H．Chew

Electromagnetic Fields Division
National Engineering Laboratory
National Bureau of Standards
Boulder，Colorado 80303

Prepared for：
U．S．Department of Energy
Laramie Energy Technology Center
Laramie，Wyoming 82071

November 1981

MODELLING OF OIL SHALE RETORTS FOR ELECTROMAGNETIC SENSING TECHNIQUES

H. Chew

Electromagnetic Fields Division
National Engineering Laboratory
National Bureau of Standards
Boulder, Colorado 80303

November 1981

Prepared for:
U.S. Department of Energy
Laramie Energy Technology Center
Laramie, Wyoming 82071

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary
Page
I. INTRODUCTION 1
II. FORMULATION OF THE PROBLEM. 5
III. NUMERICAL RESULTS AND DISCUSSION. 9
IV. CONCLUSIONS AND RECOMMENDATIONS 18
ACKNOWLEDGMENTS 20
REFERENCES 21
APPENDIX 1 22
APPENDIX 2 24
APPENDIX 3 Listing of the Program. 27
LIST OF FIGURES
Figure 1. Schematic drawing of an oil shale retort 2
Figure 2. A spheroidal retort. The major axis of the prolatespheroid is along the vertical z-axis. The transmitterlies in the $x-z$ plane with spherical coordinates$\left(r_{d}, \theta_{d}, 0\right)$ and the receiver coordinates are$\left(r_{0}, \theta_{0}, \phi_{0}\right)$. The complex dielectric constantsinside and outside are denoted by ε and ε_{2}, respectively..... 6
Figure 3. The geometry used in the computations: $a=45.7 \mathrm{~m}(150 \mathrm{ft})$, $b=25.1 \mathrm{~m}(82.5 \mathrm{ft}), r_{d}=1.1 \mathrm{a}, \theta_{d}=90^{\circ} ; r_{0}=1.05 \mathrm{a}$, $\theta_{0}=0^{\circ}\left(10^{\circ}\right) 360^{\circ}, f=4 \mathrm{MHz}, k_{0} a=2 \pi a / \lambda=3.84$ 10
Figure 4. $\left|E_{\theta}\right|^{2}$ vs scattering angle; dipole along x-axis. 11
Figure 5. $\left|E_{r}\right|^{2}$ vs scattering angle; dipole along x-axis 12
Figure 6. $\left.\left.\right|_{\text {tot }}\right|^{2}$ vs scattering angle; dipole along x-axis. 13
Figure 7. $\left|E_{\phi}\right|^{2}$ vs scattering angle; dipole along y-axis. 14
Figure 8. $\left|E_{\theta}\right|^{2}$ vs scattering angle; dipole along z-axis. 15
Figure 9. $\left|E_{r}\right|^{2}$ vs scattering angle; dipole along z-axis 16
Figure 10. $\left|\vec{E}_{\text {tot }}\right|^{2}$ vs scattering angle; dipole along z-axis. 17

MODELLING OF OIL SHALE RETORTS FOR ELECTROMAGNETIC SENSING TECHNIQUES

H. Chew*

Abstract

We report here some work on the modelling of oil shale retorts for electromagnetic sensing techniques. The aim is to obtain useful information about the contents of the retort (e.g., rubble size, void ratio, etc.) by means of electromagnetic probes. In this work, the retort is modelled by a spheroid with an average dielectric constant which depends on the void ratio. The near field due to a radiating dipole source in the vicinity of a spheroidal retort is computed using the Extended Boundary Condition Method due to Waterman, Barber, and Yeh. Numerical results are given at 4 MHz for a retort with major axis 45.7 m (150 ft), minor axis 25.1 m (82.5 ft), bulk dielectric constant $8.8+3.7 j$, and various void ratios. The results indicate feasibility of determining the void ratio by remote electromagnetic measurements. It is also believed that this work may be of interest beyond the immediate context of oil shale retort inodelling.

Key words: oil shale retorts; remote sensing; scattering.

I. INTRODUCTION

In situ processing of oil shale offers many environmental advantages. For example, the waste products largely remain underground and are not released into the immediate environment. There are also many technical problems connected with in situ processing, one of them being the gathering of information about the contents and the state of the oil shale retorts. A promising method for obtaining such information is electromagnetic remote sensing. in this approach, transmitters and receivers are introduced to the vicinity of the retort via boreholes (figure 1), and one attempts to extract information about the contents of the retort by analyzing the received signals. For this purpose, it is necessary to have a specific model which relates the relevant physical quantities and allows the interpretation of the signals.

The precise modelling of a retort of irregular shape containing rubble of irregular size and shape is a difficult task both in principle and numerically. To obtain tractable results, many simplifying assumptions are unavoidable. In this work, we model the retort by a spheroid embedded in an infinite medium of different electromagnetic properties (there is no

[^0]

Figure 1. Schematic drawing of an oil shale retort.
difficulty in treating media of different magnetic permeabilities, although in the numerical work to be presented here both media are assumed to be nonmagnetic), and compute the near field due to a radiating dipole source in the vicinity of the retort using the Extended Boundary Condition Method (EBCM) of Waterman [1], Barber and Yeh [2]. The effects of the boreholes are neglected, and both the spheroid and the outside medium are assumed to be homogeneous and isotropic. In practice, the shale rocks generally have some layered structure, but the effects of anisotropy are probably not large, as laboratory measurements at the National Bureau of Standards [3] show that the value of the dielectric constant of shale rocks is essentially independent of orientation. With these assumptions, the EBCM formalism is exact in the sense that the resulting series is a solution to Maxwell's equations satisfying the appropriate boundary conditions and therefore contains all the electromagnetic effects (surface waves, body waves, etc.). Moreoever, the spheroid, with its two geometric parameters (the major and minor axes) is sufficiently flexible to simulate a variety of shapes and yet is such that the mathematical analysis involved is manageable, if complicated. A drawback of this approach is the complexity of the calculations, which are time consuming even when done on a fast electronic computer. The near field calculated, which includes both the incident dipole field and the scattered field in the near zone, is a function of the characteristics of the retort and of the surrounding medium. The mixture of rubble and void inside the retort is described here by an average dielectric constant which depends, among other things, on the void ratio (defined as the ratio of the void volume to the total retort volume) in a way to be discussed later. Thus, the dependence of the field on the average dielectric constant may be used to extract information about the contents of the retort. In this work, we are able to treat only the question of void ratio and not that of rubble size. To gain some idea of this dependence without elaborate formulas, we carried out a preliminary calculation (Appendix 1) for a spherical retort in the Rayleigh limit, and found that the scattered field is a sensitive function of the average dielectric constant inside, being roughly proportional to the difference between the dielectric constants inside and outside. This strong dependence appears to persist in the much more involved spheroidal calculations as well.

The relation between the average dielectric constant and the void content is a difficult subject, and a large number of workers $[4,5,6]$ have examined
the problem of the effective dielectric constant of two-component systems. For example, Sillars [7] obtained an expression for the dielectric constant of a two-component system in terms of those of the constituents and the volume ratios for the case when one component consists of spheroids of uniform size embedded in the other medium. His result also depends on the ratio of the spheroidal axes. Because the rubble is very unlikely to be spheroids of uniform size, it is uncertain whether his result would be applicable to our case, inasumch as it introduces an additional parameter (the ratio of the axes). More complicated and frequency-dependent results are also available [5], again under assumptions of doubtful applicability to oil shale retorts. In this work, we shall use a simple empirical relation due to Lichtenecker [6], wherein the logarithm of the dielectric constant is averaged in proportion to the volume. If two media of dielectric constants ε_{1} and ε_{2} and volumes V_{1} and V_{2}, respectively, form a composite medium whose average dielectric constant is ε (throughout this paper, dielectric constants refer to dielectric constants relative to that of vacuum, except in eq (3)), then it has been found empirically that in a large number of cases $[6,8], \varepsilon$ is given to a good approximation by

$$
\begin{equation*}
\ln \varepsilon=\frac{V_{1}}{V} \ln \varepsilon_{1}+\frac{V_{2}}{V} \ln \varepsilon_{2}, \tag{1}
\end{equation*}
$$

where $V=V_{1}+V_{2}$ is the total volume. In the case of an oil shale retort, which consists of air (dielectric constant $\varepsilon_{1}=1$) and rubble (dielectric constant $\varepsilon_{2}=$ bulk value for shale rocks), the void ratio is V_{1} / V and we may rewrite (1) as

$$
\begin{equation*}
\ln \varepsilon=\frac{V-V_{1}}{V} \ln \varepsilon_{2}=\left(1-V_{1} / V\right) \ln \varepsilon_{2} . \tag{1a}
\end{equation*}
$$

This relation, which will be referred to as Lichtenecker's formula, will be used to relate the void ratio V_{1} / V to the average dielectric constant of the interior of the retort (rubble plus void), with the bulk dielectric constant ε_{2} of the exterior medium being assumed known. In the case of absorbing media, eq (la) is assumed to hold for both the real and imaginary parts of the dielectric constant. This relation neglects the dependence of the average dielectric constant on the size and shape of the rubble. This neglect may not be very serious [6], as there is some evidence from the recent work of Warne and Uh1 [5], who concluded from some one-dimensional computer simulation calculations that scattering effects depend largely on void dimensions rather than rock sizes.

II. FURMULATION OF THE PROBLEM

In applying the Extended Boundary Condition Method [1,2], the scatterer is replaced by a set of equivalent surface currents. The incident and scattered fields are both expanded in series of vector spherical harmonics. After a lengthy analysis [1,2], a transition matrix (T-matrix) is computed which converts the known coefficients of the incident field into the scattering coefficients. The elements of the T-matrix are surface integrals of certain combinations of Bessel and Legendre functions which are computed numerically. For the convenience of the reader, we summarize the key steps involved.

Let the spheroid be centered at the origin with its axis of symmetry (zaxis) vertical (figure 2), and the oscillating dipole source with dipole moment \vec{p} be located at coordinate \vec{r}_{d}. If the observer is at the coordinate $\vec{r}_{0}=\vec{r}$, then for $r>r_{d}$ the incident dipole field may be expanded in a series of vector spherical harmonics (if $r<r_{d}$ one needs only to interchange the superscripts 1 and 3 in eqs (2) and (3)),

$$
\begin{equation*}
\vec{E}_{i}(\vec{r})=\sum_{V} D_{v}\left[a_{v} \vec{M}_{v} 3\left(k_{2} \vec{r}\right)+b_{v} \vec{N}_{v}\left(k_{2} \vec{r}\right)\right] \tag{2}
\end{equation*}
$$

where $k_{2} \quad=$ wave number in medium 2

$$
\begin{align*}
D_{v} & =\varepsilon_{m} \frac{(2 n+1)(n-m)!}{4 n(n+1)(n+m)!}, \quad \varepsilon_{m}= \begin{cases}1 & (m=0) \\
2 & (m>0)\end{cases} \\
\sum_{V} & =\sum_{e, 0} \sum_{n=1}^{\infty} \sum_{m=0}^{m=n} \\
a_{v} \quad & =\frac{j k_{2}^{3}}{\pi \varepsilon_{2}} \vec{p} \cdot \vec{M}_{v}\left(k_{2} \vec{r}_{d}\right), \quad b_{v}=\frac{j k_{2}^{3}}{\pi \varepsilon_{2}} \vec{p} \cdot \vec{N}_{v}^{1}\left(k_{2} \vec{r}_{d}\right) \cdot \tag{3}
\end{align*}
$$

The label v stands for three indices: $m=0,1, \ldots n ; n=1,2,3 \ldots ; \sigma=0 d d$, even. Explicitly, we have

$$
\begin{align*}
& \underset{\text { omn }}{\vec{M} 1}\left(k_{2} \vec{r}\right)=\nabla x\left[\begin{array}{l}
\vec{r} \\
\sin m \phi \\
\cos m \phi
\end{array} p_{n}^{m}(\cos \theta) j_{n}\left(k_{2} r\right)\right], \tag{4a}\\
& \vec{M}_{\text {omn }}^{3}\left(k_{2} \vec{r}\right)=\vec{M}_{\text {oomn }}^{1}\left(k_{2} \vec{r}\right) \text { with } j_{n}\left(k_{2} r\right) \text { replaced by } n_{n}^{(1)}\left(k_{2} r\right), \tag{4b}\\
& \vec{N}_{\text {omn }}^{\alpha}\left(k_{2} \vec{r}\right)=\frac{1}{k_{2}} \nabla x \vec{M}_{\text {omn }}^{\alpha}\left(k_{2} \vec{r}\right), \quad \alpha=1,3 . \tag{4c}
\end{align*}
$$

Figure 2. A spheroidal retort. The major axis of the prolate spheroid is along the vertical z-axis. The transmitter lies in the $x-z$ plane with spherical coordinates $\left(r_{d}, \theta_{d}, 0\right)$ and the receiver cordinates are $\left(r_{0}, \theta_{0}, \phi_{0}\right)$. The complex dielectric constants inside and outside are denoted by ε and ε_{2}, respectively.

For a scatterer of finite conductivity, the EBCM requires as an intermediate step also the field inside the scatterer. Let this field be $\vec{E}(\vec{r})$, with the expansions ($k=$ wave number inside the scatterer),

$$
\begin{equation*}
\vec{E}(\vec{r})=\sum_{v}\left[c_{v} \vec{M}_{v}^{l}(k \vec{r})+d_{v} \vec{N}_{v}(k \vec{r})\right] \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\vec{E}_{S C}(\vec{r})=\sum_{V}\left[p_{v} \vec{M}_{v}^{3}\left(k_{2} \vec{r}\right)+q_{v}^{\overrightarrow{N^{3}}}\left(k_{2} \vec{r}\right)\right] . \tag{6}
\end{equation*}
$$

Then the internal field coefficients c_{v} and d_{v} may be found from the linear equations

$$
\begin{align*}
& \sum_{V}\left\{\left[K_{\mu V}+\sqrt{\frac{\varepsilon_{r}}{\mu_{r}}} J_{\mu V}\right] c_{V}+\left[L_{\mu V}+\sqrt{\frac{\varepsilon_{r}}{\mu_{r}}} I_{\mu V}\right] d v\right\}=-j a_{\mu} \tag{7a}\\
& \sum_{V}\left\{\left[I_{\mu V}+\sqrt{\frac{\varepsilon_{r}}{\mu_{r}}} L_{\mu V}\right] c_{V}+\left[J_{\mu V}+\sqrt{\frac{\varepsilon_{r}}{\mu_{r}}} K_{\mu V}\right] d_{V}\right\}=-j b_{\mu}, \tag{7b}
\end{align*}
$$

where

$$
\begin{align*}
& \varepsilon_{r}=\varepsilon / \varepsilon_{2}, \mu_{r}=\mu / \mu_{2}, \text { and } \\
& I_{\mu V}=\frac{k_{2}^{2}}{\pi} \int \hat{n} \cdot\left[\vec{M}_{\mu}^{3}\left(k_{2} \vec{r}^{\prime}\right) \times \vec{M}_{V}^{1}\left(k \vec{r}^{\prime}\right)\right] d S, \tag{8a}\\
& J_{\mu V}=\frac{k_{2}^{2}}{\pi} \int \hat{n} \cdot\left[\vec{M}_{\mu}^{3}\left(k_{2} \vec{r}^{\prime}\right) \times \vec{N}_{V}^{1}\left(k \vec{r}^{\prime}\right)\right] d S, \tag{8b}\\
& k_{\mu V}=\frac{k_{2}^{2}}{\pi} \int \hat{n} \cdot\left[\vec{N}_{\mu}^{3}\left(k_{2} \vec{r}^{\prime}\right) \times \vec{M}_{V}^{1}\left(k \vec{r}^{\prime}\right)\right] d S, \tag{8c}\\
& L_{\mu V}=\frac{k_{2}^{2}}{\pi} \int \hat{n} \cdot\left[\vec{N}_{\mu}^{3}\left(k_{2} \vec{r}^{\prime}\right) \times \vec{N}_{V}\left(k \vec{r}^{\prime}\right)\right] d S . \tag{8d}
\end{align*}
$$

The integrations are over the surface S of the spheroid (area element $d S$ and unit outward normal \hat{n}). After the internal field coefficients c_{μ} and d_{μ} are determined in terms of the known incident coefficients a_{μ} and b_{μ}, the required scattering coefficients p_{μ} and q_{μ} are given by

$$
\begin{align*}
& p_{\mu}=-j D_{\mu} \sum_{V}\left\{\left[K_{\mu V}^{\prime}+\sqrt{\varepsilon_{r}} J_{\mu_{r}}^{\prime}{ }_{\mu V}\right] C_{V}+\left[L_{\mu V}^{\prime}+\sqrt{\varepsilon_{r}} I_{\mu} I_{\mu V}^{\prime}\right]_{\mu_{V}}\right\} \tag{9a}\\
& q_{\mu}=-j D_{\mu} \sum_{V}\left\{\left[I_{\mu V}^{\prime}+\sqrt{\frac{\varepsilon_{r}}{\mu_{r}}} L_{\mu V}^{\prime}\right] C_{V}+\left[j_{\mu V}^{\prime}+\sqrt{\frac{\varepsilon_{r}}{\mu_{r}}} K_{\mu V}^{\prime}\right] d_{V}\right\}, \tag{9b}
\end{align*}
$$

where $I_{\mu V}^{\prime}, J_{\mu V}^{\prime}, K_{\mu V}^{\prime}$ and $L_{\mu V}^{\prime}$ are obtained from the corresponding unprimed quantities by replacing the upper index 3 in the first vector spherical harmonics in the surface integrals by the index 1.

The total field at the observer coordinate $\vec{r}_{0}=\vec{r}$ is the sum of the incident field $\vec{E}_{j}(\vec{r})$ and the scattered field $\vec{E}_{S C}(\vec{r})$. Because the receiver is not in general in the far zone, the total field must be calculated with the exact \vec{M}^{3} and $\vec{N}^{3}{ }^{\prime} s$ rather than the asymptotic forms used in most scattering calculations. In the near zone, the radial component of the field is in general comparable to the θ - and ϕ-components. While the total field can be calculated from the series expansion in principle, it proved virtually impossible to obtain convergence in general when the incident dipole field was included. The reason is that the terms in the dipole field expansion (see eqs (3) and (4)) contains products of spherical Bessel and Neumann functions which are usually such that when one factor becomes small, the other becomes large, so that the product stays almost constant even when a large number of terms are used. Accordingly, a separate subroutine was written to calculate the dipole term separately from the closed-form expression [12], and the result was added to the scattered field after the convergence of the latter was ascertained.

In the calculation of the scattered field, it is necessary to check convergence with respect to three quantities: the number of m values, the number of n values (NRANK), and the number of sections (NDPS) in the numerical integration. Because the number of m values does not exceed $n+1$, the first check is straightforward. Convergence with respect to the last two quantities can be ascertained only by the slow process of increasing each until the results converge at all angles. For 4 MHz and the physical parameters used here, convergence was obtained for $N_{m} \sim 12$, NRANK ~ 32, and NDPS $\leqslant 100$. All these will go up if either the frequency or the dielectric constants are increased.

III. NUMERICAL RESULTS AND DISCUSSIUN

In figures 4-10, we show the magnitude squares of the spherical components of the total (dipole plus scattered) electric field and their sum at the receiver (observer) coordinate $\left(r_{0}, \theta_{0}, \phi_{0}\right)$, where $\phi_{0}=0$. The coordinate system is chosen so that the origin is at the center of the spheroid and the z-axis along the symmetry axis. The dipole transmitter lies in the $x-z$ plane so that its spherical coordinates are ($\left.r_{d}, \theta_{d}, 0\right)$. This choice of the $x-z$ plane, which involves no loss of generality, simplifies the incident field coefficients greately, because with $\phi_{d}=0$, all the terms with the factor $\sin m \phi_{d}$ (see eqs (3) and (4)) are now zero while cos $m \phi_{d}$ becomes unity independent of m. The curves have been plotted for $r_{0}=1.05 \mathrm{a}$, or 1.05 times the major axis, and $r_{d}=1.1 \mathrm{a}, \theta_{d}=90^{\circ}$, while θ_{0} runs in steps of 10° from 0° to 360°. Results are shown for unit dipole strength and three orthogonal dipole orientations: \vec{p} along the x, y, z axes, respectively. For all these orientations (but of course not in general), the curves are symmetric with respect to the $x-a x i s\left(\theta_{0}=90^{\circ}\right.$ and $\left.\theta_{0}=270^{\circ}\right)$, so only the angular interval $900<\theta_{0} \leqslant 2700$ is shown. Note that at $\theta_{0}=90^{\circ}$, both the transmitter and receiver are on the positive x-axis at a short distance 0.05 a apart, so the fields are very large in general. Because of the way the coordinate axes are chosen, the electric field at the receiver has only θ - and r-components when the dipole source oscillates along the x - or $z-a x i s$, and only a ϕ-component when the dipole oscillates along the y-axis. In the last case, $\left|E_{\text {tot }}\right|^{2}$ is simply equal to $\left|E_{\phi}\right|^{2}$.

The other physical parameters are shown in figure 3. The axes a and b are taken to be the vertical and horizontal dimensions of an operating Occidental Petroleum oil shale retort at Logan Wash, Colorado. In figures 410 , each figure shows four curves corresponding to void ratios $10 \%, 15 \%, 20 \%$, and 25%, respectively. The corresponding values of the average dielectric constant ε are calculated with the Lichtenecker formula from the bulk value [3] $8.8+3.7 \mathrm{j}: 7.08+3.25 \mathrm{j}$ (10% void), $6.35+3.0 \mathrm{j}$ (15% void), $5.70+$ 2.85 j (20% void), and $5.11+2.67 \mathrm{j}$ (25% void).

It will be seen that the curves have generally more structure for θ_{0} < 180° (the transmitter side) than for $\theta_{0}>180^{\circ}$ (the far side). Much of this structure arises from the complex interference between the scattered field and the incident dipole field. Because the outside medium is highly lossy (Im $\varepsilon_{2}=3.7$), the dipole field is much attenuated on the far side, so the field

Figure 3. The geometry used in the computations: $a=45.7 \mathrm{~m}(150 \mathrm{ft}), b=$ $25.1 \mathrm{~m}(82.5 \mathrm{ft}), r_{d}=1.1 \mathrm{a}, \theta_{\mathrm{d}}=90^{\circ}, r_{0}=1.05 \mathrm{a}, \theta_{0}=0^{\circ}$ $\left(10^{\circ}\right) 360^{\circ}, f=4 M A z, k_{0} a=2 \pi a / \lambda=3.84$.

Figure 4. $\left|E_{\theta}\right|^{2}$ vs scattering angle; dipole along x-axis.

Figure 5. $\left|E_{r}\right|^{2}$ vs scattering angle; dipole along x-axis.

Figure 6. $\left|\vec{E}_{\text {tot }}\right|^{2}$ vs scattering angle; dipole along x-axis.

Figure 7. $\left|E_{\phi}\right|^{2}$ vs scattering angle; dipole along y-axis.

Figure 8. $\quad\left|E_{\theta}\right|^{2}$ vs scattering angle; dipole along z-axis.

Figure 9. $\left|E_{r}\right|^{2}$ vs scattering angle; dipole along z-axis.

Figure 10. $\left.\right|^{\vec{E}}$ tot $\left.\right|^{2}$ vs scattering angle; dipole along z-axis.
there is primarily the scattered field, which has travelled a much shorter distance and therefore suffered less attenuation. It will also be noted that on the far side, where the scattered field is dominant, the field intensity increases with the void ratio. This is to be expected because a larger void ratio means a greater difference between the dielectric constants inside and outside, which in turn causes more scattering. This is also true for the spherical case, as can be seen from the factor $\varepsilon_{1}-\varepsilon_{2}$ in eq (A2). For the cases shown, a 5% change in the void ratio changes the output intensity by roughly a factor of two for most angles on the far side. There is thus hope that the void ratio can be determined with some accuracy by measurement of the output intensity, provided the bulk dielectric constant is known accurately. This is also limited by the accuracy of the Lichtenecker formula, for which more measurements with shale rocks would be desirable.

The numerical results presented here were obtained on the CDC Cyber 750 computer at NOAA, Boulder. The general description of the program and program listing is given in appendices 2 and 3 respectively. For each dipole orientation and fixed values of the dielectric constants at 4 MHz , it took approximately 200 seconds to compute the squares of the components of the fields over the whole angular range. For higher frequencies or larger dielectric constants, both the number of terms needed (and therefore the matrix rank in the solution of eqs (7) and (9)) and the number of integration sections for the surfaces integrals (8) must be increased, thereby driving up the computer time and storage capacity needed steeply.

IV. CONCLUSIONS AND RECOMMENDATIONS

The present work suggests the possibility of determining the void ratio of an oil shale retort by remote electromagnetic measurements under suitable conditions. When the shale rock is highly lossy, the source field is largely damped out on the side of the retort away from the transmitter, so the field there consists mainly of the scattered field. This field depends sensitively on the void content of the retort and thus provides a useful tool for the extraction of information on the contents of the retort. In practice, an average dielectric constant for the inside of the retort may be determined using the observed signals and the void ratio obtained from the average dielectric constant with the help of relations like Lichtenecker's formula. In the cases studied here, a small increase in the void ratio produces a
significant increase in the intensity of the scattered field. This circumstance is very helpful in deducing the void ratio from the intensity measurements. However, many assumptions and approximations are involved in this approach, and limitations due to some of them are discussed below.
(1) Geometric approximations. After blasting, the sharp edges and corners of the retort are expected to be rounded off and the retort can probably be adequately modelled by a spheroid. Perturbation methods are available to handle small departures from spheroidal geometry, but additional physical measurements will be needed to characterize the departures and considerably more programming and computer time will be needed. We have not been able to ascertain the effects of neglecting the boreholes.
(2) Limitations due to the approximate nature of the relation between the dielectric constant and the void ratio. This is a sticky question and we have little to add to the existing literature. The Lichtenecker relation is used here partly because of its simplicity, and it is in approximate agreement with all the relevant data we are aware of. There is also another technical advantage. In the Lichtenecker formula, eq (1a), the void ratio V_{1} / V is to be found from the measured values of ε and ε_{2}. Because only the logarithms of ε and ε_{2} enter the equation, error in ε and ε_{2} will tend to be suppressed, giving a good determination of V_{1} / V. We believe more experiments with accurate volume measurements on the relevant shale rocks at the operating frequencies will be helpful.
(3) Possible presence of moisture, etc. The determination of the void ratio from the measured signals in this model depends on the assumption that the content of the retort consists of rubble and void. Because water has a large dielectric constant even at quite high frequencies, a small amount of moisture may change the average dielectric constant significantly and complicate the interpretation of the data. This is a serious potential problem. The presence of pyrites would cause similar problems. Although there is no difficulty in handling magnetic media in our approach, an unknown amount of magnetic material would introduce additional uncertainty to the analysis of the signals.
(4) Computer time. Even at 4 MHz , the amount of computer time needed to generate the data presented here ran into hundreds of seconds for each void ratio and dipole orientation. Mainly for this reason, we have not fully explored the nature of the signal as a function of transmitter orientation, or
the effects of phase differences between the components of the dipole source, etc. For general orientation of the dipole source, the field intensity will not have the symmetry with respect to 90° and 270° in figures $4-10$. It is possible that certain orientations may be particularly favorable for the determination of the void ratio. In the cases studied here, it appears that the total intensity for $\theta_{0}>1800$ (figure 10) with a dipole source oscillating vertically provides clearer separation between the curves corresponding to different void ratios.

ACKNOWLEDGMENTS

The author would like to thank Mr. Doyle Ellerbruch and his group for their hospitality at the NBS, Boulder, and for his kind permission for the use of figure 1. He would also like to thank Profs. P. Barber and D.S. Wang for making available to him important parts of the program and for invaluable advice in the programming. The generous help of the NOAA computing staff and Ms. J. Page's expert word processing are also gratefully acknowledged.

REFERENCES

[1] Waterman, P.C. Matrix methods in potential theory and electromagnetic scattering. J. App. Phys. 50: 4550-4566; 1979. This paper contains references to earlier work on the EBCM.
[2] Barber, P.; Yeh, C. Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies. App. Optics 14: 2864-2872; 1975.
[3] Jesch, R. Private communicatior.
[4] For a recent review see, for example: Lamb, W; Wood, D.M.; Ashcroft, N.W. Long-wavelength electromagnetic propagation in heterogeneous media. Phys. Rev. B21: 2248-2266; 1980.
[5] For a review of works more closely related to our problem see: Warne, L.K.; Uhl, J.E. Preliminary study of the remote sensing of a modified in situ oil shale retort by electromagnetic methods. Sandia Report SAND79-1988; 1980 March. 92 p.
[6] Earlier literature, including Lichtenecker's work, is summarized in: von Hippel, A. Dielectrics and waves. New York: John Wiley and Sons; 1954. 284 p.
[7] Sillars, R.W. The properties of a dielectric containing semiconducting particles of various shapes. J. Instr. Elect. Eng. (London) 80: 378-394; 1937.
[8] Bussey, H.; Roop, D. Private communication.
[9] Chew, H.; Kerker, M.; Cooke, D. Electromagnetic scattering by a dielectric sphere in a diverging radiation field. Phys. Rev. 16A: 320-323; 1977.
[10] Edmonds, A.R. Angular momentum in quantum mechanics. New Jersey: Princeton University Press; 1974. 146 p.
[11] Abramowitz, M.; Stegun, I.A., eds. Handbook of mathematical functions. Nat. Bur. Stand. (U.S.); 1965. 1046 p.
[12] Stratton, J.A. Electromagnetic theory. New York: McGraw-Hill Book Co.; 1942. 615 p.

This appendix gives the derivation of the Rayleigh limit of the scattered field for a spherical retort referred to in the Introduction.

For a spherical retort of radius a, analytical expressions can be found for the near field when the frequency is sufficiently low so that $k a=2 \pi a / \lambda$ ($\lambda=$ wavelength) is small compared to unity. They can be obtained from the results of Chew, Kerker, and Cooke [9] generalized to absorbing media by expanding the field coefficients in powers of ka and retaining only the lowest order terms.

Let the retort be centered at the origin and the coordinate axes chosen so that the dipole source (dipole moment \vec{P}) lies outside the retort at cartesian coordinates ($0,0,-d$) ($d>a$). We expand the scattered field in a series of vector spherical harmonics in the notation of [9]:

$$
\begin{align*}
\vec{E}_{S C}(\vec{r})= & \sum_{\ell=1}^{\infty} \sum_{m=-\ell}^{m=\ell}\left\{\frac{i c}{n_{2}^{2} \omega} \beta_{E}(\ell, m) \nabla x\left[h_{\ell}^{(1)}\left(k_{2} r\right) \vec{Y}_{\ell \ell m}(\hat{r})\right]\right. \\
& \left.+\beta_{M}\left(\ell \ell_{1} m\right) h_{\ell}^{(1)}\left(k_{2} r\right) \vec{Y}_{\ell \ell m}(\hat{r})\right\} . \tag{A1}
\end{align*}
$$

Here, $\vec{\psi}_{\text {l\&m }}(\hat{r})$ denotes a vector spherical harmonics as defined in Edmonds [10], $h_{\ell}{ }^{(1)}(x)$ denotes the spherical Hankel function of the first kind [11], $\omega=2 \pi f, n_{2}$ and k_{2} being the complex index of refraction and wave number in the (outside) medium 2. It is then shown in [9] that the expansion coefficients are given by

$$
\begin{aligned}
& \beta_{E}\left(\ell_{1} m\right)=-b_{\ell}{ }^{a}{ }^{d}{ }_{E}\left(\ell_{1} m\right), \\
& B_{M}\left(\ell_{1} m\right)=-a_{\ell} a^{d}{ }_{M}\left(\ell_{1} m\right),
\end{aligned}
$$

where a_{ℓ} and b_{ℓ} are Mie scattering coefficients as defined in Stratton [12], and the only nonvanishing $a_{E}^{d} s$ and $a_{M}^{d^{\prime}} s$ in our case are

$$
\begin{aligned}
& { }^{d}{ }_{E}^{d}\left(\ell l_{1} \pm 1\right)= \pm j k_{2} \sqrt{3 \sqrt{\pi}}(-1)^{\ell}(2 \ell+1)^{-1 / 2}\left(P_{x} \pm j P_{y}\right)\left[\ell h_{\ell+1}^{(1)}\left(k_{2} d\right)-(\ell+1) h_{\ell+1}^{(1)}\left(k_{2} d\right)\right], \\
& a^{d}{ }_{E}(\ell+0)=j k_{2}^{3}(-1)^{\ell} P_{z}[4 \pi \ell(\ell+1)(2 \ell+1)]^{1 / 2} h_{\ell}^{(1)}\left(k_{2} d\right) / k_{2} d,
\end{aligned}
$$

$$
a^{d}{ }_{M}\left(l_{1} \pm 1\right)=j k_{2}{ }^{3}(-1)^{\ell}[\pi(2 \ell+1)]^{1 / 2}\left(P_{x^{ \pm}}{ }^{ \pm j P_{y}}\right) h_{\ell}^{(1)}\left(k_{2} d\right) .
$$

Making the small ka expansion indicated above, we find for the leading terms in the expansion

$$
\begin{align*}
\vec{E}_{S C}(\vec{r})= & -\frac{2}{3} \cdot \frac{n_{2}^{4} \omega^{5} a^{3}}{c^{2}} \cdot \frac{\varepsilon_{1}-\varepsilon_{2}}{\varepsilon_{1}+2 \varepsilon_{2}} \cdot\left\{\left[h_{2}^{(1)}\left(k_{2} d\right)-2 h_{0}^{(1)}\left(k_{2} d\right)\right]\right. \\
& {\left[\frac{\left(r h_{1}^{(1)}\left(k_{2} r\right)\right)^{\prime}}{2 r}\left(\left(P_{x} \cos \phi-P_{y} \sin \phi\right) \cos \theta \hat{\theta}-\left(P_{x} \sin \phi+P_{y} \cos \phi\right) \hat{\phi}\right)\right.} \\
& \left.+\frac{h_{1}^{(1)}\left(k_{2} r\right)}{r}\left(P_{x} \cos \phi-P_{y} \sin \phi\right) \sin \theta \hat{r}\right]+3 P_{z} \frac{h_{1}^{(1)}\left(k_{2} d\right)}{k_{2} d} \\
& \left.\left(\frac{\left(r h_{1}^{(1)}\left(k_{2} r\right)\right)^{\prime}}{r} \sin \hat{\theta}-\frac{2 h \frac{(1)}{1}\left(k_{2} r\right) \cos \theta}{r} \hat{r}\right)\right\} \tag{A2}
\end{align*}
$$

where (r, θ, ϕ) denote the spherical coordinates of the receiver, the prime indicates derivative with respect to $r, \varepsilon_{1}, \varepsilon_{2}$ denote the complex dielectric constants inside and outside respectively, and n_{2} denotes the complex refractive index of the external medium. For an oil shale retort, where the void ratio is typically of the order of 15 percent, ε_{1} does not differ very much from ε_{2} and the factor $\varepsilon_{1}-\varepsilon_{2}$ is a sensitive function of the void ratio. If the medium outside is highly absorbing, then on the side of the retort away from the source the total field is dominated by the scattered field $\vec{E}_{\text {SC }}$. Thus, measurment of the field there will provide valuable information about the void ratio.

APPENDIX 2.

This appendix contains a general description of the program and instructions for its use.

The program computes the incident field coefficients, the elements of the T-matrix, and from these the scattering coefficients. Two subroutines, GENBKR and GENLGP, generate the necessary spherical Bessel functions of complex arguments and Legendre functions. Subroutine GAUSS carries out the numerical integration over the spheroid surface to give the needed matrix elements. After the scattering coefficients are calculated, they are multiplied by the appropriate Bessel and Legendre functions of the receiver coordinates to give the spherical components $E^{S C}{ }_{\theta}, E^{S C}{ }_{\phi}$, and $E^{S C}{ }_{r}$ of the scattered field. The dipole source has been taken, without loss of generality, to be in the $x-z$ plane with spherical coordinates $\left(r_{d}, \theta_{d}, \phi_{d}=0\right)$. The scattered field is calculated in the vertical plane $\phi_{0}=$ constant (taken to be zero in the program listed in Appendix 3) for a fixed radial coordinate r_{0} (taken to be 1.1a in Appendix 3), while the angle θ_{0} is varied from 0° in steps of $\Delta \theta$ (denoted by DLTANG and with the value 10° in Appendix 3) up to 360°. At each angle subroutine DIPOLE computes the dipole field due to the same source and adds it to the scattered field to form the spherical components of the total near field $E_{\theta}^{\text {tot }}, E_{\theta}^{\text {tot }}, E_{r}^{\text {tot }}$. Finally, the program computes and prints $\left|E_{\theta}^{\text {tot }}\right|^{2}$ $\left|E_{\theta}^{\text {tot }}\right|^{2}$, $\left|E_{r}^{\text {tot }}\right|^{2}$, and $\left|\vec{E}_{\text {tot }}^{r}\right|^{2}=\left|E_{\theta}^{\text {tot }}\right|^{2}+\left|E_{\phi}^{\text {tot }}\right|^{2}+\left|E_{r}^{\text {tot }}\right|^{2}$ as functions of the scattering angle θ_{0} (denoted by SCANG in Appendix 3). The geometry is shown in figure 3.

Following is a list of the input quantities needed to obtain numerical results:

1. The real and imaginary parts of the dielectric constants inside and outside the retort, denoted by DCNR, DCNI; DCNR2, DCNI2, respectively.
2. The frequency. This is expressed in terms of the vacuum wave number $W N=k_{0}=2 \pi f / c$ in the input.
3. The size parameter $k_{0} a=2 \pi f a / c \equiv \operatorname{CONK}(a=$ major $a x i s$ of the spheroid, which is taken to be prolate in Appendix 3), and the ratio of the spheroidal axes a / b (denoted by AOVRB).
4. The radial coordinates of the dipole transmitter $\left(r_{d}\right)$ and of the receiver $\left(\theta_{0}\right)$.
a. In subroutine DIPOLE, $r_{d}(\equiv R D)$ is entered as $\left(r_{d} / a\right) \cdot\left(k_{o} a / k_{0}\right)$, or $R D=\left(r_{d} / a\right) * C O N K / W N, r_{d} / a$ being taken to be 1.05 in Appendix 3. The coordinate r_{0} (denoted by RO) is entered as $\left(r_{0} / a\right) \cdot a=\left(r_{0} / a\right) \cdot\left(k_{0} a / k_{0}\right)$, or RO $=\left(r_{0} / a\right) * C O N K / W N$, with r_{0} / a being set equal to 1.1 in the program. Both r_{0} / a and r_{d} / a may be set at any value >1. However, if $r_{0}<r_{d}$, it will be necessary to make the interchange of Bessel and Hankel functions indicated in section III.
b. In subroutine ADDPRC, they are entered through the arguments of the radial functions $\rho^{\prime}(\equiv R H O P)=\left(r_{d} / a\right) \cdot k_{2} a=\left(r_{d} / a\right)$ $k_{o} a \sqrt{ } \varepsilon_{2}=\left(r_{d} / a\right) * \operatorname{CONK} * \operatorname{CSQRT}(D C N 2)$, and $\rho(\equiv R H 0)=$ $\left(r_{0} / a\right) \cdot k_{2} a=\left(r_{0} / a\right) * \operatorname{CONK} * \operatorname{CSQRT}($ UCN2 $)$.
5. The angular coordinates of the transmitter $\theta_{d} \equiv$ THETAD, ϕ_{d} being set equal to zero, and the azimuthal angle of the receiver $\phi_{0} \equiv$ PH . They are given the values $\operatorname{THETAD}=90^{\circ}$ and $\mathrm{PH}=0 \mathrm{in}$ Appendix 3.
6. The cartesian components of the dipole moment $P_{x}=P X, P_{y}=P Y$, $P_{Z}=P Z$. These are allowed to be complex so that phases between the components may be introduced. They have to be entered in both subroutines ADDPRC and DIPOLE.
7. The number of values of $m(N m)$ and n (NRANK).
8. The number of sections used in the integration over the spheroid surface (NDPS).
9. The angular increment (denoted by DLTANG) in the scattering angle (denoted by SCANG), and the number of angles for which the squares of the field components are calculated. The last quantity is denoted by NUANG and is equal to $360^{\circ} /$ DLTANG +1 .

Most of these input quantities are entered on four data cards at the end of the program (see listing, Appendix 3).

The first card lists $N m$, NRANK, and three numbers $(1,8,1)$ which are to be left alone.

The second card lists CONK, AOVRB, WN, DCNR, DCNI.
The third card gives NDPS.
The fourth card lists THETAD, PH, DCNR2, DCNI2, DLTANG, NUANG.

The data on these cards must be entered so that the last digit of the first entry is on the 12 th space, the second on the 24 th space, the third on the 36 th space, etc. These data are read by subroutine RDDATA and stored in various common blocks for use in the other subroutines.

```
        FPNGRAM SHALF (INPUT, IUTPUT,T\trianglePE 5 = INPUT,TAPE 6 = OUTPUT)
        RCMPIEX A, ,,OCN, SO,DC,RH,QR(4O),HRK,RDK,HFPS,REPS,S,SQR,QSR,RKK,
        1HTRKK,RTQKK,CAI,CRI,SOQ?,O,CCC,RSSLSP(41),CNFUMN(41), RBFSSL(40),
        ?SO?,OS?,OCN?.CI,RR,HH,CCKD,CIKP,DCKK,BSLCMD,CNEUM,ACANSR
        DFRFIRM THF NUMFRTCAL INTFGRATION AND FILL THE A ANO R MATRICES.
        C\capMMON \capTR,RT\cap,CDT
        COMMON /MTXCOM/ NRANK,NRANKI,A(8C,8O),B(RO,8O),CM)XNRM(80)
        CTMMTN /FNRCOM/ DNMLIG(4I),RSLCMP(41),CNFUM(41),BSLKDR(4I),BSLKPI
        1(41)
        COMMTN /CMVCNM/ NM,KMV,CMI(40), CMV,CM2,TWM, PRODM
        C\capMMOA /ROYCOM/ DCNR,DCNI,CKPRR,CKDRI,CKR,DCKR,CONK,AQVRR,WN,IR
        C\capMMMN /THTCOM/ THFTA,STNTH,COSTH,CDH(G),FOPS(G),NSECT,NDPS(E)
    1,THETAO, DH,KSFCT
        CRMMON/IIVCROM/ACANS(361,?,2), ACANSR(361),DLTANG,DCNR2,DCNI2,NUANG
        \capIMFNSION CLDMTX(?5ACC).CLPTOT(1444),RH(40),WT(300), ASC(300)
        FOUTVALFNCE (A(1,1),CLPMTY(1)),(\DeltaC\DeltaNS(1,1,1),CLDTOT(1))
        SET DROGRAM CONSTANTS.
        CI = (0.0,1.0)
        DTR =.017453297519043
    QTn=57.7957795131
    CPT = 2.1415026535908
    CALL ROIITINF TN QFAN DATA AND PRINT HFAחTNGS FMQ OUTPUT
        20 CALL RDDATA
    CLFAQ THF \triangleCCUMUL\triangleTTNG ANCWFR RFGISTFR (USED IN AODPRC).
    \capก 4\cap J=1.1444
    CIRTOT(J)=0.0
        40 CNNTINUF
    C\cap 41 J=1.3A1
    ACANCR(J)=0.0
    41 CONTTNIF
    OCN2=CMDLX(OCNR?,DCNI?)
    COP = CSORT(OCNZ)
    \capS? = 1.0/SQ?
    OCN=CMPLX(OCNP,DCNT)
    SQR=CSQRT(ICN/D(N))
    OSR=1.O/EOR
    SORT = SOR*SOR
    SO= CSDDT(DCN)
    OC=1.O/SO
    SET MIILTIPLIFR PRQ DFPFNOENT IN ID VALUF (SYMMETDY INDICATOR).
    RQQ = 1.O
    IF(IR.EQ.8) RQQ=2.0
    ADYFCT = 1.0
    SFT HD A LOOP FOR FACH M VALUE.
    \capח 90\cap IM = 1.NM
    CFT M OFDFNIFNT VARTARLES.
```

```
            CMV =CMT(IM)
            KMV =CMV
            CM2 = CMV**?
            PROOM = 1.0
            IF(KMV.GT.O) Gח TO 4 4
            FM=1.0
            GO TO 60
    44 FM = 2.0
            OlIANM = CMV
            DO 52 IFCT = 1,KMV
            QUANM=QUANM+1.0
            PR\capПM= QUANM*POח\capM/?.0
    5 2 ~ C M N T I N U E ~
    60 QFM = 2.0/EM
                            TWM = ?.O*CMV
C INTTTALITF ALL MATRTX ARFAS T\cap IERM
OпROI = 1,?5600
CLPMTX(T) = 0.0
    80 CNNTINUF
    SFT UD A LMCP FOR ALL VALUFS OF THETA.
C SFT IIP GFNERAL IOOP FOR CORRFCT NUMRFR
    \cap\cap QOO TSFCT = 1,NSFCT
    KSECT = TSFCT
    NTHFTA = NDPS(ISECT)
    IF(ISECT.EO.1) (ALL GAUSS(WT, ASC,NTHETA,C.O,EPPS(ISECT))
    TF(ISFCT.NF.I) CALL GAUSS(WT,ASC.,NTHETA,EPPS(ISFCT-I),EPPSIISECT))
    ENTFD THETA LOMP FOD EARH SECTION.
    0\cap 70\cap ITHTA = 1,NTHFTA
    THFTA = ASC(TTHTA)
    COSTH=COS(THETA)
    SINTH = SIN(THFTA)
C GFNFQATE THE LFGENDRE POLYAIMIALS.
    CALL GENLGD
C EVALHATF KR \triangleNO ITS DEPIVATTVE AS A FUNCTION OF THETA.
    348 CALL GFNKR
    GFNFRATE AIL NFCFSSARY RFSSFL \triangleND NEUMANN FUNCTIDNS ANR THETR RATIOS.
    CKPRR = RFAL(SQ2*CKR)
    CKDRI = \triangleIMAG(SQ2*CKR)
    CALL GENAKR
    CCKP = CMDLX(CKPRR,CKPRI)
    CIKP = 1.O/CCKP
    DCKK= SOP*DCKR
    DO 340 I=I,NRANKI
    RSCLSD(T) = SSLCMD(I)
    CNFUMN(I) = CNEUM(I)
    349 CNNTTNIF
    CKPRR = RE\triangleL(SQ*CKR)
    CKPQT = \triangleIMAG(SO*CKR)
    CALL GENRKR
    IF(ITHTA ONF,NTHETA) GO TO }7
    7 9 \text { CONTINUF}
    OO 350 K=1,NRANK
```

```
            RQESSL(K)= PSSLSP(K)/RSSLSP(K+1)
            RH(K)=(RSSLSP(K)+CI*CNFUMN(K))/(RSSLSP(K+1) +CI*CNEUMN(K+1))
            PP(K)=SOR*CMDLX(RSLKDP(K),RSLKPI(K))/CMPLX(RSLKPP(K+1),RSLKPI(K+I)
        1)
    350 CNNTINUF
        SRMSTN = WT(ITHTA)*SINTH
    SFT HD A LOOP FMIR FACH DOW OF THE MATRICES.
    CROW = 0.0
    CROWM = CMV
    \capก 6\capO TROW = 1,NR\triangleNK
    TROWI = TOOW+NRANK
    CRПW=CRПW+1.O
    CROWM=CROWM+1.0
    CD\capWL=CROW+1.0
    RR = QRECSL(IQOW)
    HH= QU(IR\capW)
    SFT HD A LOOD FOR FACH COLIMN DF THF MATRICES.
    CCOL = 0.0
    CrOLM = CMY
    \capO 4CO TCOL = I.NRANK
    ICCLI = TCOL +NRANK
    CCOL = CCOL+1.0
    CCOLM = CCOLM+1.O
    CCOL! = CrOL +1.0
    CALCHLATF FPFCHFNTLY UCED VAOTAPLE COMBINATIONS.
    CRIJ = CROW+CCOL
    CRSSTJ = CROW*CCOL
    CMCRC! = CMつ + OFM*CRSSTJ*COSTH**2
    DNQORO = DNMLLG(TR\capW)*PNMLLG(ICOL)
    PNDOC1 = DNMLLG(IPNOI&DNMILG(TCOL+1)
    PNRICO = PNMLLG(IROW+1) #PNMLLG(ICOL)
    PMDICI = DNMLLG(IROW+1)*PNMLLG(ICOL +1)
    R1\Delta = CQCW*CRSTH*PNR1C1-CQCWM*PNROC1
    R1R=CC\capL*C\capSTH*DNQ1CI-CCOLM*PNPICO
    RKK=RR(ICOL)
    HRK=(RSSLSP(IDOW+1)+CT*CNEUMN(IROW+1))*CNPLX(BSLKPR(ICOL+1),RS
        ILKPT([C, LL+1))
    RRK= RSCLSP(IRCW+1)*CMDLX(RSLKPR(ICOL+1), RSLKDI(ICOL+1))
    HEPS = OSQ*HRK
    RFPS = QCR*RRK
    IF(I马.FO.Q) Gח Tत 380
    IF IR = & (MIRROR SYMMETDY R\capOY), I=L=O IF IROW ANO ICOL ARE BOTH
    O\cap\cap TR ROTH FVFN, J=K=C IF IRIW ANO ICDL \triangleRE OOD, EVEN DQ EVEN,ODD.
    TF(1IR\capW+TC\capL),FQ.((IR\GammaW+TC\capL)/2)*2) GOTO 392
    TFST F\capR M=0 (IF M=0 THE I AND L SURMATRICFS ARE ZFRO).
380 TF(KMV,FO.O) GOTO 390
    CALCILITE THF K,L,I,J ANN K,LOI,J (PRIME) MATRYX FLEMENTS ANO PLACE
    THFM TN THF A ANO R MATRICFS RFSOECTIVELY SO AS TO FORM A-TRANSVERSE
    AN\cap R-TDANSVERSF MATRICFS.
    C.ALCIILATF THF TFRM FRR THF CURRFNT FLEMENT IN THF I MATRIX.
```

```
    B1=R1A+R1R
    HTRKK = HH*BKK
    RTBKK = RR*BKK
    SAI= DNRICI*(CPOW*CROWI*BKK+CCOL*CCOLI*FH=CRSSIJ*(CRIJ+2.0)*CIKP)
    1*\capC以K*SINTH
    S=SAI+(CCKD*(1.O+HTRKK)-CCOL*HH-CROW*BKK&CRSSIJ*CIKP)*BI*CCKP
    A(TC\capL,TROW1) =A(ICOL,TROW1) + B89*CMV*SRMSIN*S*HBK
    SB1 = PNR1CI*(CROW*CROWI*BKK+CCOL*CCOLI*BR-CRSSIJ*(CRIJ*2.0)*CIKP)
1*\capCKK*STNTH
    S=(CPKP*(1.O+RTRKK)-CC\capL*RR-CROW*RKK+CRSSIJ*CIKP)*RI*CCKP+SBI
    R(ICOL,IR\capWI) =R(IrOL,TDOWI) +B8O*CMV#SRMSIN*S*RRK
    39? A1?=CMCRCO*PNR1C1-QEM*ICDOW*CCOLM*COSTH*PNR1CO+CCOL*CROWM*COSTH*PN
    1ROC1-CROWM*CCOLM*PNROCO)
        R1A = CCOL*CCOLI*R1A
        RIR = CROW*CR[W1*R1R
        n = OFM*项K
        CCC = SQR?*HH
        S=(CCKP*(RKK-CCC)+SQR2*CPTW-CCOL)*A12*CCKP+(B1A-SQR2*BIB)*SINTH*D
    A(TCOLI,TROWI) =A(TCOII,IROW1) +R8O*SRNSIN*S*HEPS
    CCC = RR*CQR?
    S=(CCKP*(BKK-CCC)+SQR?*CROW-CCOL)*A1 \*CCKP-(SOR2*BIB-B1A)*SINTH*D
    R(ICOLI.TROW1) =R(ICOLI.IROW1) +R8Q*SRNSIN*S*REPS
    CALCILLATE THF TFRM FOR THE CIIRRFNT ELFMFNT in thF K MATrTX.
    B1 = (R1A-R1R)*SINTH
    S = (CCKP*(RKK-HH)+CPOW-CCOL)*A12*CCKP+BI*D
    \triangle(ICOL,IROW) = A(ICOL,IROW) +RRQ*SRMSTN*S*HRK
    S = (CCKP*(8KK-RQ)+CROW-CCD()*A12*CCKP+81*D
    R(ICOL,IR\capW) = (ICDL,TRTW) +R8Q*SRMSIN*S*BBK
```

400 CONTINUE
CALCHLATF THF NHRMALITATION FACTOR (USED IN ADDPRC).
CKPOW = TR CW
IF(KMV.GT.O) Gח TO 426
FCTKT $=1.0$
GOTM 440
426 IF (IROW.GE.KMV) GO TO 430
CMXNRM (IROU) $=1.0$
GO TM 600
430 TRFCT $=$ IROW-KMV+1
IFFCT $=I P O W+K M V$

```
        FPRO! = IRFCT
        FCTKI = 1.0
        O\cap 43? LFCT = IPFCT,IEFCT
        FCTKT = FCTKT*FPRחD
        FPROD = FDRON+1.0
    432 CONTTNIIE
    440 CMXNRM(TR\capW)=4.0*CKRПW*(CKROW+1.0)*FCTKI/(EM*(2.O*CKROW+1.0))
    600 CONTTNUF
    700 CONTTNUF
    800 RONTINIIF
    PODCFSS COMPIITFD MATRTCES
    C\triangleLL PRCSSM
    900 CONTTNIJE
    GR TO 20
    FNO
    SURROUTINF GAUSS(WT,ASC,N,\triangleA,BB)
    OTMFNSI\capN WT(N),ASC(N)
    NOURLF OPFCISION DT,CONST
    D^TA OI,CחNST,TחL/2.1415026535897900,.14867881635700,1.E-12/
    \cap\triangleTA C1,C`,C3,C4/.125,-.0907201666,.2460286458,-1.824438767/
    IF(N.NF.1) GR TO I
    \DeltaC(1)=0.5772502692
    WT(1)=1.0
    DFTIIDN
    1 חN =N
        NOIV2 = N/?
        NP1 = N+1
        NNP1 = N*NP1
        ADDFCT = 1.IDCORT ((N+0.5)**2+CONST)
        C\capN1 = 0.5*(PR-A\Delta)
        C\capN?=0.5*(BR+\triangle\Delta)
        \capO 100 K=1,NOTV2
        R=(K-.?5)*PI
        RISO=1./(R*R)
        RFRINT = R*(1. +RISO*(C1+RISO*(C2+BISQ*(C3+C4*BISQ))))
        x = COS(\trianglePDFCT*ロFQOחT)
    113 PM2 = 1.
    DMI = X
    ク\cap 11\cap IN=?,N
    P = ((2*TN-I)*X*DM1-(IN-1)*DM2)/IN
    DM) = DMI
    110 PM1 = D
    DM1 = PM?
    \Delta ('X = 1./(1.- - * * )
    \capFQ1D= DN*(DM1-X*P)*AUX
    OFR?D=(?.*x*\GammaFR1P-NNDI*D)*AUX
    RATIT= P/OEDID
    XI= x-R\DeltaTIO*(1.+R\DeltaTID*DFR2P/(2.*DERIP))
    IF(ARS(XT-X)-TOL) 111,111,11?
    11) }x=x
    GOTM 11}
    111 \DeltaSr(k) = -x
    WT(K)=?.*(1.-x*x)/(NN*PMI)**?
```

```
    \triangleSC(NP1-K) = - ASC(K)
100 WT(NP1-K) = WT(K)
    IF(M\capO(N,?),FQ.O) GCTM 114
    ASC(N\capIV2+1) = 0.0
    NM1 = N-1
    NM? = N-2
    DROD = DN
    OO 120 K = 1,NM?,?
120 PROD = FLOAT(NMI-K)/FL\capAT(N-K)*PROD
    WT(N\capIV2+1)=2./PRDO**2
11400 130 K=1,N
    ASC(K) = CON1*ASC(K) +CON?
130 WT(K) = CON1*WT(K)
    RETURN
    ENO
    SURODUTTNF RDDATA
    COMPLEX ACANSP
    COMMON /MTXCON/ NRANK,NRANKI
    C\capMMON DTR,RTO,CPI
    COMMINN /CMVCTM/ NM,KMV,CMI(4O),CMV,CM2,TWM,PRODM
    COMMON /THTCOM/ THETA,SINTH,C\capSTH,CDH(6),FPPS(6),NSECT,NDPS(6)
    1, THETAD,PH,KSFCT
    COMMON /BDYCOM/ DCNR,DCNI,CKPRR,CKPRI,CKR,DCKR,CONK,ADVRB,WN,IB
    COMMON/UVCCOM/ACANS(361,?,2),ACANSR(361), DLTANG,DCNR2,DCNI2,NUANG
    CПMMON /OUTCOM/ IOUT
    DIMENSTSN EDDEG(6)
    RFAD NECESSARY INPUT DATA.
    CARD1 -- NM = NUMBER OF M VALUES,NRANK = N VALUE(MATRIX QRDER),
    NSECT = NUMRFR OF SECTTDNS IN THE BODY,IR = SYMMETRY CDDE IB = 8
    FOR MTRROR SYMMFTRY AROUT THETA = 90 DEGREFS,IB = 9 FOR GENERAL
    RFAD(5,80) NM,NRANK,NSECT,IR,IOUT
    IF (EOF(5).NE.0) GO TO 190
    NQANKI = NRANK+1
    HRITF(6,88)
    WRTTE(6,92) NM,NRANK,NSECT,IR
    CARD 2 - CONK = KA DF RODY, ADVPB = A/B,RATIO OF MAJOR TO MINOR
    AXIS,WN = VACUUM WAVF NIUMBFR USED IN \triangleORPRC,DCNR = REAL PART OF
    DIELECTRIC CONSTANT INSIDE, OCNI = IMAGINARY PART DF SAME.
    READ(5,96) CONK,ACVRB,WN,DCNR,DCNI
    IF (F\capF(5).NE.O) GO TO 190
    WRITE(6,100)
    WRITE(G,104) CONK, AOVRR,WN,DCNR,DCNI
    \capO }5\quadI=1,4
    CMI(I) = FLOAT(I-1)
    5 \text { CONTINUE}
    IF(NM.FQ.1) (MI(1)=1.0
    CARD 3 - NOPS = NUMRER OF TNTEGRATTON DIVISIONS FDR EACH SECTION
    \capF THF RODY (MUST RE A MILLTIPLE OF 4).
    RFAD(5,80) (NDPS(I),I=1,NSECT)
    IF (EOF(5).NF.O) GO TO 190
    WRITE(6,120) (NDPS(I),I=1,NSECT)
```

 「 \(\triangle R\) П 4 -----0.
 THETAD \(=\) THFTA CF DIPOLF.
 PH \(=\triangle Z I M U T H A L ~ A N G L E ~ O F ~ O R S E R V A T I O N ~ P L A N E . ~\)
 DCNR? + CI*DCNI? = COMPLEX DIFLECTRIC CCNSTANT OUTSIDE.
 DITANG = INCREMFNT OF SCATTERING ANGLF IN SCATTERTNG PIANE IN DEGREE
 NUANG = Nח. חF SFCTIRNG IN SCATTERTNG PLANE WITH 360 DFGREES
 READ(5,06) THETAD, PH,DCNR?, DCNI2, DLTANG, NUANG
 IF (EOF (5), NF。O) GO TO 190
 WRITF \((6,117)\)
 WRTTE(6,104) THETAD,PH, DCNR2,DCNI?
 COMPUTF FNN POTNTS FחR THETA.
 CALL CALENP
 no \(140 \mathrm{I}=1, \mathrm{NSFCT}\)
 EPDEG(I) = RTD*EPPS(I)
 140 CONTINUE
 WRITE(6,148) (EPDFG(I),I=I,NSECT)
 RFTIRN
 190 WRITF \((6,201)\)
 STRD
 80 FORMAT(5I12)
 R8 FORMAT(1H144X,GOH CASFS MATRTX RANK SECTIONS
 1 RODY SHAPF)
 9? FRRMAT(14044X,4I15)
 96 FORMAT(5E12.5,I12)
 117 FORMAT \(14025 \mathrm{X}, 7\) TOHVARINUS PARAMETERS THETAD
 1 DCNR? DCNI2)
 100 FПRMAT(1H029X.75HR חNY PARAMETFRS K(A) ADVRB
 1 WN DIELECTRIC1)
 104 FORMAT (14044X,5515.3)
 120 FORMAT(24HO INTEGRATIONS/SECTIONEI12,/(1HO23X,RI12))
 148 FORMAT(24HO FND PDINTS8F12.4, /(1H023X,8F12.4))
 201 FORMAT(1HO,23H***** FND OF DATA *****)
 END
 GURRTITTINF GENL.GP
 C \triangle ROUTINF TO GENFRATE LEGENDRE POLYNOMIALS.
C THF INDEX ON THE FUNCTION IS INCREMENTED RY DNE.
COMMIN /MTXCOM/ NRANK,NRANKI
COMMIN DTR, QTR,CPI
COMMON /FNCCOM/ PNMLLG(41)
COMMON ICMVCOMI NM,KMV,CMI(40), CMV,CM2,TWM, PRODM
CПMMDN /THTCOM/ THFTA,SINTH,COSTH,CDH(6),EPPS(6),NSECT,NDPS(6)
DTWM = TWM+1.0
IF(THETA) 16,4,16
4 IF(KMV-1)6,12,6
6 OO 8 ILG $=1$,NRANKI
DNMLLG(ILG) $=0.0$
8 Contivue
GO TM 88
12 PNMLLG(1) $=0.0$
PNMLLG(2) $=1.0$
PLA $=1.0$
GOTM48

```
    16 IF(KMV)20,20,40
    20 DLA = 1.0/SINTH
        PLR = CПSTH*PLA
        PNMLLG(I) = DLA
        PNMLLG(2) = PLB
        IREG = 3
        G\cap Tח bO
C
    40 0\cap 44 TLG = 1,KMV
        PNMLLG(ILG) = 0.0
    44 CONTINUF
        PLA = PRODM*SINTH**(KMV-1)
        PNMLLG(KMV+1) = PLA
    48 PLR = DTWM*COSTH*PLA
        PNMLLG(KMV + 2) = PLB
        IBFG = KMV+3
C OD DFCUOSION FORMULA FOR ALL REMAINING LEGFNORE POLYNOMIALS.
    60 CNMUL = IREG+IREG-3
        CNM = 2.0
        CNMM= DTWM
        DO RO ILGR = IREG,NRANKI
        PLC = (CNMUL*COSTH*DLR-CNMM*PLA)/CNM
        PNMLLG(ILGR) = PLC
        PLA =PLB
        PLQ = DLC
        CNMUL = CNMUL +?.0
        CNM=CNM+1.0
        CNMM = CNMM+1.0
    BO CONTTNIJE
    88 RETURN
        END
        SURROIITINF GFNRKR
    GENFRATE RESSEL FUNCTICNS FOR COMPLEX ARGUMENTS.
    GENERATE RESSEL FUNCTIDNS.
    RJ(NVAL+1)=(0.0,0.0)
    RJ(NVAL) = (1.0.0.0)
```

$T F(R M . G T \cdot ? .0)$ QJ (NVAL) $=(1.0 F-10,0.0)$
$I F(R M \cdot G T \cdot 10.0) \quad R J(N V A L)=(1.0 F-20,0.0)$
$I F(R M \cdot G T \cdot 25 \cdot 0) R J(N V A L)=(1.0 E-30.0 .0)$
$I F=N V \Delta L+2$
$\Delta=C \subset I N(C K P Q) / C K P D$
$k=0$
$\cap \cap 10 \quad I=?$ NVAL
$T J=I E-I$
$R J(I J-1)=R J(I J) * F L O A T(2 * I J-1) / C K P R-R J(I J+1)$
IF(CARS (RJ(IJ-1)).GT.1.OE10) GO TO 8
GП TП Q
$8 K=K+1$
$R J(I J-1)=R J(I J-1) * 1 \cdot O E-10$
$R J(I J)=R J(I J) * 1 \cdot O E-10$
$K M(I J)=K$
$9 K M(I J-1)=K$
10 CONTINUE
$P X=\Delta / R J(1)$
$L(1)=0$
Dก $15 \mathrm{~J}=2, \mathrm{NRANKI}$
$L(J)=L(J-1)$
$I F(K M(J) \cdot N E \cdot K M(J-1)) L(J)=L(J-1)+1$
15 CONTINUE
กก $20 \mathrm{I}=1$. NRANKI
$B S L C M P(I)=P J(I) * P X * 10.0 * *(-L(I) * 10)$
RSLKPR(I) $=$ REAL(RSLCMP(I))
RSLKPI(I) $=A I M A G(B S L C M P(I))$
20 CNNTINUE

GFNFRATF NEUMANN FUNCTIMNS FDR TEST.

CNEUM(1) $=-C C D S(C K P R) / C K P R$
CNEHM(2) $=$ CNEUM(1)/CKPR-A
Dก $30 I=3$, NRANKI
CNEIMM(I) = CNEUM(I-1)*FLOAT $(? * I-3) /$ CKPR-CNEUM $(I-2)$
30 CONTINUF
DERFORM TUD TESTS ON BESSEL AND NEUMANN FUNCTIONS. FIRST TEST IS MIST ACCURATF FOR LARGE ARGUMENTS AND THE SECOND TS MOST ACCURATE FIR SMAILFR ARGUMFNTS. IF FITHER TEST IS PASSFD, FUNCTIONS ARE GOOD.

FOR LARGE ARGUMENTS ARS(BESSEL) SHOULD EQUAL ABS(NEUMANN).
$C=1.0 E-05$
QUABT $=$ CABS(RSLCMP(1))/CABS(CNEUM(1))-1.0
QUANT = CABS(RSLCMP(NRANKI))/CARS(CNEUM(NRANKI))-1.0
IF((ARS (OUART).GT.C).DR.(ABS(OUANT).GT.C)) GO TO 32
RFTURN
PFRFTRM WRONSKIAN TEST IF LARGE ARGUMENT TEST FAILS.
32 CKR? $=C K P R * * 2$
BESSEL TEST
QリANRT = CARS(CKR2*(RSLCMP(2)*CNEUM(1)-ASLCMP(1)*CNEUM(2))-1.0)
NFIUMANN TEST

```
    QUANNT = CARS(CKR)*(RSLCMD(NRANKI)*CNEUM(NRANK)-BSLCMP(NRANK)*CNEU
    1M(NRANKI))-1.0)
    IF((DUANBT,GT,C),OR,(QUANNT,GT,C)) GO TO 45
    RET!JRN
    45 CONTINIIF
    46 THTPRT = RTD*THFTA
    6O RFTURN
    END
    SURROUTINE PRCSSM
C
C
    A ROUTINF TO SOLVF THE FO|ATION T = (A-INVFRSE)*R ( ALL MATRICES
C
C
    SEADGH FOP THF MAXYMUM FLFMFNT IN THF ITH ROW OF THE A-MATRIX.
    AIJMAX = A(I,1)
    JMAX=1
    O\cap10 J = 2,N
    IF(CARS(A(I,J)).LE.CARS(ATJMAX)) GOTO 10
    AIJMAX = A(I,J)
    JMAX=J
    10 CONTINUE
    IF ATJMAX IS ZERO ( AS IT WILL BE FOR ANY ROW (OR COLUMN) WHERE THE
    INDEX M IS .GT. THE INDEX N, I.E., THE LEGENDRE FIJNCTIONS FORCE THOSE
    MATPIX FIFMENTS TO IEROI, THFN THF MATRIX IS SINGULAR SO SOLVE THE
    PFDUCFO MATRTX (חRDER = 2#(NRANK-M)).
    IF(CARS(AIJMAX),GT.0.0) G\ TO 20
    JMAX=I
    GO TO 75
    NORMALIIE THE ITH ROW AY AIJMAX (JMAX ELEMENT OF THE ITH ROW).
        20 nп 3n J = 1,N
    A(I,J)=\Delta(T,J)/\DeltaIJM\DeltaX
    NORMALTZE THF ITH ROW OF g.
    R(I,J)=R(I,J)/AIJMAX
30 CONTINUF
    USE ROW TRANSFORMATIONS TO GET ZEROS ABOVE AND BELOW THE JMAX
    ELFMENT OF THF ITH ROW DF A. \trianglePPLY SAME ROW TRANSFORMATIONS
    TO THE R MATRIX.
    D\cap }70\textrm{K}=1,\textrm{N
    TF(K,EQ.I) Gח TO }7
    ARAT=-\Delta(K,JM\DeltaX)
    OO 50 J = 1,N
    IF(CARS(A(I,J)).LE.O.O) GO TO 50
    \Delta(K,J) = ARAT#\Delta(I,J)+\Delta(K,J)
50 CONTINUE
    A(K,JMAX)=0.0
    DO 60 J=1,N
    IF(CABS(B(I,J)).LF.O.O) GO TO &O
    R(K,J)=ARAT*R(I,J)+B(K,J)
```

60 CONTINUE
70 CONTINIIF
STORE ROW COUNTFR (I) IN TOD ELEMENT OF JMAX COLUMN. THUS, THE TOP ROW OF \triangle WILL CONTAIN THE LTCATICN HF THE PIVOT (INITY) FLEMENT CF EACH GILUMN (AFTEP REDUCTION).
$75 \mathrm{~L}=\mathrm{I}$
STIRE THE INTFGER T IN THE TDP ROW OF A 。
$\triangle(I, J M A X)=F L$
80 CONTINIE
THE RFIUCTION OF \triangle IS COMPLETF. PFRFORM ROW INTERCHANGES
AS INDTCATED IN THE FIRST ROW OF \triangle 。
กก $1 \geqslant 0 \mathrm{I}=1, \mathrm{~N}$
$k=T$
C
$90 \mathrm{FK}=\Delta(1, K)$
IF(K-I) $00,120,100$
$\triangle R A T=R(I, J)$
$R(T, J)=R(K, J)$
$B(K, J)=\Delta P \Delta T$
171 CONTINUF
120 CONTINUE
the Transposen t matrix is stmred in b. transpose to get the t MATRIX $A N$ N STRRE IN A.
DO $140 I=1, N$
D $\quad 130 \mathrm{~J}=1, \mathrm{~N}$
$A(I, J)=B(J, I)$
130 CONTINUE
140 CONTINUE
TRANSEFR THE T MATRIX FRDM a INTD TMAT.
DO $150 \mathrm{I}=1, N$
no $150 \mathrm{~J}=1, N$
$T M \Delta T([, J)=\Delta(I, J)$
150 CONTINUE
160 CONTINUF
CALL $A D D P R C$
RFTURN
END
SURROUTINE ADDPRC
C \triangle ROUTINE TO CRTAIN THF SCATTEPED FIELD COEFFICIENTS AND CALCULATE
C
THF TITAL NEAP FIELD IN THE AZIMUTHAL PLANE PHT = CONSTANT.
CПMPLFX \triangle, TMAT, $\triangle D 1(80), \triangle D ?(80), F N G A N S(361,2), H 1(41), H 2(41), B J 1(41)$ 1, RJ? (41), CI,THC, PHC,RC,CKPR,DCN, DCN2,RHO,RHOP,HANK(41), ACANS, 2ACANSP,RSSLSP,CNEUMN,RCTMD(361),S1,S2,HANKP(41),BSSLPP(41), ЗCNEUMP (41), $\triangle D 1 \times(80), A D 17(80), \triangle D 2 Y(80), S I, P X, P Y, P Z, F G 1(80), F G 2(80)$, $4 W$, ETHET $\triangle, E P H I, E R, E T H(361)$, FPH (361), ERC(361$)$
CTMMIN DTR,RTD,CPI
C.ПMMON /MTXCПM/ NRANK,NRANKI, A $(80,80)$, TMAT(80,80$),$ CMXNRM (80)

CחMMON /FNCCOM/ PNMLLG(41),RSSLSP(41), CNEUMN(41), RSLKPR(41),
19SLKPI(41)

COMMON /BDYCOM/ DCNR, DCNI,CKPRR,CKPRI,CKR,DCKR,CONK, AOVRB,WN,IB
COMMON /CMVCDM/ NM,KMV,CMI(40), CMV,CM2,TWM, PRODM
COMMDN /THTCOM/ THETA,SINTH,CDSTH,CDH(6), EDPS(6), NSECT,NDPS(6)
1, THETAD, PH, KSECT
COMMON/UVCCOM/ACANS (361, 2), ACANSQ(3G1), DLTANG, DCNR2,DCNI2,NUANG
COMMON /OUTCOM/ IDUT
DIMENSION $2 X O L D(361), Z Y O L D(361), Z R O L D(361)$
LDGICAL TEST
ПATA TEST/.TRUE.I
NR2 $2=2 * N R A N K$
RHO = CONK*1.1*CSORT(DCN2)
CKPQR $=$ REAL (RHD)
$C K P R I=\triangle I M A G(R H D)$
CALL GFNRKR
Dก $37 \mathrm{I}=1$, NRANKI
HANK(I) = BSSLSP(I) +CI*CNFUMN(I)
37 CONTTNUF
$C N=0.0$
$C T=(0.0,1.0)$
$\cap C N=C M P L X(\cap C N R, D C N I)$
กCN2 $=$ CMPLX(OCMR2, OCNI2)
W = WN CSQRT(DCN2)
$S I=C I *(W * * 3) /(C P I * D C N 2 * R .854 E-12)$
RHOD $=$ CONK*1.05*CSORT(OCN2)
CKPRR $=$ REAL (RHOP)
CKPRI = $\triangle I M A G(R H \cap P)$
CALL GFNRKR
Dก 3h I = 1, NQANKI
QSSLDD(I) $=$ PSSLSP(I)
CNFUMD(I) = CNEUMN(I)
HANKP(I) $=$ BSSLPP(I) + CI*CNEUMP(I)
RHDP IS THF RADIAL CDORDINATE OF THE DIPOLE TIMES THE WAVE NUMBER.
GFNERATE LEGFNDRE FUNCTIONS FOR DIPOLF ANGULAR COORDINATE THETAD.
THFTA $=$ OTR*THFTAD
CALL TRTG(THFTAD, SINTH.COSTH)
CALL GENLGP
DO $35 \mathrm{~N}=1$, NRANK
$N P=N+N R A N K$
$C N=C N+1.0$
$N 1=N+1$
$P 1=C N * C O S T H * P N M L L G(N 1)=(C N+C M V) * P N M L L G(N)$
$P 2=C M V * P N M L L G(N 1)$
CKOR = RHOP
$B J 1(N)=N * N 1 * B S S L P P(N 1) / C K P R$
$B J 2(N)=B S S L P P(N)-(N / C K P R) * B S S L P P(N 1)$
$P X=1.0$
$D Y=0.0$
$P Z=0.0$
$\triangle D 1 \times(N)$ = CDSTH*P2*BSSLPP(N1)
$A D 17(N)=-B S S L P P(N 1) * S I N T H * P 2$

```
        ADIX(NP) = DI(N)*PNMLLG(N1)*(SINTH**2) + BJ2(N)*COSTH*PI
        AD12(ND)=BJI(N)*SINTH*COSTH*DNMLLG(N1)-BJ2(N)*SINTH*P1
        AD2Y(N) = -P1*BSSLPP(N1)
        AD2Y(NP) = - P?*RJ2(N)
        AD1(N) = (PX*AD1X(N) + PZ*ADIZ(N))*SI
        AD1(NP) = (PX*ADIX(NP) + PZ*ADIZ(NP))*SI
        AD2(N)=PY*ADZY(N)*SI
        ADR(ND) = PY* ADRY(ND)*SI
    35 CONTINUE
C THE SSATTERED FIFLD COEFFICIENTS = THE TRANSITIDN MATRIX TIMES THE
    INCIOFNT FIELD COEFFICIFNTS.
        \capO 45 I = 1,NR?
        S1=0.0
        S2 = 0.0
        DO 40 J = 1,NR2
        SI=S1 + TM\DeltaT(I,J)*A\capI(J)
        S? = S? + TMAT(I,J)*AD?(J)
        40 CONTINUE
        FG1(I) = SI
        FG?(I) = S2
        45 CDNTINUE
    FVALUATE THE SCATTEREN FIELD AT EACH SCATTERING ANGLE.
    OD 170 IU = 1,NUANG
    GFNFRATF THE LFGENDRE MULTIPLIERS.
    THFTT = DLTANG*(IU - 1)
    JF (THETT.LE.181.0) GO TO 6?
    PHP = PH + 190.0
    THET = 3&0.0 - THETT
    THETA = DTR*THET
    SINTH=SIN(THETA)
    COSTH = rOS(THFTA)
    CALL GENLGP
    DHI = CMV*PHP
    Gก T\ &1
    62 IF(THFTT) 95.85,95
    8 COSTH=1.0
    KODE = 0
    91 SINTH=0.0
    THETA = 0.0
    GП TO 119
    Q5 IF(THFTT-180.0) 105,101,105
    101 COSTH=-1.0
    KDDE = 180
    GO T? Q1
    105 THETA = OTR*THETT
        SINTH = SIN(THFTA)
        COSTH = COS(THETA)
    119 CALL GENLGP
        PHI=CMV*PH
```

```
    61 CALL TRTG(DHI,SINPHI,COSPHI)
    FNGANS(IU,I)=0.0
    FNGANS(IU,?)=0.0
    RCOMP(IU) = 0.0
    CN=0.0
    ON 160 N = 1,NRANK
    NP=N+NRANK
    N1 = N+1
    CN=CN+1.0
    DI=CN*COSTH*PNMLLG(N1)-(CN+CMV)*PNMLLG(N)
    P? = CMV*DNMLLG(N1)
    AA=SINPHI*PI
    BA=C\capSPHI*PI
    CC=STNDHT*P2
    DD=COSDHI*P?
    EE=PNMLLG(NI)*SINTH*COSPHI
    FF=PNMLLG(NI)*SINTH*SINPHI
    IF(KMV.NE.O) GOTD 49
    SGN=1.0
    IF(THFTA) 48,44,48
44 IF(KODE FO.O) GOTO 46
    FGN=(-1.0)**N
    46 EE = COSPHT*SGN
    FF=SINDUI*SGN
    48 CONTINUE
C
C
C
C
C
C
C
C
    160 CONTINU
    170 CONTINUF
    ACCUMIILATE THE RECHLTS FOR EACH M VALUE.
    DO 17? TUP = 1,NUANG
    ACANS(IUP,I) = ACANS(IUP,1) + FNGANS(IUP,1)
    ACANS(IUP,2) = ACANS(TUP,2) + FNGANS(IUP,2)
    ACANSR(IUP) = ACANSR(IUP) +RCDMP(IUP)
172 C ONT[NHE
```

```
\therefore PRINT THF FIFLD COMPONENTS ANN THFIR MODULI SQUARED.
    WRTTE(G,175) KMV
    175 FORMAT(1HI, 35x,35H*********** ACCUMULATED SUMS FOR M =, I3,11H******
        1*****/1H0,40x,17HTOTAL NEAR FIELOS/1HO,1X,5HANGLE,12X,15HTHETA COM
        2PONENT,14X,13HDHI COMPONENT,16X,11HR-COMPONENT,22X,5HTOTAL//)
        NCONV = 0
        MCONV =0
        LCONV =0
        SCANG = n.0
        C\triangleLL DTPOLE(ETH,EPH,ERC)
    C ADD DIPOLE FIELDS ETH,FDH,ERC TH OBTAIN TOTAL FIELDS.
    O 190 JUP = 1,NUANG
    THC = ACANS(J!IP,1) + ETH(JUP)
    PHC: = ACANS(JUP,2) + EPH(JUP)
    QC = ACANSR(JUP) + EDC(JUP)
    THC = THETA COMPONENT DF TOTAL FTELD.
    PHC = PHI COMPONENT OF TOTAL FIELD.
    RC = R COMDONENT OF TOTAL FIELD.
    y = CARS(THC)**?
    Y = CABS(DHC)**?
    R=CARS(RC)**?
    FSQ = X+Y+R
    WRITF (6,181) SCANG,Y,Y,Q,ESO
    181 FORMAT (1H,FE.2,4(12X,E15.6))
    TFST FOD CONVFRGFNCF AT FACH ANGLE.
    IF(TEST) GO TO 184
    IF( ARS(X - ZXILD(JUP)).LE.(X*1.DE-03)) NCONV = NCONV + 1
    IF( ARS(Y - ZYOLD(JUP)).LE.(Y*1.OF-03)) MCONV = MCONV + I
    IF( \triangleBS(R - ZRMLD(JUD)).LF.(R*1.OF-03)) LCONV = LCONV + 1
    1&4 2YOLD(JUP) = x
    TYOL\cap(JUP) = Y
    7ROL\cap(JUP) = R
    SCANG = SCANG+DLTANG
    190 CONTTNUE
    TFST FOR CMMDLETE CONVFRGFNCE OF SOLUTION.
    198 IF(NCONV.EO.NUANG.AND.MCDNV.EQ.NUANG.AND.LCONV.EQ.NUANG) GO TO 194
    TEST = .FALSF.
C
    RFTURN
194 WRITE(6,200)
    200 FחRMAT(1HO,3OH*** SOLUTTON HAS CONVFRGED ***)
        14 CONTINUE
        STDP
        END
        SURROUTINE TRIG(A,SINN,COSN)
        COMMON DTR,RTE,CPI
        SINN = SIN(DTR*A)
        COSN = COS(DTP*A)
        IF(A-180.0) 5,10,15
        IF(\Delta+180.0) 15,10,15
        10 SINN = 0.0
    15 IF (A-90.0) 20,25,30
    20 IF (A+00.0) 30, 25,30
    25 COSN = 0.0
    30
        RFTIIRN
        END
```

SURRIUT INE CALENP
CALCILLATE THF ANGULAR ENDDOINTS FOR EACH SECTION OF THE BDOY.
COMMON DTR,RTD,CPI
COMMON /ROYCOM/ DCNR, DCNI, CKPRR, CKPRI,CKR,DCKR, CONK, AIVRB,WN, IB
COMMDN /THTCTM, THFTA,SINTH,COSTH,CDH(6), EDPS(6),NSECT,NDPS(6)
EPDS(1) $=$ CPIf?.0
$\operatorname{CDH}(1)=\operatorname{FPPS}(1) / N D P S(1)$
PFTURN
ENT
SURRDIITINF GENKR
CALCILATE CKR $\triangle N D$ DCKR AS A FUNCTION OF THETA FOR A PROLATE SPHEROID.
COMMON /RDYCOM/ DCNR,DCNI,CKPRR,CKPRI,CKR,DCKR,CONK, ADVRB,WN, IB
COMMDN /THTCOMI THETA,SINTH,COSTH,CDH(6),FPPS(6),NSECT,NDPS(6)
$Q A=2.0 / S O R T(C$ SSTH**2+(AOVRB*SINTH)**2)
$C K R=C O N K * Q R$
OCKR $=-$ CONK*COSTH*SINTH*(AOVRR**2-1.0)*GR**3
RETURN
END
SURRDUTINF DIPILE(ETH,FPH,ERC)
A SUBROUTTNE TO CALCULATE THE FIELD DUE TO A DIPOLE AT COORDINATE
(RD,THD, 0.0) AND COMDDNENTS ($P X, D Y, P Z$)
ETH = THFTA COMPONENT DF ELECTRIC FIFLD AT OBSERVER COORDINATE (RO
, SCANG, DH/PHP).
EPH $=$ PHT COMPONENT
$F R C=R-C$ MMPDNENT
$W=$ WAVE NUMRER IN DRSERVERS MEDIUM.
ก = DTSTANCE RETWFEN DIPOLF AND DBSERVER.
COMPLEX U,V,W,CI, PX, PY, P7, ETH(361), EPH(361), ERC(361), DCN2,FAC,CE,
IACANS, ACANSP
CRMMON DTR,RTD,CDI
COMMON /BDYCOM/ DCNR, DCNI,CKPRR, CKPRI,CKR,DCKR, CONK, AOVRB,WN, IB
COMMON ITHTCOM/ THETA,SINTH,COSTH,CDH(6), EPPS(6),NSECT,NDPS(6)

1. THETAD, PH, KSFCT
COMMON/UVCCOM/ACANS(361,?), $\triangle C A N S R(361)$, DLTANG,DCNR2,DCNI2,NUANG
TH' = THFTAD*DTR
$C T=(0.0,1.0)$
$P X=1.0$
$P Y=0.0$
$D 7=0.0$
$R D=1.05 * C O N K / W N$
$R \cap=1.1 * C O N K / W N$
NO 11 I = I,NUANG
SCANG $=(I-1) * D L T A N G$
IF (SCANG.LE.IR1.0) GO TO 8
SCAN $=360 \cdot 0-S C A N G$
THETA $=$ SCAN*DTR
SINTH $=$ SIN(THETA)
COSTH $=$ COS(THFTA)
PHP $=180.0+P H$
PHD = PHD*ПTR
Gח Tח

8 THETA $=$ SCANG*DTR
SINTH $=$ SIN(THETA)
CDSTH $=\operatorname{COS}(T H E T A)$
PHO = DH*DTR
Q RX = RD*SINTH*CחS(PHC)-RП*SIN(THD)
RY = RD*SINTH*SIN(PHC)
$R 7=2 D * C O S T H-R D * C D S(T H D)$
$n=S Q R T(Q X * * 2+R Y * * ?+R Z * * 2)$
$R 1=R X * S I N T H * C O S(P H O)+R Y * S T N T H * S I N(P H D)+R Z * C O S T H$ R2 = RX*CกৎTH*CกS(PHO) +RY*CTSTH*SIN(PHO)-RZ*SINTH
Q 3 = RY* COS(PHO)-RX*SIN(PHO)
DCN2 $=$ CMDLX(ORNR2, DCNT2)
$W=W N * C S Q R T(D C N 2)$
U = (W**?)/D + CI*W/D**? - 1/D**3
$V=3.0 *(1 / 0 * * 5-C I * W / D * * 4)-(W * * 2) / 0 * * 3$
FAC $=1 /(4.0 *$ PRT*NCN2*R.854E-12)
$C F=C E X P(C I * W * D)$
FTH(I) $=F A C *(D Y *(U * C \cap S T H * C O S(P H O)+V * R X * R 2)+P Y *(U * C O S T H * S I N(P H O)$
$1+\forall * R Y * R 2)+P Z *(V * R Z * R ?-11 * S I N T H)) * C E$
FPH(T) = FAC*(PX*(V*RX*R3-U*SIN(PHC)) +PY*(U*COS(PHO) +V*RY*R3)+PZ* 1V*R7*R3)*C
FRC(T) $=$ FAC*(DX*(U*SINTH*CTS(DHD) +V*RX*RI) +PY*(U*SINTH*SIN(PHO) + $1 V * R Y * R 1)+P 7 *(U * C \cap \subset T H+V * R Z * R 1)) * C E$
11 CONTINUE
RFTURN
ENT

[^0]: * On sabbatical leave (1980-1981) from Department of Physics, Clarkson College, Potsdam, NY 13676.

