
Sinan G. Aksoy, Pacific Northwest National Laboratory (PNNL)
Roberto Gioiosa, PNNL
Mark Raugas, Laboratory for Physical Sciences
Stephen J. Young, PNNL

The Road Less Traveled: Eliminating
Bottlenecks in High-Performance
Computing Networking

Scientific, engineering, and social real-life applications are often too large and complex to fit in a
single workstation, both in terms of memory and computing requirements. Generally, a cluster
of individual compute nodes interconnected by a high-performance network is required to solve

such problems at the required scale. Ideally, such a system would function as if it were one huge com-
puter, but in practice, because of the differences in access speed for local and remote resources, a com-
plete new programming paradigm is required. In particular, because the access time difference between
local and remote accesses could be in the order of 10–100x, it is paramount to effectively minimize and/
or hide the latency of remote communication. Additionally, oftentimes multiple compute nodes need
to access data on the same remote node (i.e., many-to-one communication patterns), causing network
congestion and slowing down the entire application. As a consequence, one of the significant challenges
in the use of modern cluster-based supercomputers is how to efficiently, robustly, and quickly handle the
necessary communication between the nodes in the cluster. Both current and next-generation supercom-
puter designs have highly structured network topologies, such as the low-dimensional torus [1], fat tree [2],
or DragonFly [3] topology, to have a straightforward routing scheme while attempting to mitigate the traffic
congestion in high-communication applications. In many ways, these topologies have evolved and changed
in lockstep with the message passing interface (MPI), the dominant programming model for distributed
memory supercomputers, and have become tailored for particular classes of problems (i.e., numerical linear
algebra and partial differential equations). However, even with modern high-performance network topolo-
gies, communication delays are often a significant bottleneck and dominate the overall computation time.

[Photo credit: iStock.com/carterdayne]

While the design of communication architectures
for HPC systems doesn’t have the geographic limita-
tions of traffic like the greater Seattle area, it is still
influenced, much like the traffic network in Seattle,
by decades of optimizations for a small class of traffic
scenarios. Now that new unstructured traffic sce-
narios have become more prevalent, the old design
paradigms are struggling to provide performance for
these new workloads.

Fortunately, rather than having to repeat the
decades of effort that went into optimizing HPC
systems for MPI-style communications, the HPC
communications can take inspiration from an in-
dustry that already had to deal with problems of
unstructured communication—the telecommuni-
cations industry. As early as the 1970’s, researchers
at Bell Labs and IBM Watson Research Center were
thinking about the problem of designing non-block-
ing switching networks in order to cost-efficiently
scale telephone exchanges [4, 5]. Fundamentally, this
is a question of how to effectively handle the unpre-
dictable and unstructured telephone communication
patterns. Eventually, this line of research coalesced
around a single idea as being essential to handling

As a result of the interaction between the struc-
ture of internode communication in various
classes of algorithms and the underlying

network topologies, certain supercomputers gain a
reputation for being more or less suited to a certain
class of problems. Specifically, most state-of-the-art
supercomputers have been optimized for traditional
Linpack-style MPI applications which exchange large
messages in highly structured (and often localized)
patterns. However, as new problems have emerged
that require high-performance computing (HPC) re-
sources, for example, large-scale graph analytics and
the training of machine learning models, being able to
maintain performance on a more varied collection of
communication paradigms has gained in importance.
This is especially important to consider when execut-
ing on large HPC clusters is the only feasible option
for modern graph analytics and machine learning
workloads that show computation and memory
requirements far beyond those available in a single
workstation or small cluster. Of particular relevance
to graph analytics and machine learning workloads
is the communication performance of HPC systems
when sending a large number of small, unstructured,
and unpredictable messages. Furthermore, for many
of these workloads, the communication patterns are
only known at runtime as the computation evolves,
making it impossible to predict and mitigate network
congestion through smart data layout.

Rush hour and computing
The challenges faced by the HPC community can be
understood, by way of analogy, through the evolution
of urban transportation traffic. Consider, for example,
the Seattle, Washington area. Seattle’s arterial road
networks, such as the I-5 and I-90 freeways, were
developed during the “Boeing Boom.” At this time,

the area’s largest employers were geographically
aligned with the natural traffic pipeline formed by
the Puget Sound and Lake Washington. However, as
new economic drivers emerged within Seattle, the
city has become far more polycentric, with numer-
ous hotspot destinations distributed throughout the
region. Seattle’s road network now has to contend
with a daily influx of traffic from the surrounding
Redmond and Bellevue into disparate parts of the
city. The resulting traffic patterns are less predictable,
less structured, and have (unsurprisingly) led to the
development of at least 2,675 documented traffic
congestion “hotspots.”

4

The Road Less Traveled: Eliminating Bottlenecks in High-Performance Computing Networking

FIGURE 1. This map of the greater Seattle, Washington area road
network with the major motorways (no stoplights) highlighted
in blue shows lanes in each direction creating a bottleneck.
Lake Washington, to the east of downtown Seattle, significantly
impacts the topology of the road network, reducing the capacity
and number of east-west routes throughout the region. In fact,
between the two floating bridges (I-90 and WA-520), there are
only five regular traffic lanes and two high-occupancy vehicle
(HOV) lanes in each direction.

the Seattle area. Surprisingly, this fairly simple idea
of considering networks with no bottlenecks has
numerous practical applications from constructing
circuits to efficiently perform matrix multiplication,
to constructing codes which can effectively correct
for errors, to methods to amplify weak sources of
randomness to high-quality randomness suitable for
practical randomized algorithms.

Given the wide applicability of networks with
expansion [6], it is unsurprising that several commu-
nication topologies have been proposed which use
expansion as a fundamental organizing principle. For
example, both the Jellyfish [7] and Xpander [8] da-
ta-center architectures rely on expansion properties
to provide a robust and extensible communication
fabric. However, these topologies are fundamentally
random in their construction which presents sig-
nificant challenges in designing and validating the
low-overhead communication schemes necessary in
computational applications. In addition, the random-
ness of the connections presents significant obstacles
to the adoptions of these topologies in HPC contexts.a
In fact, it is likely that the need for lightweight routing
schemes (which are facilitated by highly structured
topology) has led to the limited expansion properties
of in-use and proposed HPC topologies [9]. However,
there are known constructions which result in highly
structured, optimal expanders [10]. The SpectralFly
[11] topology, which we describe in the following
section, is based on one such construction.

The infinite tree in the forest
Before describing the precise construction of the
SpectralFly topology, it is helpful to think about
exactly what a network with the best possible ex-
pansion (or alternatively, no bottlenecks) would
look like. Returning to the traffic analogy, imagine
traveling on a road network where every intersec-
tion is a four-way intersection. As you approach each
intersection, you have four choices—turn around
and go back along the road you were traveling on,
or continue traveling on one of the other three road
segments. Now if the road network has the best
possible expansion, those three road segments must
lead outside your “local neighborhood.” If we imagine
continuing along this road network, at each intersec-
tion this repeats—you can either turn around or take
one of three road segments which leave your “local
neighborhood.” But as a consequence, the only way

the unstructured communications of the telephone
system—expansion. While many definitions of
expansion have been proposed over the years, they
all essentially reduce to the idea that the capacity
of the connections leaving any local neighborhood
scale with the size of the neighborhood. Returning
to our analogy with Seattle traffic, we can see Lake
Washington forms a fundamental obstruction to the
expansion of the Seattle road network (see figure 1).
No matter how you increase the capacity of the two
floating bridges crossing Lake Washington, or even
if you add new bridges crossing the lake, the capac-
ity of the connection from Seattle to the east side
will never be able to scale with the size of Seattle.
Essentially, Lake Washington forms a geographic
bottleneck and obstruction to expansion for traffic in

a. In fact, one of the original proposers of the Jellyfish topology, Brighten Godfrey, obliquely referred to this challenge on his blog You
Infinite Snake, writing “At this point, one natural reaction is that a completely random network must be the product of a half-deranged
intellect, somewhere between ‘perpetual motion machine’ and ‘deep-fried butter on a stick’.”

 The Next Wave | Vol. 24 No. 1 | 2023 | 5

to return to an intersection you have already visited
is to turn around and go back the way you came. In
essence, if the road network has the best possible
expansion properties, it must be the four-regular
infinite tree (see figure 2).

FIGURE 2. (Left) In this optimal expander, every vertex has exact-
ly four connections. Since optimal expanders have no cycles, this
unique optimal expander ends up being the four-regular infinite
tree. (Right) The vertex colors in this vertex-edge graph for the
octahedron are used to generate the vertex colors in the infinite
tree (on the left) based on the traversals of the octahedral graph.

Obviously, building an infinite tree to use as a road
network or as an HPC topology is physically and
financially impossible, but taking a slightly different
viewpoint on the infinite tree can still provide con-
siderable insight into the properties of networks with
good expansion. Specifically, instead of considering
the connections in the infinite tree to be physical, we
can think about them as a record of decisions made.
For example, if we were at the Space Needle in Seattle
and wanted to go pick up a coffee at the original
Starbucks located at the Pike Place Market, we could
either go southwest on Broad Street, turn left on
Western Avenue, and continue until we arrived at the
Starbucks, or we could go east on Denny Way, turn
right on Westlake Ave, and take a right on Stewart
Street. While both of these routes will get us some
much needed coffee, they emerge from a different
sequence of decisions and so would be depicted as
different vertices on the infinite tree.

In order to keep track of which locations are the
same, we can color individual vertices to encode their
location. We see this illustrated in figure 2 where the
coloring of the vertices in the infinite tree correspond
to the “road network” depicted to the right that has
six intersections and 12 roads. For example, in the
finite network, the red vertex is adjacent to the green,
pink, purple, and blue vertices, and we see that in the
infinite tree, every vertex that is colored red is adja-
cent to a green, pink, purple, and blue vertex. In fact,
the correspondence goes deeper than that, as the

colored infinite tree is simply a recording of all the
potential routes through the finite network. Indeed, if
we start at the red vertex in the finite graph and go to
the green vertex, then the pink vertex, and back to the
red vertex, in the infinite tree we end up at one of the
red vertices in the upper portion of the image of the
infinite tree. If, on the other hand, we go to the pink
vertex, then the purple, and back to the red vertex, in
the infinite tree we end up at one of the red vertices
toward the bottom of the infinite tree, despite end-
ing at the same vertex in the finite network. Thus, in
many ways, the question of how to design networks
with good expansion properties reduces to a perhaps
simpler question: how do you color the vertices of the
infinite tree to preserve the expansion properties of
the tree?

To understand what such a coloring looks like,
let us consider walking randomly around Seattle.
In order to keep track of where we are, imagine
every intersection to the west of Lake Washington
is colored a different shade of blue, and every inter-
section to the east of Lake Washington is colored a
different shade of red. Since Lake Washington is such
a strong bottleneck, it is easy to see that if we start at
a blue intersection we should expect to stay on blue
intersections for a long period of time. But now think
about what this means for the associated colored
infinite tree—if we start at a blue vertex, as we go
away from that vertex we should typically stay at blue
vertices. But there are only so many blue vertices
we can use, so that means that the infinite tree must
be repeating shades of blue as it grows. In fact, this
provides pretty good intuition for comparing two
colorings of the infinite tree—a coloring is better at
preserving expansion when it is more colorful than
another coloring.

Given this framing, it is perhaps not surprising that
randomly coloring the vertices of the infinite tree is
an effective means of generating graphs with good
expansion properties. In fact, this is the approach
that is used by the Xpander and Jellyfish topologies
to design high-performance data centers. However,
this approach has significant drawbacks for HPC
needs in that the lack of readily apparent structure
in the resulting network means that significant effort
needs to be spent in deciding the route any particular
communication takes. Providing an explicit means
of coloring the vertices of the infinite tree which—in
some sense—preserves as much of the expansion
property as possible, proved to be a significantly
harder challenge.

FEATURE

6

The Road Less Traveled: Eliminating Bottlenecks in High-Performance Computing Networking

To understand this challenge, it is helpful to return
to the problem of navigating around a road network.
However, this time instead of focusing on the freeway
system, we will focus on navigating around down-
town—perhaps some place like Manhattan, New
York, where there is a strong grid-like structure such
as shown in figure 3. Imagine your friend calls you
from the red intersection looking for directions to
your favorite coffee shop, conveniently located on all
four corners of the green intersection! How would
you tell them to get there? You would probably say
something like, head north for two blocks and then go
east for five blocks. Or perhaps if you knew they were
repairing the sidewalks at the orange intersections,
you would tell your friend to go east for two blocks,
head north for one block, go east for another three
blocks, and finally head north for one more block.
Now if the picture in figure 3 was instead a diagram
of the switches in an HPC topology and you were pro-
viding instruction on how to send information from
the red switch to the green switch, you would likely
express this idea differently (computers not being
particularly well known for knowing which way is
north, south, east, or west!). Perhaps you would give
each switch a name, say the red switch is switch (1, 1)
and the green switch is switch (6, 3), and then you
would tell the switches to send the information out
the port that increases the second coordinate twice,
and the first coordinate five times. In fact, most mod-
ern and historical HPC topologies can be thought of in
this light. Each switch has a “name”—often a vector
of integers—and information is routed by performing
a sequence of operations on these names, for exam-
ple increasing or decreasing a coordinate. Oftentimes,
there are additional rules which say two different
names are effectively the same. For instance, if we

FIGURE 3. This figure depicts an idealization of a downtown
street network in a grid-like area such as Manhattan, New York.
The blue arrow represents the natural path one would take
when going from the red intersection to the green intersection,
whereas the purple arrow would be one possible path to avoid
construction at the orange vertices.

In the late 1980’s, Lubotzky, Phillips, and Sarnark
[12], and independently Margulis [13], provided a
relatively simple naming scheme and set of opera-
tions to provide an optimal coloring scheme for a
wide range of infinite trees and number of colors. The
collection of names for every vertex is a list of two-
by-two matrices with integer entries, and the opera-
tion going from one name to another is multiplication
by one of a handful of two-by-two matrices. The
SpectralFly topology is defined by using one of these
networks as the interconnection network between
the switches and then placing an appropriate number
of compute nodes at each switch (see figure 4).

were to imagine connections between the top and
bottom row of vertices in figure 4, we would want
to say that (1, 5) is an alternative name for the red
vertex, as starting there and increasing the second co-
ordinate four times would return us to the red vertex.
Thus, the real challenge is to design a naming scheme
for the infinite trees and operations on those names
which maximize the colorfulness of the infinite tree.

The fact that the colorings proposed by Lubotzky,
Phillips, and Sarnak [12] are the best possible at
preserving the expansion properties of the infinite
tree relies on a deep result in the representation the-
ory of automorphic forms originally conjectured by
Ramanujan [14]. However, we can gain some intuition
as to why their rules result in more colorful trees by
comparing the operations with other topologies. For
example, since the operation for the torus topology is
incrementing/decrementing individual coordinates,
the end location depends only on the number of
increments/decrements per coordinate, not the par-
ticular order they are applied. In contrast to this, the
results of matrix multiplication (in general) rely on
the order of operations. That is, by applying the same
set of operations in two different orders, it is possible
to arrive in different locations. In figure 5 we can see
the difference in colorfulness in the infinite tree for
torus topology and the SpectralFly topology.

Structural comparison with SpectralFly
topology
The SpectralFly topologies promise as supercomput-
ing topology is evidenced by its exceptional struc-
tural properties. We now put these properties in
perspective, by comparing them against those of two
well-known topologies: a DragonFly network and a

 The Next Wave | Vol. 24 No. 1 | 2023 | 7

FIGURE 4. In this depiction of the connections between switch-
es for a 336-switch SpectralFly topology with four intra-switch
connections per switch, the switches are color coded by distance
from a central switch, highlighting the tree-like neighborhood of
the switch.

FIGURE 5. In this comparison of an infinite tree for a two-di-
mensional torus topology (left) and a SpectralFly topology with
parameters (3,7) (right), the vertices of both are colored using
the same equally spaced gradient. The vertex color corresponds
to the order the vertices are discovered in the process; earlier
vertices are colored blue and later vertices are colored red. As we
can see, the torus topology is significantly less colorful than the
SpectralFly topology, indicating that the SpectralFly topology has
significantly better expansion properties.

b. In particular, we generate a DragonFly topology with height h=1, g=24, groups of size a=4. We optimally allocate the intergroup edges
as suggested by Teh, Wilke, Bergman, and Rumley [15].

torus mesh. We consider a small, sparse SpectralFly
network on 120 nodes and 240 links. To ensure a fair
comparison, we optimally selectb the parameters of
a DragonFly topology on exactly the same number
of nodes and edges, and a two-dimensional torus
mesh on 121 nodes and 242 edges. This near-exact
three-way match enables a size agnostic comparison:
each network starts with the same number of nodes,
links, and radix, but makes different design choices
in assembly.

The three networks are visualized in figure 6. Each
row of figure 6 plots the same network, but with
one of three different structural properties empha-
sized: the tightest bottleneck, the network diameter,
and link usage frequencies in random traffic. Each
of these structural properties are fundamental for
supercomputer design: bottleneckness measures
congestion proneness, diameter is a proxy for
worst-case latency, and link usage patterns impact
link-contention.

Bottlenecks
The first column of figure 6 presents a split of
each topology into equal parts which minimizes
the number of edges crossing (in red), as found by
METIS software [16]. For SpectralFly, Dragonfly,
and torus, this yields 40, 31, and 26 links crossing,

respectively. In practice, this means that when there
are many messages, we would expect the communi-
cation delays to be about 24% smaller as compared
to DragonFly, and 35% smaller as compared to
the torus.

Diameter
Figure 6’s second column visualizes paths linking a
source-destination pair furthest from each other in
the network—the length of which is known as the
network diameter. The k-th ring of vertices from the
leftmost contains all those that can be reached from
that vertex in k hops. Small diameters ensure any
vertex can be reached quickly from any other. In this
case, both SpectralFly and DragonFly have an iden-
tical diameter of 6, while the torus has a diameter
of 10.

Link loading
We simulate unstructured traffic on each network by
randomly selecting 5,000 source-destination pairs in
each network, and then routing via a minimal path. In
the case that there are multiple such minimal paths,
we select one at random. For each link in the net-
work, we count the number of times it was traversed.
Figure 6 presents the distribution of these link usage
counts. For SpectralFly, this distribution is highly
symmetric and tightly concentrated, reflecting that
edges are evenly spread across the network.

FEATURE

8

The Road Less Traveled: Eliminating Bottlenecks in High-Performance Computing Networking

DragonFly, on the other hand, is the opposite
and has a long tail: some edges are used heavily
while others are almost never used. Lastly, as with
SpectralFly, the link usage counts for the torus are
also tightly concentrated, but overall larger: due to
the torus’ larger diameter, paths linking vertices tend
to be longer and edges get used more frequently,
albeit evenly, across the network. These observations
are also reflected in the network visualization: each
edge is colored on a blue-to-red scale, according to its
percentile within the observed link counts aggregat-
ed across all three networks. Accordingly, SpectralFly

FIGURE 6. These graph visualizations emphasize different structural properties for three similarly-sized SpectralFly, DragonFly, and
torus instances, each on about 120 nodes and 240 edges. The first column emphasizes the expansion, the second column emphasizes
the diameter, and the third column emphasizes the prevalence of edges on shortest paths.

highly structured networks optimized for regular
and large message communication to networks such
as SpectralFly that expand and dynamically remove
bottlenecks, and hence adapt to the irregular and
unpredictable nature of the workloads. This move
however would be onto a road less traveled, and as
such, will require strong evidence that it can effi-
ciently support emerging application domains before
industry will commit to investing in it. At Pacific
Northwest National Laboratory, we have developed
and used several tools, based on MPI and partitioned
global address space (PGAS), to analyze different
network designs. The results indicate that SpectralFly
networks are not only better at supporting irregular
communication typical in data analytics and AI/ma-
chine learning, but that they might also outperform
traditional networks when executing regular appli-
cations (unless they heavily rely on near-neighbor
communication). In other terms, the SpectralFly
network will let you sip your much deserved, end-of-
the-day coffee at your favorite coffee shop without
spending hours stuck in the car on the streets of
Seattle downtown.

Conclusions and future work
As the workloads executed on current and future HPC
systems evolve to include nontraditional workloads,
such as data analytics and artificial intelligence (AI)/
machine learning, so should the systems themselves.
We argue that HPC systems should move away from

and the torus’ edges are homogeneous in color;
whereas, those in Dragonfly run the gamut.

 The Next Wave | Vol. 24 No. 1 | 2023 | 9

References
[1] Adiga NR, Blumrich MA, Chen D, Coteus P, Gara A,
Giampapa ME, Heidelberger P, Singh S, Steinmacher-
Burow BD, Takken T, Tsao M, Vranas P. “Blue Gene/L torus
interconnection network.” IBM Journal of Research and
Development. 2005;49(2-3):265–276.

[2] Leiserson, CE. “Fat-trees: Universal networks for
hardware-efficient supercomputing.” IEEE Transactions
on Computers. 1985;C-34(10);892–901. doi: 10.1109/
TC.1985.6312192.

[3] Kim J, Dally WJ, Scott S, Abts D. “Technology-
Driven, Highly-Scalable Dragonfly Topology.” SIGARCH
Computer Architecture News. 2008;36(3):77–88. doi:
10.1145/1394608.1382129.

[4] Chung FRK. “On concentrators, superconcentrators,
generalizers, and nonblocking networks.” The Bell System
Technical Journal. 1979;58(8):1765–1777. doi: 10.1002/
j.1538-7305.1979.tb02972.x.

[5] Pippenger N. “Superconcentrators.” SIAM Journal on
Computing. 1977;6(2):298–304. doi: 10.1137/0206022.

[6] Hoory S, Linial N, Wigderson A. “Expander graphs
and their applications.” Bulletin of the American
Mathematical Society. 2006;43(4):439–561. doi: 10.1090/
S0273-0979-06-01126-8.

[7] Singla A, Hong C, Popa L, Godfrey PB. “Jellyfish:
Networking data centers randomly.” In: 9th USENIX
Symposium on Networked Systems Design and
Implementation (NSDI 12); 2012. Available at: https://
www.usenix.org/system/files/conference/nsdi12/ns-
di12-final82.pdf.

[8] Valadarsky A, Shahaf G, Dinitz M, Schapira M.
“Xpander: Towards optimal-performance datacenters.”
In: Proceedings of the 12th International on Conference on
Emerging Networking EXperiments and Technologies; 2016,
pp. 205–219. doi: 10.1145/2999572.2999580.

[9] Aksoy SG, Bruillard P, Young SJ, Raugas M. “Ramanujan
graphs and the spectral gap of supercomputing topologies.”
The Journal of Supercomputing. 2021;77(2):1177–1213.
doi: 10.1007/s11227-020-03291-1.

[10] Alon N. “Eigenvalues and expanders.” Combinatorica.
1986;6(2):83–96. doi: 10.1007/BF02579166.

[11] Young S, Aksoy S, Firoz J, Gioiosa R, Hagge T, Kempton
M, Escobedo J, Raugas M. “SpectralFly: Ramanujan graphs
as flexible and efficient interconnection networks.” In 2022
IEEE International Parallel and Distributed Processing
Symposium (IPDPS), Lyon, France, 2022 pp. 1040−1050.
doi: 10.1109/IPDPS53621.2022.00105.

[12] Lubotzky A, Phillips R, Sarnak P. “Ramanujan graphs.”
Combinatorica. 1988;8(3):261–277. doi: 10.1007/
BF02126799.

[13] Margulis GA. “Explicit group-theoretical constructions
of combinatorial schemes and their application to the de-
sign of expanders and concentrators.” Problemy Peredachi
Informatsii. 1988;24(1):51–60.

[14] Ramanujan S. “On certain arithmetical functions.”
Transactions of the Cambridge Philosophical Society.
1916;22(9):159–184.

[15] Teh MY, Wilke JJ, Bergman K, Rumley S. “Design space
exploration of the dragonfly topology.” In: Kunkel J, Yokota
R, Taufer M, Shalf J (Eds), High Performance Computing.
ISC High Performance 2017. Lecture Notes in Computer
Science (LNTCS), vol 10524. Springer, Cham. Available at:
https://doi.org/10.1007/978-3-319-67630-2_5.

[16] Karypis G, Kumar V. “A fast and high quality multilevel
scheme for partitioning irregular graphs.” SIAM Journal on
Scientific Computing. 1998;20(1):359–392. doi: 10.1137/
S1064827595287997.

FEATURE

https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final82.pdf
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final82.pdf
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final82.pdf
https://doi.org/10.1007/978-3-319-67630-2_5

		Superintendent of Documents
	2023-12-14T17:49:05-0500
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

