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The Road Less Traveled: Eliminating 
Bottlenecks in High-Performance 
Computing Networking

Scientific, engineering, and social real-life applications are often too large and complex to fit in a 
single workstation, both in terms of memory and computing requirements. Generally, a cluster 
of individual compute nodes interconnected by a high-performance network is required to solve 

such problems at the required scale. Ideally, such a system would function as if it were one huge com-
puter, but in practice, because of the differences in access speed for local and remote resources, a com-
plete new programming paradigm is required. In particular, because the access time difference between 
local and remote accesses could be in the order of 10–100x, it is paramount to effectively minimize and/
or hide the latency of remote communication. Additionally, oftentimes multiple compute nodes need 
to access data on the same remote node (i.e., many-to-one communication patterns), causing network 
congestion and slowing down the entire application. As a consequence, one of the significant challenges 
in the use of modern cluster-based supercomputers is how to efficiently, robustly, and quickly handle the 
necessary communication between the nodes in the cluster. Both current and next-generation supercom-
puter designs have highly structured network topologies, such as the low-dimensional torus [1], fat tree [2], 
or DragonFly [3] topology, to have a straightforward routing scheme while attempting to mitigate the traffic 
congestion in high-communication applications. In many ways, these topologies have evolved and changed 
in lockstep with the message passing interface (MPI), the dominant programming model for distributed 
memory supercomputers, and have become tailored for particular classes of problems (i.e., numerical linear 
algebra and partial differential equations). However, even with modern high-performance network topolo-
gies, communication delays are often a significant bottleneck and dominate the overall computation time.

[Photo credit: iStock.com/carterdayne]



While the design of communication architectures 
for HPC systems doesn’t have the geographic limita-
tions of traffic like the greater Seattle area, it is still 
influenced, much like the traffic network in Seattle, 
by decades of optimizations for a small class of traffic 
scenarios. Now that new unstructured traffic sce-
narios have become more prevalent, the old design 
paradigms are struggling to provide performance for 
these new workloads. 

Fortunately, rather than having to repeat the 
decades of effort that went into optimizing HPC 
systems for MPI-style communications, the HPC 
communications can take inspiration from an in-
dustry that already had to deal with problems of 
unstructured communication—the telecommuni-
cations industry. As early as the 1970’s, researchers 
at Bell Labs and IBM Watson Research Center were 
thinking about the problem of designing non-block-
ing switching networks in order to cost-efficiently 
scale telephone exchanges [4, 5]. Fundamentally, this 
is a question of how to effectively handle the unpre-
dictable and unstructured telephone communication 
patterns. Eventually, this line of research coalesced 
around a single idea as being essential to handling 

As a result of the interaction between the struc-
ture of internode communication in various 
classes of algorithms and the underlying 

network topologies, certain supercomputers gain a 
reputation for being more or less suited to a certain 
class of problems. Specifically, most state-of-the-art 
supercomputers have been optimized for traditional 
Linpack-style MPI applications which exchange large 
messages in highly structured (and often localized) 
patterns. However, as new problems have emerged 
that require high-performance computing (HPC) re-
sources, for example, large-scale graph analytics and 
the training of machine learning models, being able to 
maintain performance on a more varied collection of 
communication paradigms has gained in importance. 
This is especially important to consider when  execut-
ing on large HPC clusters is the only feasible option 
for modern graph analytics and machine learning 
workloads that show computation and memory 
requirements far beyond those available in a single 
workstation or small cluster. Of particular relevance 
to graph analytics and machine learning workloads 
is the communication performance of HPC systems 
when sending a large number of small, unstructured, 
and unpredictable messages. Furthermore, for many 
of these workloads, the communication patterns are 
only known at runtime as the computation evolves, 
making it impossible to predict and mitigate network 
congestion through smart data layout.

Rush hour and computing
The challenges faced by the HPC community can be 
understood, by way of analogy, through the evolution 
of urban transportation traffic. Consider, for example, 
the Seattle, Washington area. Seattle’s arterial road 
networks, such as the I-5 and I-90 freeways, were 
developed during the “Boeing Boom.” At this time, 

the area’s largest employers were geographically 
aligned with the natural traffic pipeline formed by 
the Puget Sound and Lake Washington. However, as 
new economic drivers emerged within Seattle, the 
city has become far more polycentric, with numer-
ous hotspot destinations distributed throughout the 
region. Seattle’s road network now has to contend 
with a daily influx of traffic from the surrounding 
Redmond and Bellevue into disparate parts of the 
city. The resulting traffic patterns are less predictable, 
less structured, and have (unsurprisingly) led to the 
development of at least 2,675 documented traffic 
congestion “hotspots.”
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FIGURE 1. This map of the greater Seattle, Washington area road 
network with the major motorways (no stoplights) highlighted 
in blue shows lanes in each direction creating a bottleneck. 
Lake Washington, to the east of downtown Seattle, significantly 
impacts the topology of the road network, reducing the capacity 
and number of east-west routes throughout the region. In fact, 
between the two floating bridges (I-90 and WA-520), there are 
only five regular traffic lanes and two high-occupancy vehicle 
(HOV) lanes in each direction.

the Seattle area. Surprisingly, this fairly simple idea 
of considering networks with no bottlenecks has 
numerous practical applications from constructing 
circuits to efficiently perform matrix multiplication, 
to constructing codes which can effectively correct 
for errors, to methods to amplify weak sources of 
randomness to high-quality randomness suitable for 
practical randomized algorithms. 

Given the wide applicability of networks with 
expansion [6], it is unsurprising that several commu-
nication topologies have been proposed which use 
expansion as a fundamental organizing principle. For 
example, both the Jellyfish [7] and Xpander [8] da-
ta-center architectures rely on expansion properties 
to provide a robust and extensible communication 
fabric. However, these topologies are fundamentally 
random in their construction which presents sig-
nificant challenges in designing and validating the 
low-overhead communication schemes necessary in 
computational applications. In addition, the random-
ness of the connections presents significant obstacles 
to the adoptions of these topologies in HPC contexts.a 
In fact, it is likely that the need for lightweight routing 
schemes (which are facilitated by highly structured 
topology) has led to the limited expansion properties 
of in-use and proposed HPC topologies [9]. However, 
there are known constructions which result in highly 
structured, optimal expanders [10]. The SpectralFly 
[11] topology, which we describe in the following 
section, is based on one such construction.

The infinite tree in the forest
Before describing the precise construction of the 
SpectralFly topology, it is helpful to think about 
exactly what a network with the best possible ex-
pansion (or alternatively, no bottlenecks) would 
look like. Returning to the traffic analogy, imagine 
traveling on a road network where every intersec-
tion is a four-way intersection. As you approach each 
intersection, you have four choices—turn around 
and go back along the road you were traveling on, 
or continue traveling on one of the other three road 
segments. Now if the road network has the best 
possible expansion, those three road segments must 
lead outside your “local neighborhood.” If we imagine 
continuing along this road network, at each intersec-
tion this repeats—you can either turn around or take 
one of three road segments which leave your “local 
neighborhood.” But as a consequence, the only way 

the unstructured communications of the telephone 
system—expansion. While many definitions of 
expansion have been proposed over the years, they 
all essentially reduce to the idea that the capacity 
of the connections leaving any local neighborhood 
scale with the size of the neighborhood. Returning 
to our analogy with Seattle traffic, we can see Lake 
Washington forms a fundamental obstruction to the 
expansion of the Seattle road network (see figure 1). 
No matter how you increase the capacity of the two 
floating bridges crossing Lake Washington, or even 
if you add new bridges crossing the lake, the capac-
ity of the connection from Seattle to the east side 
will never be able to scale with the size of Seattle. 
Essentially, Lake Washington forms a geographic 
bottleneck and obstruction to expansion for traffic in 

a. In fact, one of the original proposers of the Jellyfish topology, Brighten Godfrey, obliquely referred to this challenge on his blog You 
Infinite Snake, writing “At this point, one natural reaction is that a completely random network must be the product of a half-deranged 
intellect, somewhere between ‘perpetual motion machine’ and ‘deep-fried butter on a stick’.”
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to return to an intersection you have already visited 
is to turn around and go back the way you came. In 
essence, if the road network has the best possible 
expansion properties, it must be the four-regular 
infinite tree (see figure 2). 

 

FIGURE 2. (Left) In this optimal expander, every vertex has exact-
ly four connections. Since optimal expanders have no cycles, this 
unique optimal expander ends up being the four-regular infinite 
tree. (Right) The vertex colors in this vertex-edge graph for the 
octahedron are used to generate the vertex colors in the infinite 
tree (on the left) based on the traversals of the octahedral graph.

Obviously, building an infinite tree to use as a road 
network or as an HPC topology is physically and 
financially impossible, but taking a slightly different 
viewpoint on the infinite tree can still provide con-
siderable insight into the properties of networks with 
good expansion. Specifically, instead of considering 
the connections in the infinite tree to be physical, we 
can think about them as a record of decisions made. 
For example, if we were at the Space Needle in Seattle 
and wanted to go pick up a coffee at the original 
Starbucks located at the Pike Place Market, we could 
either go southwest on Broad Street, turn left on 
Western Avenue, and continue until we arrived at the 
Starbucks, or we could go east on Denny Way, turn 
right on Westlake Ave, and take a right on Stewart 
Street. While both of these routes will get us some 
much needed coffee, they emerge from a different 
sequence of decisions and so would be depicted as 
different vertices on the infinite tree. 

In order to keep track of which locations are the 
same, we can color individual vertices to encode their 
location. We see this illustrated in figure 2 where the 
coloring of the vertices in the infinite tree correspond 
to the “road network” depicted to the right that has 
six intersections and 12 roads. For example, in the 
finite network, the red vertex is adjacent to the green, 
pink, purple, and blue vertices, and we see that in the 
infinite tree, every vertex that is colored red is adja-
cent to a green, pink, purple, and blue vertex. In fact, 
the correspondence goes deeper than that, as the 

colored infinite tree is simply a recording of all the 
potential routes through the finite network. Indeed, if 
we start at the red vertex in the finite graph and go to 
the green vertex, then the pink vertex, and back to the 
red vertex, in the infinite tree we end up at one of the 
red vertices in the upper portion of the image of the 
infinite tree. If, on the other hand, we go to the pink 
vertex, then the purple, and back to the red vertex, in 
the infinite tree we end up at one of the red vertices 
toward the bottom of the infinite tree, despite end-
ing at the same vertex in the finite network. Thus, in 
many ways, the question of how to design networks 
with good expansion properties reduces to a perhaps 
simpler question: how do you color the vertices of the 
infinite tree to preserve the expansion properties of 
the tree? 

To understand what such a coloring looks like, 
let us consider walking randomly around Seattle. 
In order to keep track of where we are, imagine 
every intersection to the west of Lake Washington 
is colored a different shade of blue, and every inter-
section to the east of Lake Washington is colored a 
different shade of red. Since Lake Washington is such 
a strong bottleneck, it is easy to see that if we start at 
a blue intersection we should expect to stay on blue 
intersections for a long period of time. But now think 
about what this means for the associated colored 
infinite tree—if we start at a blue vertex, as we go 
away from that vertex we should typically stay at blue 
vertices. But there are only so many blue vertices 
we can use, so that means that the infinite tree must 
be repeating shades of blue as it grows. In fact, this 
provides pretty good intuition for comparing two 
colorings of the infinite tree—a coloring is better at 
preserving expansion when it is more colorful than 
another coloring. 

Given this framing, it is perhaps not surprising that 
randomly coloring the vertices of the infinite tree is 
an effective means of generating graphs with good 
expansion properties. In fact, this is the approach 
that is used by the Xpander and Jellyfish topologies 
to design high-performance data centers. However, 
this approach has significant drawbacks for HPC 
needs in that the lack of readily apparent structure 
in the resulting network means that significant effort 
needs to be spent in deciding the route any particular 
communication takes. Providing an explicit means 
of coloring the vertices of the infinite tree which—in 
some sense—preserves as much of the expansion 
property as possible, proved to be a significantly 
harder challenge. 

FEATURE
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To understand this challenge, it is helpful to return 
to the problem of navigating around a road network. 
However, this time instead of focusing on the freeway 
system, we will focus on navigating around down-
town—perhaps some place like Manhattan, New 
York, where there is a strong grid-like structure such 
as shown in figure 3. Imagine your friend calls you 
from the red intersection looking for directions to 
your favorite coffee shop, conveniently located on all 
four corners of the green intersection! How would 
you tell them to get there? You would probably say 
something like, head north for two blocks and then go 
east for five blocks. Or perhaps if you knew they were 
repairing the sidewalks at the orange intersections, 
you would tell your friend to go east for two blocks, 
head north for one block, go east for another three 
blocks, and finally head north for one more block. 
Now if the picture in figure 3 was instead a diagram 
of the switches in an HPC topology and you were pro-
viding instruction on how to send information from 
the red switch to the green switch, you would likely 
express this idea differently (computers not being 
particularly well known for knowing which way is 
north, south, east, or west!). Perhaps you would give 
each switch a name, say the red switch is switch (1, 1) 
and the green switch is switch (6, 3), and then you 
would tell the switches to send the information out 
the port that increases the second coordinate twice, 
and the first coordinate five times. In fact, most mod-
ern and historical HPC topologies can be thought of in 
this light. Each switch has a “name”—often a vector 
of integers—and information is routed by performing 
a sequence of operations on these names, for exam-
ple increasing or decreasing a coordinate. Oftentimes, 
there are additional rules which say two different 
names are effectively the same. For instance, if we 

FIGURE 3. This figure depicts an idealization of a downtown 
street network in a grid-like area such as Manhattan, New York. 
The blue arrow represents the natural path one would take 
when going from the red intersection to the green intersection, 
whereas the purple arrow would be one possible path to avoid 
construction at the orange vertices.

In the late 1980’s, Lubotzky, Phillips, and Sarnark 
[12], and independently Margulis [13], provided a 
relatively simple naming scheme and set of opera-
tions to provide an optimal coloring scheme for a 
wide range of infinite trees and number of colors. The 
collection of names for every vertex is a list of two-
by-two matrices with integer entries, and the opera-
tion going from one name to another is multiplication 
by one of a handful of two-by-two matrices. The 
SpectralFly topology is defined by using one of these 
networks as the interconnection network between 
the switches and then placing an appropriate number 
of compute nodes at each switch (see figure 4). 

were to imagine connections between the top and 
bottom row of vertices in figure 4, we would want 
to say that (1, 5) is an alternative name for the red 
vertex, as starting there and increasing the second co-
ordinate four times would return us to the red vertex. 
Thus, the real challenge is to design a naming scheme 
for the infinite trees and operations on those names 
which maximize the colorfulness of the infinite tree.

The fact that the colorings proposed by Lubotzky, 
Phillips, and Sarnak [12] are the best possible at 
preserving the expansion properties of the infinite 
tree relies on a deep result in the representation the-
ory of automorphic forms originally conjectured by 
Ramanujan [14]. However, we can gain some intuition 
as to why their rules result in more colorful trees by 
comparing the operations with other topologies. For 
example, since the operation for the torus topology is 
incrementing/decrementing individual coordinates, 
the end location depends only on the number of 
increments/decrements per coordinate, not the par-
ticular order they are applied. In contrast to this, the 
results of matrix multiplication (in general) rely on 
the order of operations. That is, by applying the same 
set of operations in two different orders, it is possible 
to arrive in different locations. In figure 5 we can see 
the difference in colorfulness in the infinite tree for 
torus topology and the SpectralFly topology.

Structural comparison with SpectralFly 
topology
The SpectralFly topologies promise as supercomput-
ing topology is evidenced by its exceptional struc-
tural properties. We now put these properties in 
perspective, by comparing them against those of two 
well-known topologies: a DragonFly network and a 
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FIGURE 4. In this depiction of the connections between switch-
es for a 336-switch SpectralFly topology with four intra-switch 
connections per switch, the switches are color coded by distance 
from a central switch, highlighting the tree-like neighborhood of 
the switch.

FIGURE 5. In this comparison of an infinite tree for a two-di-
mensional torus topology (left) and a SpectralFly topology with 
parameters (3,7) (right), the vertices of both are colored using 
the same equally spaced gradient. The vertex color corresponds 
to the order the vertices are discovered in the process; earlier 
vertices are colored blue and later vertices are colored red. As we 
can see, the torus topology is significantly less colorful than the 
SpectralFly topology, indicating that the SpectralFly topology has 
significantly better expansion properties.

b. In particular, we generate a DragonFly topology with height h=1, g=24, groups of size a=4. We optimally allocate the intergroup edges 
as suggested by Teh, Wilke, Bergman, and Rumley [15].

torus mesh. We consider a small, sparse SpectralFly 
network on 120 nodes and 240 links. To ensure a fair 
comparison, we optimally selectb the parameters of 
a DragonFly topology on exactly the same number 
of nodes and edges, and a two-dimensional torus 
mesh on 121 nodes and 242 edges. This near-exact 
three-way match enables a size agnostic comparison: 
each network starts with the same number of nodes, 
links, and radix, but makes different design choices 
in assembly. 

The three networks are visualized in figure 6. Each 
row of figure 6 plots the same network, but with 
one of three different structural properties empha-
sized: the tightest bottleneck, the network diameter, 
and link usage frequencies in random traffic. Each 
of these structural properties are fundamental for 
supercomputer design: bottleneckness measures 
congestion proneness, diameter is a proxy for 
worst-case latency, and link usage patterns impact 
link-contention. 

Bottlenecks
The first column of figure 6 presents a split of 
each topology into equal parts which minimizes 
the number of edges crossing (in red), as found by 
METIS software [16]. For SpectralFly, Dragonfly, 
and torus, this yields 40, 31, and 26 links crossing, 

respectively. In practice, this means that when there 
are many messages, we would expect the communi-
cation delays to be about 24% smaller as compared 
to DragonFly, and 35% smaller as compared to 
the torus. 

Diameter
Figure 6’s second column visualizes paths linking a 
source-destination pair furthest from each other in 
the network—the length of which is known as the 
network diameter. The k-th ring of vertices from the 
leftmost contains all those that can be reached from 
that vertex in k hops. Small diameters ensure any 
vertex can be reached quickly from any other. In this 
case, both SpectralFly and DragonFly have an iden-
tical diameter of 6, while the torus has a diameter 
of 10. 

Link loading
We simulate unstructured traffic on each network by 
randomly selecting 5,000 source-destination pairs in 
each network, and then routing via a minimal path. In 
the case that there are multiple such minimal paths, 
we select one at random. For each link in the net-
work, we count the number of times it was traversed. 
Figure 6 presents the distribution of these link usage 
counts. For SpectralFly, this distribution is highly 
symmetric and tightly concentrated, reflecting that 
edges are evenly spread across the network.

FEATURE
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DragonFly, on the other hand, is the opposite 
and has a long tail: some edges are used heavily 
while others are almost never used. Lastly, as with 
SpectralFly, the link usage counts for the torus are 
also tightly concentrated, but overall larger: due to 
the torus’ larger diameter, paths linking vertices tend 
to be longer and edges get used more frequently, 
albeit evenly, across the network. These observations 
are also reflected in the network visualization: each 
edge is colored on a blue-to-red scale, according to its 
percentile within the observed link counts aggregat-
ed across all three networks. Accordingly, SpectralFly 

FIGURE 6. These graph visualizations emphasize different structural properties for three similarly-sized SpectralFly, DragonFly, and 
torus instances, each on about 120 nodes and 240 edges. The first column emphasizes the expansion, the second column emphasizes 
the diameter, and the third column emphasizes the prevalence of edges on shortest paths.

highly structured networks optimized for regular 
and large message communication to networks such 
as SpectralFly that expand and dynamically remove 
bottlenecks, and hence adapt to the irregular and 
unpredictable nature of the workloads. This move 
however would be onto a road less traveled, and as 
such, will require strong evidence that it can effi-
ciently support emerging application domains before 
industry will commit to investing in it. At Pacific 
Northwest National Laboratory, we have developed 
and used several tools, based on MPI and partitioned 
global address space (PGAS), to analyze different 
network designs. The results indicate that SpectralFly 
networks are not only better at supporting irregular 
communication typical in data analytics and AI/ma-
chine learning, but that they might also outperform 
traditional networks when executing regular appli-
cations (unless they heavily rely on near-neighbor 
communication). In other terms, the SpectralFly 
network will let you sip your much deserved, end-of-
the-day coffee at your favorite coffee shop without 
spending hours stuck in the car on the streets of 
Seattle downtown. 

Conclusions and future work
As the workloads executed on current and future HPC 
systems evolve to include nontraditional workloads, 
such as data analytics and artificial intelligence (AI)/
machine learning, so should the systems themselves. 
We argue that HPC systems should move away from 

and the torus’ edges are homogeneous in color; 
whereas, those in Dragonfly run the gamut. 
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