITE(6,410) D2,DEL,PSI,XM1,THETA1,XM2,THETA2,FN2R,FK2,FNXR,FKX
410 FORMAT(1H F8.1.2F8.3.2(F9.5.F9.3).4F7.4.4F7.2)
GO TO 450
Q NOT O, COMPUTE P AND A READINGS FOR VALUE OF Q
C CORRECT Q QOR O, COMPUTE P AND A REA
420 TQ=TAND (Q+AT+ALQ)
IF(ABS(DEL).LT.1.OE-6) GO TO 430
R=(TQ*SIND(DEL-DELC)-SIND(DEL+DELC)/TQ)/2./SIND(DEL)
TP1=(-R+SQRT(R*R+1))/TC
TP2=(-R-SQRT(R*R+1))/TC
P1=ATAND (TP1)+Q-ALP+ALQ
P2=ATAND(TP2)+Q-ALP+ALQ
A1=ATAND(REAL(RHO*(TP1*TQ*RHOC=1.)/(TQ+TP1*RHOC)))-AT-ALA
A2=ATAND(REAL(RHO*(TP2*TQ*RHOC-1.)/(TQ+TP2*RHOC)))-AT-ALA
GO TO 440
C USE LIMITING FORMS OF EQUATIONS FOR DEL NEARLY =0.

```
```

 430 P1=Q-ALP+ALQ
 P2=Q-ALP+ALQ-90.
 A1=ATAND(REAL(RHO/TQ))-AT-ALA
 A2=ATAND(REAL (RHO*TQ))-AT-ALA
 C REDUCE ANGLES TO LIE BETWEEN O AND }180\mathrm{ DEGREES
440 P1=AMOD(P1+360..180.)
A1=AMOD(A1+360..180.)
P2=AMOD (P2+360..180.)
AC=AMOD(A2+360..180.)
WRITE(6,410) D2,DEL,PSI,XM1,THETA1,XM2,THETA2,FN2R,FK2,FNXR,
1 FKX,P1,A1,P2,A2
450 D2=D2+DD2
IF(D2.LT.D2E) GO TO 400
GO TO 670
C COMPUTE FILM THICKNESS M=15 PICK THICKNESS WITH SMALLEST IMAGINA
455 IF(ABS(AIMAG(T2)).LT.ABS(AIMAG(T1))) GO TO 460
D2=REAL(T1)
ERROR=AIMAG(T1)
K=1
GO TO 470
460 D2=REAL(T2)
ERROR=AIMAG(T2)
K=2
C
470 CRP21=RC(RP21,CRP32,FN2*C2*D2/WL)
CRN21=RC(RN21,CRN32,FN2*C2*D2/WL)
RHO1=CRP21/CRN21
PSIX=ATAND (CABS (RHO1))-PSI
DELX=57.29578*ATAN2(AIMAG(RHO1),REAL(RHO1))-DEL
DIFN21=REAL(FN2)-FN1
DIFN32=REAL.(FNX(N+1))-REAL(FN2)
WEIGHT FRACTION AND WEIGHT OF MATERIAL IN UNIT AREA OF FILM
FRACTN=DENP/(DENP+(S(REAL(FN2))-S(FNP))*DEN1/(S(FN1)-S(REAL(FN2)))
1)
WTMT=1.0E-5*D2*FRACTN/(FRACTN/DENP+(1.-FRACTN)/DEN1)
FN2R=REAL (FN2)
FNXR=REAL (FNX(N+1))
FK2=-AIMAG(FN2)/REAL(FN2)
FKX=-AIMAG(FNX(N+1))/REAL(FNX(N+1))
WRITE(6,480) D2,FN2R,FK2,WTMT,DELX,PSIX,ERROR,DIFN21,DIFN32,
1 FRACTN,FNXR,FKX,K
480 FORMAT(1H .F8.1.2F9.5.1PE12.4.0P2F9.3.F12.5.3F10.5.2F9.5.I6)
GO TO 670
C CALCULATE SOLUTION FOR N2 FOR FIRST SOLUTION OF QUADRATIC
485 K=1
GO TO 490
487 K=2
GO TO 490
489k=4
C
490 MX=16
CALL SOLN2
MX=M
IF(M.EQ.16 .OR. M.EQ.21 .OR. IS.EQ.1) GO TO (345,347.348.670).K
PRINT BLANK SPACE
WRITE(6.27)
CALCULATE ERROR LIMITS FOR N2 AND D2
DELO=DEL
PSIO=PSI
DEL=DELO+1.249*EDEL
CALL SOLN2

```
```

 TN(1)=REAL(FN2)
 TD(1)=D2
 DEL=DEL0-1.249*EDEL
 CALL SOLN2
 TN(2)=REAL(FN2)
 TD(2)=D2
 DEL=DELO
 PSI=PSIO+1.249*EPSI
 CALL SOLN2
 TN(3)=REAL(FN2)
 TD(3)=D2
 PSI=PSI0-1.249*EPSI
 CALL SOLN2
 TN(4)=REAL (FN2)
 TD(4)=D2
DEL=DEL0+0.883*EDEL
PSI=PSI 0+0.883*EPSI
CALL SOLN2
TN(5)=REAL (FN2)
TD(5)=D2
DEL=DEL0-0.883*EDEL
CALL SOLN2
TN(6)=REAL (FN2)
TD(6)=D2
DEL=DEL0+0.883*EDEL
PSI=PSI 0-0.883*EPSI
CALL SOLN2
TN(7)=REAL (FN2)
TD(7)=D2
DEL=DEL0-0.883*EDEL
CALL SOLN2
TN(8)=REAL(FN2)
TD(8)=D2
FN2MIN=AMIN1(TN(1),TN(2),TN(3),TN(4),TN(5),TN(6),TN(7),TN(8))
FN2MAX=AMAX1(TN(1),TN(2),TN(3),TN(4),TN(5),TN(6),TN(7),TN(8))
D2MIN=AMIN1(TD(1),TD(2),TD(3),TD(4),TD(5),TD(6),TD(7),TD(8))
D2MAX=AMAX1(TD(1),TD(2),TD(3),TD(4),TD(5),TD(6),TD(7),TD(8))
WRITE(6,495) D2MIN,D2MAX,FN2MIN,FN2MAX
495 FORMAT (39HOCONFIDENCE LIMITS OF FILM THICKNESS ISF8.1,3H TOF8.1/
1 69H CONFIDENCE LIMITS OF THE REAL PART OF INDEX OF REFRACTI
20N OF FILM ISF12.5.3H TO F12.5)
GO TO (345,347,348,670),K
670 FN2X(1)=FN2X(1)+DFN2(1)
IF(FN2X(1).LT.FN2E(1)) GO TO 343
700 FN2X(2)=FN2X(2)+DFN2(2)
IF(FN2X(2).LT.FN2E(2)) GO TO }34
FNSX(2)=FNSX(2)+DFNS (2)
IF (FNSX(2).LT.FNSE(2)) GO TO 327
FNSX(1)=FNSX(1)+DFNS(1)
IF(FNSX(1).LT.FNSE(1)) GO TO 326
WL=WL+DWL
IF(WL.LT.WLE) GO TO 320
705 AI=AI+DAI
IF(AI.LT.AIE) GO TO }31
FN1=FN1+DFN1
IF(FN1.LT.FN1E) GO TO 311
GO TO 20
C CALCULATE REFRACTIVE INDEX OF SUBSTRATE CNS
710 FNS=FN1*S1/C1*CSQRT(1.-4.*RHO*S1**2/(RHO+1.)**2)
FNSI(1)=REAL(FNS)
FNSI(2)=-AIMAG(FNS)/FNSI(1)
FNSE(1)=0.

```
```

 FNSE(2)=0.
 WRITE(6.720) FNSI,DEL,PSI
 720 FORMAT(2OHOINDEX OF SUBSTRATE=F9.4.F9.4.2H ,2X.4HDEL=,
 1 F9.3.2X.4HPSI=F9.3)
 IF(FNSI(2).LT.0.) GO TO 725
 GO TO 705
 725 WRITE(6,727)
 727 FORMAT(62HOKAPPA IS SET EQUAL TO O,SINCE A NEGATIVE VALUE WAS CALC
 IULATED)
 FNSI(2)=0.
 GO TO }70
 C COMPUTE CONSTANTS OF WAVE PLATE CWP
C ASSUMES ANGLE OF TILT AT IS ZERO
730 Z1=Z1+ALP
Z2=Z2+ALA
Z3=Z3+ALP
Z.4=Z4+ALA
Z5=Z5+ALQ
WRITE(6,27) L,Z1,Z2,Z3,Z4,Z5
IF(ABS(Z3-Z5).LT,0.1 •OR. ABS(Z1-Z5).LT.0.1) GO TO 745
735 B=(TAND(Z2)*(TAND(Z3-Z5)*TAND(Z5)-TAND(Z1-Z5)/TAND(Z5))-TAND(Z4)*
1(TAND(Z1-Z5)*TAND(Z5)-TAND(Z3-Z5)/TAND(Z5)))/2./
2 (TAND(Z2)-TAND (Z4))
DELC= ATAN2(SQRT(-B*B-TAND(Z1-Z5)*TAND (Z3-Z5)),B)*57.29578
TC=1./SQRT(-TAND(Z1-Z5)*TAND(Z3-Z5))
RHOC=TC*CEXP((0.,-1.)*DELC/57.29578)
RHO =TAND(Z2)*(TAND(Z5) +TAND(Z1-Z5)*RHOC)/(TAND(Z1-Z5)*TAND(Z5)*
1 RHOC-1.)
DEL=57.29578*ATAN2(AIMAG(RHO).REAL (RHO))
PSI=ATAND(CABS(RHO))
WRITE(6,740) TC,DELC,DEL,PSI
740 FORMAT(4H TC=,F10.5.9H DELTA C=,F10.5,7H DELTA=,F15.5.5H PSI=,
1 F15.5)
GO TO 20
745 WRITE (6,747)
7 4 7 FORMAT(73HOCONSTANTS OF WAVE PLATE CAN NOT BE ACCURATELY CALCULAT
IED FROM ABOVE DATA)
GO TO 20
C CALCULATE ANGLE OF TILT OF STAGE ON ELLIPSOMETER CAT IS COMP
ANGLE WITH REAL PART ANGLE AND IMAGINARY PART ERROR
750 21=Z1+ALP
Z2=Z2+ALA
Z3=Z3+ALP
Z4=Z4+ALA
Z5=Z5+ALQ
WRITE(6.27) L,Z1,Z2,Z3,Z4,Z5
TPI=TAND(Z1-Z5)
TA1=TAND(Z2)
TP2=TAND(Z3-Z5)
TAZ=TAND(Z4)
TQ =TAND(Z5)
ALP1=TA1*(TQ+TP1*RHOC)
ALP2=TA2*(TQ+TP2*RHOC)
GAM1=TP1*TQ*RHOC-1.
GAM2=TP2*TQ*RHOC-1.
BET1=ALP1/SIND(Z2)/COSD(Z2) +(TA1-ALP1*TP1*RHOC/GAM1)/COSD(Z5)**2
BET2=ALP2/SIND(Z4)/COSD(Z4)+(TA2-ALP2*TP2*RHOC/GAM2)/COSD(Z5)**2
CAT=(ALP2*GAM1-ALP1*GAM2)/(BET1*GAM2-BET2*GAM1)*57.29578
ATX=REAL (CAT)
21=Z1+ATX
Z2=Z2+ATX
23=23+ATX

```
```

 24=24+ATX
 25=25+ATX
 COMPUTE RHO,DEL,PSI
 GO TO }17
 755 PRINT 760,CAT,DEL,PSI
 760 FORMAT(15H ANGLE OF TILT=,F13.5.15H DEGREES.ERROR=,F13.5.
 1 7H DELTA=,F15.5.5H PSI=,F15.5)
 IF(M.EQ.26) ATX=(ATX+AT)/2.
 AT=ATX
 GO TO 20
 810 STOP
 C INSTRUCTION CNK M=31 COMPUTES N AND KAPPA OF FILM
050 D2=D2I
852 PRINT 855,D2
<55 FORMAT(1H0,90X,F15.1)
860 CALL MIN2V(FN2I(1),DFN2(1),FN2E(1),FN2I(2),DFN2(2),FN2E(2))
D2=02+DD2
IF(D2.LT.D2E) GO TO }85
GO TO 20
END
SUBROUTINE SOLN2
SOLVES FOR REAL PART OF REFRACTIVE INDEX AND THICKNESS OF
A FILM FOR MEASUREMENTS OF DELTA AND PSI
ER2 IS ERROR OF SOLUTION,THICK IS FILM THICKNESS,INDEX IN FN2
IF K=1 OR 3. FIRST(POSITIVE SIGN) SOLUTION IS USED
IF K=2 OR 4, SECOND(NEGATIVE SIGN) SOLUTION IS USED
COMMON FN1,S1,C1,N,FNX(900),D(900),FN2,CRP,CRN,CRP32,CRN32,WL,
RP21,RIN21,DEL,PSI,C2,C3,FN2I(2),DFN2(2),FN2E(2),FN2X(2),T1,T2,T3,
2 T4,D2,DELX ,PSIX , ELDEL,ELPSI,DENP,FNP,DEN1,M,K,IS
COMPLEX FNX,FN2,CRP,CRN,CRP32,CRN32,RP21,RN21,C2,C3,T1,T2,T3,T4,
1 T5,TG.RHO,RC
S IS USED FOR CALCULATING SPECIFIC REFRACTION
S(XN) =(XN*XN-1.)/(XN*XN+2.)
ATAND(X)=ATAN (X)*57.29578
X1=FN2X(1)
X3=FN2X(1)+DFN2(1)
GO TO (10,20,10,20),K
10 ER1=AIMAG(T1)
ER3=AIMAG(T3)
GO TO 30
20 ER1=AIMAG(T2)
ER3=AIMAG(T4)
RH0=RC(RP21,CRP32,FN2*C2*D2/WL)/RC(RN21,CRN32,FN2*C2*D2/WL)
DELX =ATAN2(AIMAG(RHO),REAL(RHO))*57.29578-DEL
PSIX=ATAND(CABS(RHO))-PSI
IF(ABS(DELX).LT.ELDEL.AND. ABS(PSIX).LT.ELPSI) GO TO 100
HAS NOT CONVERGED TO ELDEL AND ELPSI. CHANGE LIMITS X1,X3
IF ER1 AND ER2 HAVE SAME SIGN*X1=X2 AND ER1=ER2,OTHERWISE
ER2 AND ER3 HAVE SAME SIGN, X3=X2 AND ER3=ER2

```
```

 IF((ER1.GT.0.0 .AND.ER2.GT.0.0).OR.(ER1.LT.0.0 .AND.
 1 ER2.LT.0.0)) GO TO 70
 X3=X2
 ER3=ER2
 GO TO 80
 X1=X2
 ER1=ER2
 CONTINUE
 D2=1.0E30
 FN2=1.0E30
 RETURN
 IF FILM THICKNESS D2 IS NEGATIVE,TREAT AS NO SOLUTION
 100 IF(D2.LT.0.) GO TO 90
 PRINT SOLUTION AND ERROR LIMITS
 IF(M.EQ.17 .OR. M.EQ.22) GO TO 120
 DIFN21=X2-FN1
 DIFN32=REAL (FNX (N+1))-X2
 FRACTN=UENP/(DENP+(S(X2)-S(FNP))*DEN1/(S(FN1)-S(X2)))
 WTMT=1.0E-5*D2*FRACTN/(FRACTN/DENP+(1.-FRACTN)/DEN1)
 FN2R=REAL (FN2)
 FNXR=REAL(FNX(N+1))
 FK2=-AIMAG(FN2)/REAL(FN2)
 FKX=-AIMAG(FNX(N+1))/REAL(FNX(N+1))
 PRINT 110.D2,FN2R,FK2,WTMT,DELX,PSIX,ER2,DIFN21,DIFN32.
 1 FKACTN,FNXR,FKX,K
 110 FORMAT(1H .F8.1.2F9.5.1PE12.4.0P2F9.3.F12.5.3F10.5.2F9.5.I6)
 IS=2
 120 RETURN
 END
 SUBROUTINE CRC
 CALCULATES CRP32 AND CRN32 REFLECTION COEF OF MEDIUM 2 AND }
 COMMON FN1,S1,C1,N,FNX(900),D(900),FN2,CRP,CRN,CRP32,CRN32,WL.
 1 RP21,RN21,DEL,PSI,C2,C3,FN2I (2),DFN2(2),FN2E(2),FN2X(2),T1,T2,T3,
 2 T4.D2.DELDX,PSIDX, ERDEL,ERPSI,DENP,FNP,DEN1
 COMPLEX FNX,FN2,CRP,CRN,CRP32,CRN32,RP21,RN21,C2,C3,T1,T2,T3,T4
 COMPLEX RC,RP32,RN32
 SRC (A\bulletB)=(A-B)/(A+B)
 X=FN1*S1
 C2=CSQRT(1.-(X/FN2)**2)
 C3=CSQRT(1.-(X/FNX(3))**2)
 RP21=SRC(FN2*C1,FN1*C2)
 RN21=SRC(FN1*C1,FN2*C2)
 IF(N.EQ.2) GO TO 10
 RP32=SRC (FNX(3)*C2,FN2*C3)
 RN32=SRC(FN2*C2,FNX(3)*C3)
 CRP32=RC(RP32.CRP,FNX(3)*C3*D(3)/WL)
 CRN32=RC(RN32,CRN,FNX(3)*C3*D(3)/WL)
 RETURN
 10 CRP32=SRC(FNX(3)*C2,FN2*C3)
 CRN32=SRC(FN2*C2,FNX(3)*C3)
 RETURN
 END
 COMPLEX FUNCTION RC(R21,CR32,Q)
 RC=REFLECTION COEFFICIENT INCLUDING EFFECT OF UNDERLYING LAYERS
 C FOLLOWING CARD IS REQUIRED FOR FORTRAN V ONLY
 COMPLEX CEXP,CLOG,CSQRT
 COMPLEX R21,CR32.Q ,T
 T=CEXP((0..-12.56637)*Q)
 Q=N2*COS(PHI2)*D/WL
 (0.,-12.56637)=-4*PI*J
 RC=(R21+CR32*T)/(1.+R21*CR32*T)
    ```
```

 RETURN
 END
 SUBROUTINE CALDX(D2C1.D2C2)
 C FOLLOWING CARD IS REQUIRED FOR FORTRAN V ONLY
 COMPLEX CEXP,CLOG,CSQRT
 C CALCULATES FILM THICKNESS AND ERROR TERMS
 COMMON FN1,S1,C1,N,FNX(900),D(900),FN2,CRP,CRN,CRP32,CRN32,WL,
 1 RP21,RN21,DEL,PSI,C2,C3,FN2I(2),DFN2(2),FN2E(2),FN2X(2),T1,T2,T3,
 2 T4,D2,DELDX,PSIDX, ERDEL,ERPSI,DENP,FNP,DEN1,M,K
 COMPLEX FNX,FN2,CRP,CRN,CRP32,CRN32,RP21,RN21,C2,C3,T1,T2,T3,T4
 COMPLEX E,B,C,Y1,Y2,D2C1,D2C2,RH0,T5,T6
 RHO=SIN(PSI/57.29578)/COS(PSI/57.29578)*CEXP((0..1.)*DEL/57.29578)
 Y=EXP(-2 J DEL2) LET E*Y**2+BY+C=0 Y1*Y2 ARE TWO SOLUTIONS
 E=RHO*RP21*CRP32*CRN32-RN21*CRP32*CRN32
 B=RHO*(CRN32+RP21*RN21*CRP32)-CRP32-RP21*RN21*CRN32
 C=RHO*RN21-RP21
 T5=CSQRT(B**2-4.*E*C)
 GO TO (20,20,10.10).K
 C MAKE IMAGINARY PART OF SQUARE ROOT POSITIVE
10 IF(AIMAG(T5).LT.0.) T5=-T5
20 Y1=(-B+T5)/2./E
Y2=(-B-T5)/2./E
T5=CLOG (Y1)
T6=CLOG(Y2)
D2C1=WL*T5/(0..-12.56637)/FN2/C2
D2C2=WL*T6/(0.,-12.56637)/FN2/C2
RETURN
END
SUBROUTINE MIN2V(XI,DX,XF,YI,DY,YF)
USES FUNCTION FUNC (X,Y) WHICH MUST BE INCLUDED. DETERMINES AND PRINTS
VALUES OF X BETWEEN XI AND XF AND VALUES OF Y BETWEEN YI AND YF THAT
MINIMIZE FUNC. WILL FIND MULTIPLE MINIMUMS IF THEY ARE SEPARATED
BY MORE THAN DX AND DY
OIMENSION F(50,50)
COMMON FN1,S1,C1,N,FNX(900),D(900),FN2,CRP,CRN,CRP32,CRN32,WL,
1 RP21,RN21,DEL,PSI,C2,C3,FN2I(2),DFN2(2),FN2E(2),FN2X(2),T1,T2,T3,
2 T4,U2,DELDX,PSIDX, ERDEL,ERPSI,DENP,FNP,DEN1,MX,K,IS,RHO
COMPLEX FNX,FN2,CRP,CRN,CRP32,CRN32,RP21,RN21,C2,C3,T1,T2,T3,T4
COMPLEX RC,RHO
COMPUTE NUMBER OF VALUES OF X AND Y FOR RANGES XI-DX TO XF+DX
AND YI-DY TO YF+DY.
NX=(1.000001*XF-XI)/DX+3
NY=(1.000001*YF-YI)/OY+3
IF(NX.GT.50) PRINT 10.DX
10 FORMAT('OINCREMENT OF X''E12.5.' IS TOO SMALL')
IF(NY.GT.50) PRINT 20.DY
20 FORMAT('OINCREMENT OF Y,'E12.5.' IS TOO SMALL')
COMPUTE INITIAL VALUE OF X
X=XI-DX
COMPUTE TABLE F OF FUNCTION FUNC
DO 40 I=1,NX
Y=YI-DY
0O 30 J=1,NY
F(I,J)=FUNC (X,Y)
C********DIAGINOSTIC PRINTING***************************************
C
PRINT 35,I,J,F(I,J)
Y=Y+DY
FORMAT(2I5,E20.7)
X=X+DX
NX1=NX-1

```
```

 NY1=NY-1
 DO 910 I=2,NX1
 DO 900 J=2,NY1
 C SEARCH FOR MINIMUMS OF F(VALUES LESS THAN ALL \& SURROUNDING VALUES)
IF(F(I,J).LT,F(I=1,J=1),AND.F(I,J).LT.F(I=1,J) .AND.
F(I,J).LT,F(I-1,J+1) .AND. F(I,J),LT,F(I,J-1) .AND.
F(I,J)\cdotLT,F(I,J+1) .AND.F(I,J).LT,F(I+1,J=1)
.AND.F(I,J).LT.F(I+1,J) .AND.
F(I,J).LT,F(I+1,J+1))GO TO 50
GO TO 900
50 XMIN=XI+(I-2)*DX
YMIN=YI+(J-2)*DY
FMIN=F(I;J)
C
C
C
1 0 5
C
107
C
C
C
110
C
C IF F17 LT F13, CONTINUE SCAN WITH F15
IF(F17.LT.F13) GO TO 105
C F13 LT F14.FMIN.F17
F12=FUNC(XMIN-2*XD,YMIN-YD)
IF(F12.LT.F13) GO TO 190
F10=FUNC (XMIN-XD, YMIN-2*YD)
IF(F10.LT.F13) GO TO 200
F13 IS NEW MINIMUM
FMIN=F13
XMIN=XMIN-XD
YMIN=YMIN-YD
GO TO 500
F14 LT FMIN,F13
F15=FUNC(XMIN+XD,YMIN-YD)
IF(F15.LT.F14) GO TO 130
F11=FUNC(XMIN+XD,YMIN-2*YD)
IF(F11.LT.F14) GO TO 210

```
```

 F10=FUNC(XMIN-XD,YMIN-2*YD)
 IF(F10.LT.F14) GO TO 200
 F17=FUNC(XMIN-XD,YMIN)
 IF(F17.LT,F14) GO TO 107
 F18=FUNC(XMIN+XD,YMIN)
 IF(F18.LT.F14) GO TO 140
    ```
```

F14 IS NEW MINIMUM
FMIN=F14
YMIN=YMIN-YD
GO TO 500
F15 LT FMIN •F14
F11=FUNC (XMIN+XD, YMIN-2*YD)
IF (F11.LT.F15) GO TO 210
F18=FUNC (XMIN+XD, YMIN)
IF (F18.LT.F15) G0 TO 140
F16=FUNC (XMIN+2*XD,YMIN-YD)
IF (F16.LT.F15) GO TO 220
F15 IS NEW MINIMUM
FMIN=F15
XMIN $=X M I N+X D$
YMIN $=Y M I N-Y D$
GO TO 500
F18 LT FMIN,F15,F14
F16=FUNC (XMIN+2*XD, YMIN-YD)
IF (F16.LT.F18) GO TO 220
$F 22=F U N C$ (XMIN+XD, YMIN+YD)
IF (F22.LT.F18) GO TO 150
F21=FUNC (XMIN, YMIN+YD)
IF (F21.LT•F18) GO TO 160
F23=FUNC (XMIN+2*XD, YMIN+YD)
IF (F23.LT.F18) GO TO 230
F18 IS NEW MINIMUM
FMIN=F18
XMIN $=X M I N+X D$
GO TO 500
F22 LT FMIN,F18
F21=FUNC (XMIN, YMIN+YD)
IF (F21.LT.F22) GO TO 160
F23 2 FUNC (XMIN+2*XD, YMIN+YD)
IF (F23.LT.F22) GO TO 230
F25=FUNC (XMIN+XD,YMIN+2*XD)
IF (F25.LT.F22) GO TO 240
F22 IS NEW MINIMUM
FMIN=F22
XMIN $=X M I N+X D$
$Y M I N=Y M I N+Y D$
GO TO 500
F21 LT FMIN,F22,F18 F25=FUNC (XMIN+XD, YMIN+2*XD)
IF (F25.LT.F21) GO TO 240
$F 20=F$ UNC (XMIN-XD, YMIN+YD)
IF (F20.LT.F21) GO TO 170
F17=FUNC (XMIN-XD,YMIN)
IF(F17.LT.F21) GO TO 180
F24=FUNC (XMIN-XD,YMIN+2*YD)
IF (F24.LT.F21) GO TO 250
F21 IS NEW MINUMUM
FMIN=F21
YMIN $=Y M I N+Y D$
GO TO 500
F20 LT FMIN,F21
$F 17=F U N C$ (XMIN-XD,YMIN)

```

IF(F17.LT.F20) GO TO 180
F24=FUNC (XMIN-XD, YMIN+2*YD) IF (F24.LT.F20) GO TO 250 F19=FUNC (XMIN-2*XD,YMIN+YD) IF (F19.LT.F20) GO TO 260
        XMIN \(=X M I N-X D\)
        YMIN \(=\) YMIN \(-2 * Y D\)
    \(F X=F U N C(X M I N-X D, Y M I N-Y D)\)
        IF (FMIN.GT,FX) GO TO 204
        FX=FUNC (XMIN, YMIN-YD)
        IF (FMIN.GT,FX) GO TO 206
        \(F X=F U N C(X M I N+X D, Y M I N-Y D)\)
\(I F(F M I N \cdot G T \cdot F X)\) GO TO 208
        \(F X=F U N C(X M I N+X D, Y M I N-Y D)\)
\(I F(F M I N \cdot G T \cdot F X)\) GO TO 208
        GO TO 500
    XMIN \(=X M I N-X D\)
    YMIN \(=\) YMIN-YD
    FMIN=FX
    GO TO 300
    XMIN \(=X M I N+X D\)
        GO TO 206
C 210
    F20 IS NEW MINUMUM
        FMIN=F20
        XMIN \(=X M I N-X D\)
        \(Y M I N=Y M I N+Y D\)
    YMIN=YMIN+
GO TO 500
    F17 LT FMIN F20,F21,F13,F14
        F12 \(2=F\) UNC (XMIN-2*XD,YMIN-YD)
        IF (F12.LT.F17) GO TO 190
        F19=FUNC (XMIN-2*XD,YMIN+YD)
        IF(F19.LT.F17) GO TO 260
    F17 IS NEW MINUMUM
        FMIN=F17
        XMIN=XMIN-XD
        GO TO 500
    F12 LT F13,FMIN,F17
        F10=FUNC (XMIN-XD,YMIN-2*YD)
        IF(F10.LT.F12) GO TO 200
        FMIN \(=F 12\)
        XMIN \(=\) XMIN \(-2 *\) XD
        YMIN \(=Y\) MIN \(-Y D\)
        \(F X=F U N C(X M I N-X D, Y M I N-Y D)\)
        IF (FMIN, GT.FX) GO TO 194
        FX=FUNC (XMIN-XD,YMIN)
        IF (FMIN.GT.FX) GO TO 196
        \(F X=F U N C(X M I N-X D, Y M I N+Y D)\)
        IF (FMIN.GT.FX) GO TO 198
        GO TO 500
        YMIN \(=Y M I N-Y D\)
        XMIN \(=X M I N-X D\)
        FMIN \(=F X\)
        GO TO 300
        YMIN \(=Y M I N+Y D\)
        GO TO 196
            F10 LT F13,F14,F12,FMIN
            FMIN=F10
    202
    204
    206
    208
    F11 LT F14,F15
    F18=FUNC (XMIN+XD, YMIN)
        IF (F18.LT.F11) GO TO 140
        F16=FUNC (XMIN+2*XD,YMIN-YD)
        IF (F16.LT.F11) GO TO 220
        FMIN=F11
\(X M I N=X M I N+X D\)
YiMIN \(=\) YMIN \(-2 * Y D\)

C

F24 LT F21,F20,F17.FMIN
F19=FUNC (XMIN-2*XD,YMIN+YD)
IF(F19.LT.F24) GO TO 260
FMIN=F24
XMIN \(=X M I N-X D\)
YMIN \(=Y M I N+2 * Y D\)
GO TO 242
C F19 LT F20,F17,FMIN
260 F17=FUNC (XMIN-XD,YMIN)
IF(F17.LT.F19) GO TO 180
FMIN \(=\) F 19
XMIN \(=X\) MIN \(-2 *\) XD
YMIN \(=Y M I N+Y D\)
GO TO 192
FOLLOW MINIMUM FOR 5 STEPS
DO \(400 \mathrm{KK}=1.5\)
\(F X=F U N C(X M I N-X D, Y M I N-Y D)\)
IF (FX.LT.FMIN) GO TO 310
```

 FX=FUNC(XMIN-XD,YMIN)
 IF(FX.LT.FMIN) GO TO 320
 FX=FUNC(XMIN-XD,YMIN+YD)
 IF(FX.LT.FMIN) GO TO 330
 FX=FUNC(XMIN,YMIN-YD)
 IF(FX.LT.FMIN) GO TO 340
 FX=FUNC(XMIN,YMIN+YD)
 IF(FX.LT.FMIN) GO TO 350
 FX=FUNC(XMIN+XD,YMIN-YD)
 IF(FX.LT.FMIN) GO TO 360
 FX=FUNC (XMIN+XD,YMIN)
 IF(FX.LT.FMIN) GO TO 370
 FX=FUNC (XMIN+XD,YMIN+XD)
 IF(FX.LT.FMIN) GO TO 380
 GO TO 500
 YMIN=YMIN-YD
 XMIN=XMIN-XD
 GO TO 400
 YMIN=YMIN+YD
 GO TO 320
 YMIN=YMIN-YD
 GO TO 400
 YMIN=YMIN+YD
 GO TO 400
 YMIN=YMIN-YD
 XMIN=XMIN+XD
 GO TO 400
 YMIN=YMIN+YD
 GO TO 370
 FMIN=FX
 A MINIMUM IS NOT FOUND IN 5 STEPS
 GO TO 600
 XD=XD/2
 YD=YD/2
 CONTINUE
 NEW MINIMUM IS FOUND
 GO TO 700
 FORMAT(5E15.6.3I5/(7F15.6))
 PRINT 610,K,FMIN,XMIN,YMIN,XD,YD
 FORMAT('0 ITERATION NUMBER'I3,' FAILED FOR MINIMUM'E12.5.' AT X
 1=1E12.5.' Y='E12.5.' RANGES =' 2E12.5)
 C******************PRINT VALUES AT MINIMUM
700 FN2=CMPLX(XMIN,-XMIN*YMIN)
T1=RC(RP21,CRP32,FN2*C2*D2/WL)/RC(RN21,CRN32,FN2*C2*D2/WL)
DDEL=ATAN2(AIMAG(T1),REAL(T1))*57.29578-DEL
DPSI=ATAN(ABS(T1))*57.29578-PSI
XD=2*XD
YD=2*YD
PRINT 800, XMIN,YMIN,XD,YD,FMIN.DDEL,DPSI
800
FORMAT(' 15F15.5.2F10.3)
CONTINUE
CONT INUE
RETURN
END
FUNCTION FUNC(FRN,FK)
COMPUTES VALUES OF DELTA AND PSI, DELC AND PSIC, FOR A FILM
OF N=FRN,KAPPA=FK. AND THICKNESS=D2 AND ERROR TERM,FUNC
COMMON FN1,S1,C1,N,FNX(900),D(900),FN2,CRP,CRN,CRP32,CRN32,WL,
1 RP21,RN21,DEL,PSI,C2,C3,FN2I(2),DFN2(2),FN2E(2),FN2X(2),T1,T2,T3.
2 T4,O2,DELDX,PSIDX, ERDEL,ERPSI,DENP,FNP,DEN1,MX,K,IS,RHO
COMPLEX FNX,FN2,CRP,CRN,CRP32,CRN32,RP21,RN21,C2,C3,T1,T2,T3,T4

```

COMPLEX RC. RHO
FN2 \(=\) CMPLX (FRN, \(-F R N * F K\) )
CALL CRC
FUNC \(=A B S(R C(R P 21, C R P 32, F N 2 * C 2 * D 2 / W L) / R C(R N 21, C R N 32, F N 2 * C 2 * D 2 / W L)\)
1 -RHO)
RETURN
END
4．2．Subprograms

Subprogram Type Real
 Real Real \(\circ\)
0
0 Real \(\begin{array}{cc}-1 & -1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\)
 Arctangent given in degrees，statement function
 in proper quadrant． Remainder obtained by dividing first by second argument． Arctangent Imaginary part of complex argument Maximum of real arguments

Minimum of real arguments
Absolute value
Remainder obtained by dividing first by second argument．
Arctangent Subroutine furnished with program．Calculates two complex values
（D2Cl and D2C2）for the thickness of the top film for DEL and PSI
given in common．Requires CRN，CRP，CRN32，CRP32，RN2l，and RP2l，
to have been previously calculated。 The value of K determines Subroutine furnished with program．Calculates two complex values
（D2Cl and D2C2）for the thickness of the top film for DEL and PSI
given in common．Requires CRN，CRP，CRN32，CRP32，RN2l，and RP2l，
to have been previously calculated。 The value of K determines Subroutine furnished with program．Calculates two complex values
（D2Cl and D2C2）for the thickness of the top film for DEL and PSI
given in common．Requires CRN，CRP，CRN32，CRP32，RN2l，and RP2l，
to have been previously calculated。 The value of K determines which solution corresponds to D2C1 and D2C2． Absolute value of complex argument Complex exponential

Complex natural logarithn
The real part of the complex number is the first argument and imaginary part is the second argument． Cosine
Cosine
Cosine of angle in degrees，statement function．
Subroutine furnished with program．Computes C2，C3，RP21，RN21， CRN32，and CRP32． Complex square root
xə โduo Subprogram

ABS
AIMAG
AMAXI
AMIN1
AMØD
ATAN
ATAN2
ATAND
CALDX
CABS
CEXP
CL \(\varnothing\) G
CMPLX
\(C \varnothing S\)
\(C \varnothing S D\)
CRC
CSQRT
Result is the maximum of the integer arguments.
Complex function furnished with program. Computes the reflection
coefficient from a surface covered by one or many films. Requires
the Fresnel reflection coefficient (R2l) from the top film, the
reflection coefficient (CR32) from the medium under the top film,
i.e.g either the Fresnel reflection coefficient of the substrate
or the reflection coefficient from the second film considering
underlying films, and Q=n \(\cos \varphi_{f} d_{f} \lambda\) where nf, \(\varphi_{f}\) and df are the
refractive index, angle of reflection, and thickness of film. The real part of a complex number.
Statement function Sine
Statement function。 The sine of an angle given in degrees.
Subroutine furnished by program. Solves by a search procedure for both the real part of the refractive index and thickness of the top film on a surface that will give values of DELX and PSIX ( \(\Delta\) and \(\psi\) ) that will agree with given values DEL and PSI within tolerance ELDEL and ELPSI. The solution will be printed unless MX=17 or 22 The real part of the refractive index of the film is assumed to between FN2X(1) and FN2X(1)+DFN2(1) and the value of kappa of t film is FN2X(2). The solution to be used for the thickness of film is determined by the value of \(u\). The complex thicknesses the film and the limits of the range of refractive index to be searches, i.e., at FN2X(1) and FN2X(l)+DFN2(1) must have been calculated and stored in \(\mathrm{T} 1, \mathrm{~T}, \mathrm{~T}, \mathrm{~T}\), and T 4 . If a solution is printed, IS is made equal to 2 .
The search procedure is described in Section 3.5.
The search procedure is described in Section 3.5 .
Square root
Square root
 Statement function. The tangent of an angle given in degrees. TDəy
xə Lduon
LDəy

Variables Used in Program

\section*{Common Variables in a.}
- \(\varepsilon^{\bullet} \nabla\) the plane of incidence.
Cosine of angle of incidence Cosine of angle of refraction in ind medium Total reflection coefficient for light polarized normal to
Total reflection coefficient for light polarized parallel to the plane of incidence.
Total reflection coefficient between mediums 2 and 3.
Total reflection coefficient between mediums 2 and 3. Thicknesses of films
Thickness of top film
Relative phase retardation
Density of medium 1
Density of medium \(p\)
Increments for film refractive index
Error limits for \(\Delta\) Error limits for \(\psi\) Refractive index of medium
Refractive index of top film Refractive index of medium
Refractive index of top film
Final values to be used for r Final values to be used for refractive index of top film.
Initial values to be used for refractive index of top film.


\(\mathbb{S}_{0}^{N}\)

 Fortran Fortran J CZ Cu C 3
CRN CRY CRN32 CRP32 D (900) N DEL DENT DENS (Z) ZN DFN2 (2) ELDEL ELPSI FN1 FN2
FN2E (2) FN2I (2)
Refractive index of top film．The complex refractive index （FN2）is computed from FN2X．
Refractive index of films other than top film and of the
substrate．
Refractive index of material in film。
IS determines if a solution for refractive index of the film
has been found by S＠LN2．It is originally equal to l，and is
changed to 2 when a solution is found．
\[
\begin{aligned}
& \text { In calculating the thickness of a film, two solutions are } \\
& \text { obtained (see Section } 3.4 \text { ). K identifies the solution used, } \\
& \text { being l for the positive solution given by eq。 } 22 \text { and } 2 \text { for } \\
& \text { the negative solution given by eq. } 23 \text {. The square root of } \\
& \text { ( } \mathrm{B}^{2}-4 E C \text { ) is taken so that the real part of the square root } \\
& \text { is positive. In searching for the refractive index of the } \\
& \text { film in subroutine SøLN2, if no solution is found for either } \\
& \text { K=l or } 2 \text { (using either eq. } 22 \text { or } 23 \text { ), the square root of } \\
& \text { ( } \mathrm{B}^{2}-4 E C \text { ) is taken so the imaginary part is positive. In } \\
& \text { some cases, a solution will then be found for the refrac- } \\
& \text { tive index of the film which is labeled K=3 or } 4 \text { corre- } \\
& \text { sponding to eq. } 22 \text { or } 23 \text {, respectively. } \\
& \text { Used in SøLN2 to control printing. The solution is printed } \\
& \text { unless MX=l7 or } 22 \text { Generally, MX is equal to M. }
\end{aligned}
\]

> tan \(\psi\) is relative reflection coefficient． Error in \(\psi\)
Fresnel reflection coefficient between medium and film next to medium for light polarized parallel to the plane of incidence。
\(\underset{-1}{A}\)
\[
\rightarrow \overrightarrow{0}
\]
Real
Complex
Real
Integer
Integer
Integer
Integer
Real
Complex
Complex
FN2X（2）
FNX（900）
FNP
IS
K
MX
N
PSI
PSIX
RP21
Fresnel reflection coefficient between medium and film next
to medium for light polarized normal to the plane of inci-
dence.
Sine of angle of incidence
Temporary storage
Vacuum wavelength of light
b. Complex Variables Not in Common


Fortran
RN21
S1
T1, T2,
T3, T4
WL

Reflection coefficient from top film for normal polarization considering underlying films.
 underlying films.
Reflection coefficient from top film for parallel polarization considering underlying layers.
Reflection coefficient from second film or substrate for parallel polarization considering underlying layers.
Refractive index of substrate.
See Section 3.3.
See Section 3.3.
Ratio of reflection coeffficient. Calculated from first set of values of \(P\) and \(A\).
Calculated from second set of values of \(P\) and \(A\).
Complex constant of wave plate defined by eq. 1.
 to the plane of incidence.
Fresnel reflection coefficient for light polarized parallel to the plane of incidence.


5. References
[1] P. Drude, Ann. Physik. 272, 532 (1889); ibid 272, 865 (1889); ibid 275, (1890).
[2] A. B. Winterbottom, Optical Studies of Metal Surfaces, Royal Norwegian Scientific Society Report No. 1, 1955, published by F. Bruns, Trondheim, Norway; Trans. Faraday Soc. 42, 487 (1946).
[3] M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1959).
[4] F. L. McCrackin, E. Passaglia, R. R. Stromberg, and H. Steinberg, J. Res. Nat. Bur. Stds. 67A, 363 (1963).
[5] T. Yolken, R. Waxler, and J. Kruger, J. Opt. Soc. Am. 57, 283 (1967).
[6] W. G. Oldham, J. Opt. Soc. Am. 57, 617 (1967).
[7] D. A. Holmes and D. L. Feucht, J. Opt. Soc. Am. 57, 466 (1967).
[8] R. J. Archer and C. V. Shank, J. Opt. Soc. Am。 57, 191 (1967).
[9] F. L. McCrackin and J. P. Colson, in "Ellipsometry in the Measurement of Surfaces and Thin Films," edited by E. Passaglia, R. Stromberg, and J. Kruger, NBS Misc. Publ. 256, p. 61 (U. S. Government Printing Office, Washington, D.C., 1961).
[10] R. R. Stromberg, E. Passaglia, and D. J. Tutas, see Ref. 9, p. 281.
[11] C. A. Bennett and H. L. Franklin, Statistical Analysis in Chemistry and the Chemical Industry, p. 128 (J. Wiley \& Sons, Inc., New York, 1954).
[12] J. Mandel, The Statistical Analysis of Experimental Data, p. 282 (J。Wiley \& Sons, Inc., New York, 1964).
[13] This formula follows from the relationship for the molar refraction of mixtures given by, for example, S. Glasstone, Textbook of Physical Chemistry (D. van Nostrand Co., New York, 1946).
[14] W. G. Oldham, 'A Numerical Technique for the Analysis of Lossy Films' to be published in the Proceedings of Symposium on Recent Developments in Ellipsometry at the University of Nebraska, August 1968.
[15] W. A. Shurcliff, Polarized Light (Harvard Univ. Press, Cambridge, 1962).

I wish to thank Carl Fenstermaker for contributing Appendix A, John Mandel for help in the statistical analysis, and Robert Stromberg for help and encouragement.

\section*{Appendix I}

\section*{Use of the ALINE Instruction in Relation to Alinement of the Ellipsometer}

\section*{Carl Fenstermaker}

This appendix describes a modification of the alinement procedure of McCrackin, et al [4]. In the procedure described below the components are not adjusted in their holders to correct errors in the readings of their associated scales. Instead, errors in the scale readings are measured and used to correct future readings. Physical adjustment to 0.01 degree of the components within their scales is frequently very difficult, requiring tedious small changes and rechecks to approach the accuracy of readability. This modified procedure is much faster and the alinement can be done to the accuracy of the scales on the first trial. Although all future readings must be corrected, this correction is easily made with the ALINE instruction.

We define \(P, A\), and \(Q\) as the actual azimuthal position of the plane of transmission of the prisms of polarizer and analyzer and plane of the fast axis of the wave plate respectively, and \(P_{s}, A_{s}\), and \(Q_{s}\) as the corresponding scale readings. All azimuthal angles are measured positive counter-clockwise from the plane of incidence when looking into the light beam.

The corrections used on the ALINE card ( \(\Delta P, \Delta A\), and \(\Delta Q\) ) are the values which, when added to the scale readings, give the actual positions of the plane of transmission of the polarizer and analyzer and the position of the fast axis of the wave plate, so
\[
\begin{align*}
& P=P_{s}+\Delta P  \tag{31}\\
& A=A_{S}+\Delta A  \tag{32}\\
& Q=Q_{s}+\Delta Q \tag{33}
\end{align*}
\]

As in Section 2.3 "Alinement Procedure" of reference [4], the wave plate is removed, the arms of the ellipsometer set in the straight through position, the scale reading of the polarizer, \(P_{s}\), set to zero and the azimuth of the analyzer is adjusted to a value near \(90^{\circ}\) that gives a minimum in the transmitted light. At the minimum the polarizer and analyzer are crossed so that
\[
A=P+90^{\circ},
\]
or by eqs 31 and 32
\[
A_{s}+\Delta A=\Delta P+90^{\circ}
\]
since \(P_{s}=0\).
\[
\begin{gather*}
\text { Defining } \varepsilon=A_{S}-90^{\circ} \text { gives } \\
\Delta A=\Delta P-\varepsilon . \tag{34}
\end{gather*}
\]

We record \(\varepsilon\) instead of adjusting the analyzer scale to make it zero as in reference 4.

For the alinement of the polarizer, a metal surface is used with the arms set for reflection at an angle near the principal angle. The analyzer is set with the plane of transmission approximately in the plane of the surface ( \(A_{s} \approx 90^{\circ}\) ). As described in reference 4, the polarizer then is adjusted for minimum transmission ( \(P_{s} \approx 0^{\circ}\) ) and the intensity of the minimum noted. \(A_{s}\) is moved by 0.1 degree and \(P_{S}\) is again adjusted for a minimum and the intensity noted。 If the intensity has increased \(A_{s}\) is adjusted in the opposite direction. By taking a series of readings, setting the analyzer by increments, and adjusting the polarizer for a minimum, we can plot \(P_{S}\) versus \(A_{S}\) and determine the point on this curve which intersects the line \(P_{S}=A_{s}-\varepsilon-90^{\circ}\) which is also the line \(\mathrm{P}=\mathrm{A}-90^{\circ}\) 。

We may also approach this point directly by using smaller and smaller increments of \(A_{s}\) in an attempt to find scale readings \(P_{S}\) and \(A_{s}\) such that
\[
\begin{equation*}
A_{s}-P_{s}=90^{\circ}+\varepsilon \tag{35}
\end{equation*}
\]
within 0.01 degree. Thus, the point at which both \(P=A-90^{\circ}\) and minimum transmission occur is obtained by setting \(A_{s}\) and adjusting \(P_{s}\). This method has been shown to be the only unambiguous way of alining the ellipsometer [4]. At this point the plane of transmission of the polarizer is in the plane of incidence; therefore, \(P=0\) and, by eq \(31, \Delta P=-P_{S}\) and \(\Delta P\) is determined. \(\Delta A\) can then be calculated by eq 34 。

The wave plate is alined by inserting it between crossed polarizer and analyzer in the straight through position with the polarizer set at zero ( \(P=0^{\circ}, A=90^{\circ}\) or \(P_{s}=-\Delta P, A_{s}=90^{\circ}-\Delta A\) ) and adjusting it near the zero reading of the fast axis for minimum transmission. At this minimum the fast axis of the wave plate will be set to the azimuth of the polarizer which is zero. By eq 33, \(Q_{s}+\Delta Q=0^{\circ}\)
\[
\begin{equation*}
\Delta Q=-Q_{s} \tag{36}
\end{equation*}
\]

The three alinement corrections, \(\Delta P, \Delta A\), and \(\Delta Q\), have now been obtained and may be used on the ALINE card as shown in table 2 .

\section*{Derivation of Equation 3}

The derivation uses Jones vector and matrices as described in "Polarized Light" by W. Shurcliff [15].

The normalized Jones vector of the light from the polarizer, expressed in x and y axes along the fast and slow axes of the wave plate, is \(\left[\begin{array}{cc}\cos (P-Q) \\ \sin (P-Q)\end{array}\right]\) where \(P\) and \(Q\) are azimuths of the polarizer and fast axis of the wave plate measured from the plane of incidence of the reflection. The matrix for the wave plate is \(\left[\begin{array}{ll}1 & 0 \\ 0 & \rho_{c}\end{array}\right]\).

The light is now expressed with respect to x and y axes along and normal to the plane of incidence by use of the counter-rotator matrix
\[
\left[\begin{array}{rr}
\cos Q & -\sin Q \\
\sin Q & \cos Q
\end{array}\right]
\]

The matrix for reflection from the surface is simply \(\left[\begin{array}{ll}p & 0 \\ 0 & 1\end{array}\right]\). Therefore, the light after reflection from the surface is given by
\[
\begin{aligned}
& {\left[\begin{array}{ll}
\rho & 0 \\
0 & 1
\end{array}\right] \quad\left[\begin{array}{llr}
\cos Q & -\sin Q \\
\sin Q & \cos Q
\end{array}\right] \quad\left[\begin{array}{ll}
1 & 0 \\
0 & \rho_{c}
\end{array}\right] \quad\left[\begin{array}{ll}
\cos & (P-Q) \\
\sin & (P-Q)
\end{array}\right]} \\
& =\left[\begin{array}{cccc}
\rho[\cos Q \cos (P-Q) & -\rho_{c} & \sin Q \sin (P-Q)] \\
\sin Q \cos (P-Q) & +\rho_{c}^{c} \cos Q \sin (P-Q)
\end{array}\right] .
\end{aligned}
\]

For this light to be extinguished by the analyzer, it must be linearly polarized. In this case, its azimuth \(e\) is given by
\[
\begin{aligned}
\tan e & =\frac{\sin Q \cos (P-Q)+\rho_{c} \cos Q \sin (P-Q)}{\rho\left[\cos Q \cos (P-Q)-\rho_{c} \sin Q \sin (P-Q)\right]} \\
& =\frac{\tan Q+\rho_{c} \tan (P-Q)}{\rho\left[1-\rho_{c} \tan Q \tan (P-Q)\right]} .
\end{aligned}
\]

The analyzer must be set \(90^{\circ}\) from e to extinguish the light so
\[
\tan A=-1 / \tan e ;
\]
therefore,
\[
\tan A=\frac{\rho\left[\rho_{c} \tan Q \tan (P-Q)-1\right]}{\tan Q+\rho_{c} \tan (P-Q)}
\]

Solving for \(\rho\) gives eq 3 .
MEDIUM
ANGLE OF INCIDENCE
\[
5461 \cdot 00
\]




65．000 WAVE LENGTHE
\begin{tabular}{cc} 
ZV Zd \(V\) \\
& \\
ZV &
\end{tabular}
\[
\therefore \quad \therefore \quad-\quad 0 \quad 0
\]
90.000
\begin{tabular}{ccc}
\(05 \cdot 141\) & \(00 \cdot 5 \hbar\) & 05 \\
\(2 V\) & \(2 d\) & \(I V\)
\end{tabular}

2

号え号 \(\stackrel{+}{\square}\)





－が， \begin{tabular}{l} 
RF．CF，PARRALLE \\
.08155 \\
.08180 .00 \\
.08162 \\
.08183 \\
\hline .178 .74 \\
.08217 \\
.08264 \\
\hline .176 .28 \\
.08325 \\
\hline 175.08 \\
\hline
\end{tabular} 1.000

 \(\begin{array}{rr}\text { THICK } & \text { DEL } \\ .0 & .000 \\ 20.0 & 2.087 \\ 40.0 & 4.161 \\ 60.0 & 6.211 \\ 80.0 & 8.224 \\ 100.0 & 10.191 \\ T H I C K & 0 E L \\ 20.0 & 1.629 \\ 40.0 & 3.247 \\ 60.0 & 4.846 \\ 80.0 & 6.416 \\ 100.0 & 7.947\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline A 1 & \multicolumn{13}{|l|}{60.} \\
\hline WL & \multicolumn{13}{|l|}{5893.} \\
\hline NS & \multicolumn{13}{|l|}{1.5163} \\
\hline NF & 1-1 & - 25 & \multicolumn{11}{|l|}{1.5} \\
\hline CND & 16.943 & \multicolumn{12}{|l|}{11.856} \\
\hline INDEX OF & MEDIUM \(=\) & 1.00000 & ANGLE OF I & ENCE= & 60.000 & WAVE & LENGTH: & 5893.00 & \(T C=1\) & 00000 & C* & & 000 \\
\hline THICK & N2 REAL & KAPPA & ADSQRPTIDN & \(\triangle\) DEL & \(\triangle\) PSI & & RROR & N2-Ni & N3-N2 WT & FRACTION & & & KAPPA \\
\hline 1000.0 & 1.40000 & - D0000 & 6.2425=03 & -.001 & -.000 & & 01848 & . 40000 & . 11630 & .82425 & 1 & & 0000 \\
\hline
\end{tabular}
Figure 3. Instruction CND.
60.



















RT OF INDEX OF REFRACTION OF FILM IS 1.39861 TO 1.40139
Figure 4. Instructions CNDC and CNDE.











Figure 5. Confidence ellipse for measurements \(\Delta\) and \(\psi\).


Surrounding
Medium


\section*{Substrate}

Fig. 7. . - Schematic diagram of three films on a Substrate.


Figure 8. Approximation of an inhomogeneous film by ten homogeneous films.
\[
000^{\circ} 06
\]
10.
10.
10.
10.
10.
10.
10.
10.
10.


ND
NF
FILM
FILM
FILM
FILM
FILM
FILM
FILM
FILM
FILM
TABLE
Figure 9. Instruction FILM.
\(a\)

TC=
KAPPA
1.4000 NS
3.00
\(\begin{array}{ccc}\text { RF•CF.NORMAL NF KAPPA } \\ .92027 \quad 170.6 .56 & 1.100 n & .0700\end{array}\)
1.00000 AIVGLE OF INCIDENCE=
\(\begin{array}{ll}\text { PSI } & \text { RF.CF.PARRALLEL } \\ 30.441 & .54449-71.786\end{array}\)
AI
3.0000
\(=H 19 N \exists 7\) ヨヘVM \(000^{\circ} 02\)
\(0 \cdot\) •00 WAVE
-92027 170. -
DELCE
\[
1600.0
\]
\[
90.000
\]
THICK
\[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
\]
\[
\begin{aligned}
& 0 \\
& 0 \\
& \text { ㅁ } \\
& \text { a }
\end{aligned}
\]
\[
\begin{array}{ll}
0 & 0 \\
0 & \text { O } \\
0 & \text { N } \\
\text { N } & \text { N }
\end{array}
\]
\[
\begin{aligned}
& \text { ERROR } \\
& .00031 \\
& .00004 \\
& .00001 \\
& .00008
\end{aligned}
\]
\[
\begin{aligned}
& \text { on } \\
& \text { moㅁ } \\
& \text { 음 } \\
& \text { 응 }
\end{aligned}
\]
\[
s^{\circ}
\]

NS 5 NF CNK
INDEX OF MED:UMa
\(\triangle N F\)
.00110 .00110
.00710

드을
\(c\)
\(c\)
\(c_{0}\)
0 .00010
.00010
.00010 \begin{tabular}{l}
0 \\
\hline 0 \\
음 \\
0.
\end{tabular} .00010
.00210 응
 Figure 10.
Figure 10.
\[
\begin{aligned}
& 4.05 \\
& 1000 . \\
& 1 . \\
& 104.57
\end{aligned}
\]
KAPPA
\[
\begin{array}{lcc}
100 . & 2100 . \\
.2 & 4 . & 00741 \\
13.28 \\
1.00000 \text { ANGLE OF INCIDENCE }
\end{array}
\]
1.01836
1.95781
2.74395
2.74395
1.01563
1.86934
2.73945 1.01309
1.79297
2.73672 1.01074
1.72617
2.73555 .04037
.02676
.43881

.03803 .03803
.02568
.43793
\[
\begin{array}{r}
.00010 \\
.00004 \\
.00001
\end{array}
\]
\[
\begin{array}{r}
.00007 \\
.00014 \\
.00001
\end{array}
\]
\[
\begin{aligned}
& .00012 \\
& .00003 \\
& .00001
\end{aligned}
\]
N
Instructions CNK and FT.


Figure lla. Refractive index of film.


Figure llb. Refractive index of film.


Figure llc. Refractive index of film.


Figure lld. Refractive index of film.

\section*{NONPERIODICALS}

Applied Mathematics Series. Mathematical tables, manuals, and studies.
Building Science Series. Research results, test methods, and performance criteria of building materials, components, systems, and structures.
Handbooks. Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.
Special Publications. Proceedings of NBS conferences, bibliographies, annual reports, wall charts, pamphlets, etc.
Monographs. Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.
National Standard Reference Data Series. NSRDS provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated.
Product Standards. Provide requirements for sizes, types, quality and methods for testing various industrial products. These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary.
Technical Notes. This series consists of communications and reports (covering both other agency and NBS-sponsored work) of limited or transitory interest.
Federal Information Processing Standards Publications. This series is the official publication within the Federal Government for information on standards adopted and promulgated under the Public Law 89-306, and Bureau of the Budget Circular A-86 entitled, Standardization of Data Elements and Codes in Data Systems.

\section*{CLEARINGHOUSE}

The Clearinghouse for Federal Scientific and Technical Information, operated by NBS, supplies unclassified information related to Governmentgenerated science and technology in defense, space, atomic energy, and other national programs. For
further information on Clearinghouse services, write:

> Clearinghouse
> U.S. Department of Commerce Springfield, Virginia 22151

The best single source of information concerning the Bureau's research, developmental, cooperative and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology-for engineers, chemists, physicists, research managers, product-development managers, and company executives. Annual subscription: Domestic, \(\$ 3.00\); foreign, \(\$ 4.00\).
U.S. DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20230

OFFICIAL BUSINESS```


[^0]:    *Figures in brackets indicate the literature references on page 62.

[^1]:    ${ }^{1}$ Instructions $W P$ or CWP required if ellipsometer readings ( $\mathrm{P}, \mathrm{A}$, and Q ) are given.

[^2]:    * The symbol $\delta$ refers to incremental values.
    **The value of $Q$ with this instruction is optional. See Section 2.1.

[^3]:    * When the previous program was written, the importance of $T_{c}$ in ellipsometry was not recognized, thus no correction for it was included in the calculations.

