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D a n i e l  J u d a

Two fundamental questions in cybersecurity are what is malicious activity and how do we de-
tect it. These questions are generally answered using one of two paradigms. The first is signa-
ture-based threat detection, where known vulnerabilities are scanned using some form of 

detection software. The second is broadly termed anomaly detection, where analysts simply look 
for anything on the network that is considered atypical. We can distill this process down to asking 
the following: given network traffic during a fixed time period, can we determine if the character 
of the traffic is anomalous relative to some historical norm? Due to the constant change inherent 
in modern networks, establishing a historical norm can be difficult. Moreover, this constant change 
leads to many techniques highlighting behavior that is anomalous, but not actually malicious. 
There is a good deal of literature on these topics, too much to adequately summarize here, so we 
reference only the papers we borrowed techniques from. Our goal is to analyze internal netflow 
data from an enterprise network and identify subtle changes which may indicate malicious activity.

[Photo credit: iStock.com/carloscastilla]
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Intuitively, network flow traffic lends itself to being 
encoded as a graph. This is formalized by Iliofotou, 
et al. in [1], where the authors describe a method 

for analyzing network traffic by considering direct-
ed graphs which they call traffic dispersion graphs 
(TDGs). These are graphs which consist of taking all 
nodes and edges in a network and then removing 
edges using some filtration criteria. We leverage 
this technique to study protocols independently. In 
particular, we look at well-understood protocols and 
analyze the TDG associated to each protocol using a 
well-known graph theoretic connectivity measure.

There are numerous techniques in graph theory 
to measure connectivity and communities. We utilize 
degree assortativity which was first introduced by 
Newman in [2, 3] and has since been used in a variety 
of fields. We use vertex assortativity on TDGs to 
identify days where subnetworks of an enterprise 
network are behaving atypically. We then use clas-
sical techniques from time series analysis to further 
investigate this behavior. The resulting combination 
of techniques provides a new method for analyzing 
network data and tipping of anomalies to cybersecu-
rity threat analysts.

In this article, we first provide the necessary graph 
theory background for our technique, including an 
in-depth discussion of vertex assortativity. Next we 
discuss the necessary network theory background 
for our testing. Subsequent to that, we describe our 
testing and results, and we outline some ideas for us-
ing time series to drill down on detected anomalies. 
In the final section we offer conclusions. Suggestions 
for future directions are interspersed throughout 
the paper. 

Graph theory background
A graph 𝐺 = (𝑉, 𝐸) is a pair of sets, whose elements 
are called vertices and edges respectively, such that

𝑒 ∈ 𝐸 is a two element subset of 𝑉. If 𝐺 is a direct-
ed graph, then edges are ordered pairs rather than 
unordered subsets of 𝑉. For each vertex 𝑣 ∈ 𝑉 we call 
the values

𝑑−(𝑣) = |{𝑒 ∈ 𝐸∣ 𝑒 = (𝑣, 𝑥), 𝑥 ∈ 𝑉}| and
𝑑+(𝑣) = |{𝑒 ∈ 𝐸∣ 𝑒 = (𝑥, 𝑣) ∈ 𝐸, 𝑥 ∈ 𝑉}|

the out-degree and in-degree of 𝑣 respectively. The 
out-degree counts the number of edges originating 
at 𝑣 and the in-degree counts the number of edges 
terminating at 𝑣. For each vertex 𝑣 ∈ 𝑉, the total 
degree of 𝑣 is 𝑑(𝑣) = 𝑑−(𝑣) + 𝑑+(𝑣), the count of 

edges either originating or terminating at 𝑣. When 
𝐺 is an undirected graph we use 𝑑(𝑣) to denote the 
degree of 𝑣. For general background on graphs see, 
for example, [4] for undirected graphs or [5] for 
directed graphs.

For a graph 𝐺 = (𝑉, 𝐸), assortativity or the as-
sortativity coefficient is a measure of the preference 
for the vertices of 𝐺 to connect to other vertices that 
are similar under a chosen measure. The assorta-
tivity coefficient for 𝐺 is a value r ∈ [−1,1]. If 𝐺 has 
𝑟 = −1, then we say 𝐺 is completely disassortative 
and if 𝑟 = 1, then we say 𝐺 is assortative. It was first 
defined by Newman in [2, 3] and has since been 
applied in a wide variety of fields such as biology [6] 
and social networking [7]. An extensive survey of 
assortativity results can be found in [8]. Throughout 
the paper, we will use the various degrees introduced 
above for our measure of similarity.

Let 𝐺 be an undirected graph and 𝑝𝑘 be the prob-
ability that a randomly sampled vertex from 𝐺 has 
degree , that is, 𝑝k =  |{𝑣 ∈ 𝑉 | 𝑑(𝑣) = 𝑘}|. Consider 

the distribution qk ∝ pk+1 given by qk = . This 
weighted distribution associates to 𝑘 the number of 
times a vertex of degree 𝑘 + 1 appears as an endpoint 
of an edge and is referred to as the remaining degree 
distribution. Intuitively, for an endpoint, 𝑣, of an edge, 
𝑒, the remaining degree counts the number of edges 
incident to 𝑣 other than 𝑒 and is given by 𝑑(𝑣) − 1. 
Let 𝑑̅ nd 𝑠 be the sample mean and sample standard 
deviation of the remaining degrees of the vertices. Let 
𝑓: 𝐸 → ℝ be defined as 

where 𝑒 = (𝑣𝑖, 𝑣𝑗). The assortativity coefficient of 𝐺 is 
defined as 

.

The reader who is familiar with statistics will rec-
ognize this as a special case of the Pearson correla-
tion coefficient of the degrees of the endpoints of 
a randomly sampled edge. If 𝑠 = 0, then we define 
𝑟 = 1. This matches our intuition based on the defini-
tion, since if the standard deviation of the degrees is 
zero, then all edges connect to vertices that have the 
same degree.

The local assortativity at 𝑣, defined in [6, 9, 10] 
and denoted 𝜌(𝑣), is the amount 𝑣 contributes 
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to the global assortativity. Given this definition, 
𝑟 = ∑𝑣∈𝑉  𝜌(𝑣). For 𝑣 ∈ 𝑉, we denote by 𝑁(𝑉), the set 
containing 𝑣 and all vertices adjacent to 𝑣 called the 
neighborhood of 𝑣. To compute the local assortativity 
at 𝑣, we consider 𝐻 = (𝑉𝐻 = 𝑁(𝑣), 𝐸𝐻) = 𝐺|𝑁(𝑣), the 
induced subgraph on 𝐺 restricted to the neighbor-
hood of 𝑣. Using the notation above, we have

.

If , that is, the variance of the scaled vertex degree 

distribution is , then we define 𝜌(𝑣) = .

FIGURE 1. Example of a disassortative undirected graph. We 

have 𝑑(𝐴) = 3 and 𝑑(𝐵) = 𝑑(𝐶) = 𝑑(D)= 1. This gives 𝑞0 = 𝑞2 = , 

, , and therefore 𝑟 = 1. 

We also have 𝜌(𝐵) = 𝜌(𝐶) = 𝜌(𝐷) = .

FIGURE 2. Example of an undirected graph. We have 
𝑑(𝐴) = 𝑑(𝐶) = 3, 𝑑(𝐵) = 𝑑(𝐷) = 2, and 𝑑(𝐸) = 𝑑(F) = 𝑑(G)= 1. This 

gives 𝑞0 = 𝑞1 = 𝑞2 = , 𝑑̅ = 1, s2 = 1, and therefore 𝑟 = − .

Let 𝐺 be a directed graph. In [7], the authors 
extend the notion of assortativity to 𝐺 by defining 
four different assortativity coefficients associated to 
𝐺. Recall, for a vertex 𝑣 in 𝐺, we have three notions of 
degree: in-degree, out-degree, and total degree. Also 
recall, that the purpose of assortativity is to measure 
the preference of vertices to connect to vertices that 
are similar. For undirected graphs, we used degree 
(or total degree) to measure similarity. In the case of 
a directed graph, we can choose which type of degree 
we want to use to measure similarity. 

Let 𝑉𝑖 ⊆ 𝑉 be the set of initial vertices and 𝑉𝑡 ⊆ 𝑉 
be the set of terminal vertices. Let  be the prob-
ability that a randomly sampled vertex from 𝑉𝑖 has 
in-degree k, that is,  |{𝑣 ∈ 𝑉𝑖 | 𝑑+(𝑣) = 𝑘}|. 
Notice, if 𝑣 is the initial vertex of an edge 𝑒, then 𝑒 
contributes to the out-degree of 𝑣, not the in-degree. 
Thus we let 𝑑̅𝑖 and 𝑠𝑖 be the sample mean and sam-
ple standard deviation of the in-degree. Thus we let 
𝑑̅i

+ and si
+ be the sample mean and sample standard 

deviation of the in-degree of the initial vertices 
respectively. On the other hand, if 𝑣 is the terminal 
vertex of an edge 𝑒, then 𝑒 does contribute to the 
in-degree of 𝑣. Thus, for the terminal vertices we 
again consider the distribution  given 

by . Let 𝑑̅i
+ and si

+ be the sample 
mean and sample standard deviation of the remain-
ing in-degree of the terminal vertices respectively. 
Let 𝑓+,+: 𝐸 → ℝ be defined as 

where 𝑒 = (𝑣𝑖, 𝑣𝑗). Note, for the terminal vertices we 
account for the edge contributing to the in-degree 
and for the initial vertices, we do not. The in-in vertex 
degree assortativity coefficient of 𝐺 is defined as

.
The reader who is familiar with statistics will again 

recognize this as a special case of the Pearson cor-
relation coefficient of the in-degrees of the endpoints 
of a randomly sampled edge. Similar definitions yield 
the in-out (𝑟+,−), out-in (𝑟−,+), and out-out (𝑟−,−) 
vertex degree assortativities. Suppose that si

* = st
*. 

If 𝑑̅i
* = 𝑑̅t

*, then we set 𝑟*, *= 1. If the sample means 
don’t agree, then we set 𝑟*, * = 1. This again matches 
with our intuition based on the original definition. 
Intuitively, if there is no sample standard deviation 
and the sample means match, we have perfect cor-
relation between initial and terminal vertices. On the 
other hand, if there is no sample standard deviation 
and the sample means don’t match, we have perfect 
anticorrelation between initial and terminal vertices. 
Finally, if only one of si

* and st
* is 0, then we define 

𝑟*, * = 0.

Local assortativity was extended to directed 
graphs and discussed by Piraveenan, et al. in [6, 10]. 
It is once again defined, in each of the four different 
cases of directed assortativity, to be the contribu-
tion a vertex 𝑣 makes to the global value. Thus, for 
example, the local in-in assortativity of a vertex 𝑣 is 

given by ρ+,+ (v)=r+,+ |N(v)= , where 
H=(VH=N(v), EH )=G |N(v) as before. The other notions 
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of directed local assortativity are defined similarly. 
Once again, if si

* = st
*= 0, then we define ρ*,* (v)= 

 when 𝑑̅i
* = 𝑑̅t

* and ρ*,* (v)=  when 𝑑̅i
* ≠ 𝑑̅t

*.

a. Throughout we will be using network layer addresses, that is, IP addresses. It is also reasonable to use physical layer Media Access 
Control (MAC) addresses.

FIGURE 3. Example of a directed graph with in-in  

vertex degree assortativity r+,+= −  We have 
d^+ (C)=0, d+ (B)=d+ (D)=1, d+ (A)=2. For the initial vertices, we 
have Vi={A,C,D},  

and .For the terminal verti-

ces, we have Vi={A,B,D}, qt
0,+ = qt

1,+ = , 𝑑̅+
t =  and s+

t = .

We close this section with some remarks on assor-
tativity. It is generally observed that for large disas-
sortative networks whose degree distribution follows 
a power law, such as an enterprise network or the 
Internet, the assortativity value decreases, that is, 
tends to 0. This is true in both the undirected and di-
rected case. An alternative based on Spearman’s Rho 
was proposed in [11, 12], but it is significantly more 
computationally intensive. We chose to limit the size 
of our graphs so that asymptotic behavior was not a 
concern and to avoid the additional computational 
complexity that is caused by using Spearman’s Rho.

Cybersecurity background
Our goal is to apply graph theory to network flow 
(netflow) data to enable anomaly detection. Netflow 
data consists of metadata associated to transmission 
control protocol/Internet protocol (TCP/IP) connec-
tions. At the most basic level, a TCP/IP connection is 
a series of packets exchanged by the participants. In 
netflow data analysis, packets associated to a single 
communication are often combined into sessions. 
In particular, for our application a TCP/IP session 
between two hosts is a series of communications, 
such as a handshake followed by the transfer of 
desired information.

In order to use the graph theoretic techniques 
developed in the previous section, we need a 

well-defined method for transferring our netflow 
data to a graph. A traffic dispersion graph (TDG) as 
described in [1], is a graph, built from netflow data, 
with edges limited to those meeting some desired 
criteria. Formally, let G represent a set of network 
traffic where each vertex corresponds to an addressa 
and each edge is a connection from a source address 
to a destination address. In particular, the edges 
are directed and G is a directed graph. We define a 
boolean function f:E→{0,1} for determining if an edge 
satisfies the chosen criteria. Our TDG is the subgraph 
H=(V,E(H))⊆G = such that E(H)={ e∈E |ƒ(e)=1}. 
Thus, ƒ functions as a filter for which edges are ad-
mitted to the subgraph H. In our application, we will 
filter the edges based on protocol using the standard 
TCP/IP port addressing scheme. 

As an example, let’s examine a protocol of interest: 
lightweight directory access protocol (LDAP). This 
protocol is a fundamental directory look-up protocol 
within a network used for things such as verifying a 
login name and password before allowing network 
access. In this example, ƒ is defined piecewise as 1 
if an edge represents a connection under the LDAP 
protocol and 0 otherwise. Thus E(H) is the set of all 
edges that are a connection from a source IP address 
to a destination IP address under the LDAP protocol.

Within this protocol, a host (IP address) acts 
as either a server or a client. Typically, there is no 
peer-to-peer communication between clients and 
therefore all traffic on clients should be either to or 
from a server. Servers communicate to each other 
only when there is a need to utilize secondary servers 
due to traffic volume; that is, when a primary serv-
er receives too many access requests to handle, it 
will begin pushing excess access requests over to a 
secondary server. This will appear as “peer-to-peer” 
traffic between servers and may be an indicator of 
either a network malfunction or an attack such as a 
denial-of-service attack. Moreover, this will affect the 
assortativity value which we expect to be close to –1 
in general for this TDG. 

Application to the LDAP protocol
For our application, we consider netflow traffic from 
an enterprise network. Throughout this section, all 
graphs are directed as described in the graph theory 
background discussion. We made several choices 
to limit the amount of data being used to avoid the 
issues previously discussed. We limited our graphs 
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to subnets with the first three IP octets in common 
(commonly referred to as /24 subnets). We generate 
an edge between two hosts when there is a session 
between them, that is, we will not add edges for each 
packet in the session. We also only consider unique 
address pairings; that is, if a host initiates commu-
nication multiple times to the same destination, we 
only allow one edge between them in each direction. 
As an example, consider two IP addresses, A and B. 
We add two vertices A and B to our graph. If A initi-
ates a session with B, then we add an edge (A, B) to 
our graph. If A later initiates another session with B, 
we do not add an edge. On the other hand, if B initi-
ates a session with A, we add an edge (B, A).

FIGURE 4. Example histogram of assortativity values built from 60 days of netflow using the LDAP protocol. Note the potential outliers 
in the [−0.87,–0.88] bin.

Thus our workflow is the following. Fix a 
time-window from which to examine traffic and build 
TDGs, filtering based on LDAP, to represent each of 
several days. For each TDG, compute the directed 
assortativity coefficients. Given the four sets of coeffi-
cients, build a histogram to examine the distribution 
of each coefficient. We then visually isolate dates 
where one or more of the coefficients is anomalous. 
Figure 3 shows an example of a histogram of the in-
out assortativity coefficients for a 60-day window on 
an enterprise network. Note, the values are clustered 
near r= –1 as expected. Two things are immediately 
clear from this histogram. Although our sample is 
small, if we considered the in-out assortativity value 
on a given day to be a random variable, this histo-
gram suggests that the probability density function 
is far from any standard distribution. This makes hy-
pothesis testing to determine if a value is anomalous 
more challenging since we do not have distributional 
information available. Despite this, the histogram 
suggests that there are some reasonable choices for 

outliers, such as the assortativity coefficients which 
fall into the [–0.87,–0.88] bin in the histogram. These 
outliers correspond to particular days. 

Suppose we have identified a potentially anoma-
lous day. We now want to establish a cause for this 
behavior. To do so we consider the local assortativity 
coefficients for each IP address seen in our graph. 
In figure 3 our anomalous day(s) appears to have an 
unusually high in-out assortativity value. Recall, the 
local assortativity coefficient for a particular vertex 
is that vertex’s contribution to the global assortativ-
ity coefficient. Thus we are interested in individual 
vertices, or correspondingly IP addresses, that exhibit 
an unusually high local assortativity coefficient. This 
generates a set of IP addresses of interest for further 
study. These addresses can then be passed to a cyber-
security expert for examination.

A time series approach to analyzing and 
resolving anomalies
A time series is a collection of real-valued observa-
tions, X={x0, … , xN} made sequentially in time. We will 
briefly introduce some ideas in the area of time series 
analysis. For greater detail see, for example, [13]. 
Our goal is to use time series analysis to explain our 
anomalous IP addresses identified in the previous 
section on application to the LDAP protocol. To this 
end, we examine the time series of local assortativity 
coefficients for a particular IP address. We develop 
a time series model that best fits the series. We then 
use this model to forecast or predict the expected 
local assortativity values for the IP address and 
measure how far the predictions are from the corre-
sponding true values.
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Given a time series X={x0, … , xN}, we want to devel-
op a model which can be used to forecast or predict 
series values. For X, the lag correlation coefficient of 
lag k measures how well correlated values that are k  
units of time apart in the time series are. It is given by

Where  is the average value of the time 
series. These values can be plotted in a correlogram 
and are useful for determining a model type that is 
likely to fit the data. Figure 5 shows a plot of a time 
series of the local assortativity coefficients of an indi-
vidual IP address for 100 days and the corresponding 
correlogram. Recall, our goal is to use the time series 
of local assortativity coefficients to explain anom-
alous IP addresses. To do so, we identify a best-fit 
time series model of our data and then consider the 
residual error as a test statistic for quantifying how 
anomalous the behavior of the IP address is.

FIGURE 5. Example time series and correlogram of local assortativity values.

Under suitable assumptions, for a random time se-
ries, the lag correlation coefficients are approximate-
ly normally distributed with mean 0 and variance 
. Thus, in the random case we expect the majority of 
the lag correlation coefficients to fall in the interval 

. The horizontal lines in the correlogram 
of figure 5 are placed to mark this interval. Notice 
that the autocorrelation coefficients initially de-
crease monotonically to r3=0 and ri ≈ 0 for i > 3. This 
suggests that an autogressive (AR) model would be a 
reasonable choice of model. We choose an AR model 
of order three given r3=0, that is, the series value at 
time t, depends linearly on the values at times t−1, 
t−2, t−3. Thus, a framework for our model is given by

xt+3 = α0 xt + α1 xt+1 + α2 xt+2 + ϵ,

where ϵ ∈ ℝ represents some small error value that is 
normally distributed with mean 0. The αi are parame-
ters that are estimated by the method of least squares 
to find the model which gives the best approximation 
of the original time series.
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Once we have found the coefficients for our model, 
we can generate the new series of predicted values 

with the value , corresponding to  in the 
original series. Moreover, we can generate a series 
of residual error values ℰ={ei=  −xi |  i=3, … , N}, 
which we can think of as a series of random variables, 
and consider the empirical probability density func-
tion for ℰ

Under idealized circumstances, that is, we know 
the true values for the and the choice of model is per-
fect, we would have ei = ϵ and therefore ℰ ≈ N(0,σϵ). 
Unfortunately, in practice, the coefficients αi are 
approximations. Thus we have to be careful in how 
we choose to use the ei for hypothesis testing in 
general. Fortunately, if the model is chosen well, then 
in most applications ℰ tends to be approximately 

normal. This fact can be leveraged to apply standard 
hypothesis testing techniques. For example, we can 
use Z-score testing on the empirical distribution of 
the residual errors to find outliers which correspond 
to days when the local assortativity coefficient of the 
IP address is anomalous.

Conclusion
We developed an application of graph theoretic and 
time series analysis techniques to answer questions 
about anomalies in the cybersecurity domain. This 
work can be used to develop a semi-automated work-
flow for monitoring an enterprise network. We in-
troduced some interesting directions for future work 
including using alternative connectivity measures.  
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