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The ubiquity of cyber threats, coupled with the speed and scale at which they can attack 
society’s critical cyber infrastructure has made the protection of these systems a major 
technical challenge. While great strides have been made toward some level of automation to 

aid network defenders, many of the tools are based on brittle signatures, which fail to detect novel 
cyber threats. This combination of circumstances has driven a small-but-growing body of research 
and development around the application of artificial intelligence (AI) and machine learning (ML) 
tools to the detection of malicious behavior in real time. 

There are numerous practical and engineering challenges in fully bringing AI to bear on the cyber 
threat hunting problem. At the heart of these challenges is the incompatibility between the need for 
a detailed view of network state as captured by sensors, and the bandwidth constraints associated 
with moving such massive data volumes to a centralized repository for AI model training. The 
federated learning paradigm, wherein models are trained in a distributed fashion without the need 
for data aggregation, presents a potential strategy for training ML models for cybersecurity. In this 
article, we describe a federated ML paradigm that is consistent with the detection of malicious cyber 
activity in near real time, test on a benchmark dataset, and conduct an analysis of the practical 
implications for deploying such a model on a real network.
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Background
The difficulty of cybersecurity lies in the asymmetric 
advantages the adversary holds. Indeed, defenders 
must protect all assets against all their possible vul-
nerabilities; whereas, an attacker need only exploit a 
single vulnerability to gain access on a network and 
set into motion a multistage cyberattack. Armed with 
a seemingly unlimited number of tools, advanced 
persistent threats (APTs) are highly sophisticated and 
motivated, enabling them to relentlessly target our 
most sensitive networks, including those that support 
critical infrastructure. 

APT-style attacks are rarely composed of a single 
action; rather, they typically contain numerous events 
which constitute multiple stages of an attack. The 
progression of these stages is often modeled by on-
tologies such as Lockheed Martin’s Cyber Kill Chain, 
which tracks and organizes detectable behaviors 
from individual log events or collections thereof [1, 
2]. The subtlety of attacker behaviors, especially from 
sophisticated actors, makes detection difficult, with 
discovery often only happening after the goals of the 
attack have been accomplished. 

It is worth mentioning that this is not an abstract 
problem. Digital systems underpin nearly all aspects 
of modern societies, including economic institutions, 
critical infrastructure, and even democracy itself. 
From a commercial standpoint, malicious cyber ac-
tors are motivated by economic espionage, especially 
the theft of intellectual property, which by some es-
timates can cost a company billions of dollars in rev-
enue losses alone [3]. For democracies, cyberattacks 
could disrupt elections and erode public confidence 
in democratic institutions. As such, robust measures 
to secure cyber systems are critical components of 
safeguarding societal stability, economic resilience, 
and national security.

Intrusion detection systems
The evidence of attacks on an enterprise network can 
be captured by a high number of disparate sensors, 
logging network traffic, cloud telemetry, end point 
activity, etc. As such, development of automated ap-
proaches to intrusion detection have been an area of 
interest at least since the late 1980’s [20]. These in-
trusion detection systems (IDS) have historically re-
lied heavily on signature-based rules, which describe 
a known malicious activity that, upon matching an 

observed behavior, alert a human defender to inves-
tigate. These rules include byte patterns in network 
traffic packets or attribute patterns in host logs [4, 5].

However, as these rules can only describe known 
malicious behavior, APTs can easily defeat these sig-
natures. For example, if a signature includes a specific 
rule involving a byte pattern in network packets, the 
adversary can simply fragment packets or otherwise 
change the contents of packets to defeat the rule and 
still perpetrate the attack. As such, these signatures 
must be constantly updated in an at least partially 
manual process that often consumes more time than 
the adversary needs to implement a countermeasure. 
Further in the adversary’s favor is the wide availabil-
ity of such rules to exploit in order to misdirect de-
fenders or otherwise obfuscate their attacks; indeed, 
by overloading defenders with alerts, they can make 
it extremely difficult for defenders to decide what to 
focus on. All told, these drawbacks are driving a body 
of work to apply ML to create more flexible iterations 
of IDS.

Given the extremely high degree of variance of 
normal user activity, these models must be trained 
on data which sufficiently captures the network’s 
baseline, and this can only be done when data is 
sampled at a high rate across the assortment of sen-
sors. Contrary to centralized ML paradigms, the data 
volumes and bandwidth constraints of an enterprise 
network prohibit the ingestion of sufficient amounts 
of data to a single compute server. These unique 
constraints suggest that federated learning may be a 
potential paradigm for training autonomous threat 
hunting tools. More specifically, such approaches sup-
port the training of ML models on multiple compute 
nodes, each with their own training data (potentially 
drawn from different distributions) that feed a global 
model that can be deployed at the edge for inference.

It should be noted that, given the evolving nature 
of cyber threats and the high degree of variance of 
normal activities between different networks, the 
availability of a labeled dataset would not be condu-
cive to the task at hand. Thus, it is far more effective 
to train these ML models in unsupervised fashion, as 
anomaly detectors, rather than as explicit malicious 
behavior classifiers. Algorithms such as clustering, 
isolation forests, and autoencoders are well suited for 
anomaly detection and are integrated in widely used 
software packages, making them easy for researchers 
and cybersecurity analysts to use.
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Neural network approaches for intrusion 
detection
In the approach we outline below, we appeal to an au-
toencoder (AE), which is a neural network that is de-
signed to be an identity function on the input space, 
and is composed of two functions: an encoder and a 
decoder [6]. More specifically, the training process of 
an autoencoder ƒ =  g ∘ h results in a nonlinear encod-
er h: ℝn→ℝm and decoder g: ℝm→ℝn functions, where 
m ≪ n and the objective function is mean squared 
error loss with respect to the standard Euclidean dis-
tance between input and output: ‖x − ƒ (x)‖2. We note 
that this choice of relative dimension sizes results in 
what is called an “undercomplete autoencoder” and 
is, in effect, a nonlinear analogue principal compo-
nent analysis [6]. By construction, (undercomplete) 
AEs learn salient information about the training data, 
with the compression/reconstruction process failing 
on outliers or other data drawn from distributions 
vastly different from that of the training set. This 
property allows an AE to indicate when a given da-
tum was drawn from a novel distribution, making the 
architecture ideal for anomaly detection [7, 8].

The choice of a neural network as a proposed 
architecture for detecting malicious cyber activity 

FIGURE 1. Federated learning is a machine learning setting where multiple entities (i.e., local servers) collaborate to train a model, un-
der the management of a central parameter server. Each client’s raw data is stored locally and is not exchanged or transferred; instead, 
local servers complete some number of training steps on the model, and their feedback is aggregated by the central server that serves 
an updated model for either further training by the local servers or deployment.

has been studied in the literature, and shows prom-
ise as a more flexible alternative approach from 
traditional signature-based detection schemes [9, 
10]. While cyber telemetry logs largely contain 
categorical data points, there are techniques such 
as log2vec that can transform these logs into nu-
merical data points that are ingestible by neural 
network architectures [9, 11, 12].

Our prior work demonstrates that the numer-
ic representations of cyber logs can be learned in 
tandem with detection tasks [12]. Here, our NLP-
inspired approach to anomaly detection requires us 
to embed our preprocessed records into a semanti-
cally relevant vector space, which is the input to an 
AE-based anomaly detector at inference. We tested 
this technique on the Operationally Transparent 
Cyber (OpTC) dataset created by Defense Advanced 
Research Projects Agency (DARPA) [17, 18], which 
consists of network and host logging collected from 
a network of hundreds of Windows hosts over a one-
week period. The activity represents both normal 
(benign) user activity, as well as logging from an 
APT-inspired red team attack over the course of three 
days, during which numerous machines were under 
different phases of a multi-staged attack. Our tech-
nique was able to detect high volumes of anomalous 
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activities during the red team attack, and very low 
volumes of anomalies when there were no attacks.

A federated-learning paradigm for 
intrusion detection
Federated learning (FL) is a relatively new concept 
in the field of AI/ML that involves training a model 
across multiple devices, which are often called nodes 
or learners. Each node trains the model separately 
on its own data and shares model information with 
a central server [13]. This central server then aggre-
gates the contributions of the participating nodes to 
produce a model, which is shared back to the nodes 
for further training or inference. There are several 
flavors of training archetypes (e.g., synchronous and 
asynchronous) and aggregation techniques which 
are covered in the literature. For our purposes, we 
assume that the model in question is some kind of 
neural network and that a single training step of the 
model is as follows:

1.    The central server transmits the most current 
model to each of the local servers.

2.    Each local server feeds a portion of its local 
data through the model and computes the gra-
dients of the mutually agreed upon objective 
function and transmits these gradients back to 
the central server.

3.    The central server aggregates the gradi-
ents from the local servers and performs a 
model update.

Federated ML presents a viable solution by dis-
tributing the learning process to the network’s edge, 
where the data is generated. This paradigm balances 
the need for models to be trained on realistic, live 
data with the practical constraints presented in 
cybersecurity [13, 14]. Rather than transmitting raw 
data to a centralized server, federated learners utilize 
local computation and collaboration among net-
worked devices to train AI models. This decentralized 
approach significantly reduces the need for trans-
ferring large amounts of data across the network, 
alleviating bandwidth constraints and minimizing 
latency issues. 

Another consideration is the false positive prob-
lem. Indeed, if AI/ML is to be a force multiplier in 
cybersecurity, any solution must be careful not to 
produce more false positives than a human analyst 
can adjudicate. In fact, a major problem with current 

systems is that the number of alerts defenders must 
sift through are unmanageable. If AI/ML solutions 
are to attain wide adoption, they must add analytic 
value rather than generate unhelpful alerts. In a FL 
paradigm, training on a wider variety of data facili-
tates better approximation of the true distribution of 
the “data in the wild.” However, in a FL paradigm, the 
nonuniform occurrence of certain data points across 
the unified training set allows federated models to 
still learn salient information about these points, and 
to pass those insights on to a deployed model.

To see the importance of such a consideration in 
cybersecurity, note that normal activities vary widely 
across users; for example, certain users have a higher 
propensity to run programs like Microsoft Excel than 
others. This means that, for an ML model trained on 
host-based logs, if a user who rarely launches Excel 
simply does so, the model would mark the behav-
ior as anomalous. However, simply launching Excel 
is hardly indicative of a cyberattack. Hence, in a FL 
paradigm, it is possible to aggregate the vast num-
ber of normal activities within a model, in a manner 
that is reminiscent of balancing the “bias-variance 
trade-off” [15].

Given these strengths, we propose that an FL 
paradigm could be employed in protection of an 
enterprise computer network to discover potential-
ly malicious activity in a way that is both robust to 
evolving cyber threats and capable of alleviating alert 
fatigue that exists due to current rules-based IDS. 

Early after its inception, a key selling point for 
federated models was their purported ability to keep 
local data private [13, 14]. As cyber systems often 
contain sensitive information such as personally 
identifiable information (PII), proprietary informa-
tion/intellectual property, or any information that 
could cause harm if released in the public domain, 
one could imagine that FL techniques could be 
employed across organizations to produce commu-
nity-driven AI/ML models for cybersecurity, without 
risking the disclosure of the sensitive information 
associated with those systems. 

However, as noted in the literature, such priva-
cy claims have been grossly overblown [15, 16]. 
Indeed, ML model updates can leak several varieties 
of information to even casually motivated attackers. 
More specifically, attackers can infer properties of the 
training data or even reconstruct specific training ex-
amples. While the amount of work required to extract 
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this sort of information from ML models can be quite 
expensive, the economics of cybersecurity make it 
so that the information to be extracted is worth the 
resources. Absent advances in techniques such as ho-
momorphic encryption, we believe that the technolo-
gy is not sufficiently able to mitigate the risks associ-
ated with cross-organizational federated learners.

Our approach
We implement a FL paradigm across five different 
servers, each of which stand in for a single host on 
an enterprise network. Each server contains data 
from exactly one host in our dataset, and no data is 
shared across servers. Using Tensorflow’s distrib-
uted MultiWorkerMirrored strategy, we instantiate 
a common model across five g4dn.8xlarge AWS EC2 
instances, with one of the workers also playing the 
role of the global server for aggregating gradients and 
serving model updates.

The precise model architecture is an implementa-
tion that is similar to that of our previous work [12]. 
The input is a log record corresponding to single net-
work or host activity on a computer (e.g., opening a 
network flow, editing a registry key, etc). Each record 
consists of 27 fields (e.g., user name, IP address, path, 
registry key, etc.), each of which can take on any of a 
variety of values, which we shall call “words.” Each 
of the 27 words yi of the record is fed into an embed-
ding layer to obtain a vector representation of each in 
ℝ8. The 27 eight-dimensional word embeddings are 
then concatenated into a 216-dimensional vector V, 
which corresponds to the embedding of the record. 
The record embedding is fed into an AE with a single 
hidden layer mapping the record into ℝ8 and back to 
ℝ216. This reconstruction of the record embedding, 
V̂ is the first output of the model. We then break V ̂ 
back into its 27 component vectors, each of which is 
fed into a common dense layer to effectively compute 
word-by-word probability distributions across the 
entire vocabulary space (ŷi). The objective for the 
neural network is a two-term loss function, which 
balances the ability of the network to reconstruct 
the record embeddings with its ability to predict the 
component words that constructed the record from 
the reconstructed embedding. More succinctly, the 

record-level loss is Loss =   CEL(ŷi ,yi )  +  α‖V−V ̂ ‖, 
where CEL is Tensorflow’s sparse categorical cross 
entropy loss from logits and α is a regularization term 
to keep the reconstruction loss of the internal AE 

roughly on par with the CEL term. We experimented 
with different values and settled on α =  100 for this 
task, which puts the two loss terms on roughly equal 
magnitude. Note that this is different from our previ-
ous work, where we used α =  5 for data drawn from 
single hosts.

Results from our previous work demonstrate that 
the model is both effective at learning semantically 
relevant representations for the words in the records 
as well as providing a useful anomaly detection 
scheme on cybersecurity logs. Our goal here is to 
demonstrate how such a model could be employed 
in federated fashion to learn on an even larger scale 
than previously demonstrated, and to demonstrate 
that such models remain effective at the downstream 
task of detecting malicious cyber activity in the 
OpTC dataset.

OpTC dataset
As in our previous work, we appeal to the OpTC 
dataset. As mentioned above, these data consist of 
network and host logging collected from a network of 
hundreds of Windows hosts over a one-week period, 
representing normal (i.e., benign) user activity [17, 
18]. Over a three-day period within this week, a set 
of red team actors also worked to perform various 
penetration tests against the network, seeking to 
infiltrate the network, ensure persistence, and carry 
out increasingly complex attacks over time. As the 
data contains logs from hosts that were and were not 
attacked by the red team, and each host that was at-
tacked was only attacked during a proper subperiod 
of the three-day attack, this data constitutes a strong 
benchmark for intrusion detection techniques.

Specifically, we used the ECAR collection (so 
named as its format is an extension of the Mitre 
Cyber Analytics Repository, or CAR, data format), 
which consisted of combined network and host 
metadata logging drawn from Sysmon, Procmon, and 
other sensors [19]. While each record contained only 
a handful of fields, 58 unique fields were present 
across the entirety of the raw data, including the net-
work five tuple (source and destination IPs/ports and 
protocol), image and module paths, and usernames. 
To prepare the data for use in our experiments, we 
applied a very-light handed preprocessing approach 
to the logs from five hosts, namely sysclient 0201-
0205 to create a vocabulary consisting of terms that 
were tokenized. We chose to follow the exact same 
preprocessing pipeline, except where noted below. 
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These steps resulted in a vocabulary size of 10,667 
words across the training and test corpora:

1.    Dropping unnecessary features: Of the 58 keys 
in the ECAR file, only 27 were kept for process-
ing. The remaining fields were determined to 
be insufficiently relevant to our chosen task/
approach and were dropped.

2.    Feature prefixing: Some terms may have specific 
meanings depending on which feature they are 
associated with. For example, the number 443 
has a specific meaning in the “dest port” field, 
but that meaning would not be preserved in 
other fields. To ensure that these meanings are 
respected, values of select features were pre-
fixed with their feature name (e.g., “443” would 
be mapped to the term ”PORT_443” when it is 
found in the “dest port” field).

3.    Connection time bucketing: Network activity 
records contain start and end times for the con-
nection; to discretize these values, connection 
durations were calculated and bucketed into 
SMALL, MEDIUM, and LARGE buckets based 
on manual inspection of the distribution of 
connection durations.

4.    Path/file name extraction: File paths and reg-
istry keys can contain machine-specific sets of 
directories, even when considering a common 
item (e.g., “xyz.dll” might be found in different 
directory locations on separate machines, even 
though the underlying file is the same). To 
correct for this, such paths are reduced to only 
the file name. Similarly, when parsing com-
mand line input, only the name of the executed 
program is maintained (i.e., the full path and 
any arguments are dropped).

5.    /24 CIDR subnet extraction: IPv4 addresses 
were, in many cases, too sparse across the 
dataset to be well-represented, so we opted to 
remove the last octet from each address and 
only use the /24 subnet. While this did reduce 
the resolution of the representation of our 
addresses, we gained additional robustness by 
aggregating rare terms into a smaller number 
of representations.

6.    Ephemeral port aggregation: Ports used for 
outgoing network traffic are typically arbi-
trarily chosen from the high end (i.e., great-
er than 49151) of the range of valid ports. 
These choices carry no real meaning, and 
needlessly expand the vocabulary space, and 

so such ports were replaced with a generic 
”EPHEMERAL_PORT” token.

7.    Removal of rare terms: After performing the 
above tokenization, terms that appeared fewer 
than 10 times (determined by examination of 
the distribution of term frequencies) over our 
training corpus were discarded and replaced 
with a generic ”OBSCURE_TERM” token.

8.    Conversion to vocabulary indices: All remain-
ing vocabulary tokens were indexed, and each 
token was replaced with its index. Empty 
fields (e.g., file path fields are empty for net-
work traffic events) were replaced with a 
”NULL_TERM” token.

With the vocabulary determined, we needed 
to select a training corpus for the neural network 
model described above. Our goals were primarily to 
measure the efficacy of the model in detecting red 
team activity, and to assess the model’s ability to 
generalize to normal activities rarely-or-never seen 
by the model. To accomplish this, we chose to train 
on sysclient 0203, sysclient 0204, and sysclient 0205. 
The choice of these three hosts is primarily motivated 
by the fact they had the largest volumes across the 
five hosts, at roughly 24 million records each (the 
other two hosts had roughly 10 million fewer records 
available). Given the data volumes, we restricted 
the training set to only include the three-day period 
preceding the red team events. Test data constituted 
the three-day period corresponding to the red team 
exercise, during which sysclient 0201, sysclient 0203, 
and sysclient 0205 were attacked. Sysclient 0202 and 
sysclient 0204 contain no red team activity, and we 
include model inference results from these hosts for 
comparison. In sum, our test set included roughly 45 
million records across the five hosts.

We also note that, due to restrictions in 
Tensorflow’s MultiWorkerMirrored distributed 
learning strategy, we had to ensure that every node 
had precisely the same batch size and same number 
of batches. We chose to limit the number of records 
from each node in the training set to be precisely 24 
million records. 

Neural network training paradigm
We do wish to note one key difference in the train-
ing paradigm between this and our previous works. 
Previously, we constructed a custom Tensorflow 
training loop within Python, wherein we selected 
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batches based on the inverse weight of the occur-
rence of terms appearing in the corpus. The intention 
behind that choice was to ensure that the embed-
dings of rarely occurring terms were given sufficient 
opportunity to converge, while not overfitting the 
overall model to frequently occurring terms. This 
custom training loop did come at the expense of 
speed; however, when we attempted to implement 
the same approach using Tensorflow’s distributed 
MultiWorkerMirrored strategy, the latency associated 

with model update sharing made the federated train-
ing process prohibitively slow. To circumvent this 
issue, we reworked the training process, and trained 
the FL models with model.fit() using batch sizes of 
512 across each of the compute nodes. While we did 
notice a significant slowdown in training time (as 
compared training with model.fit() on a single work-
er), the overall speed was still reasonable.

On a related noted, our selection of EC2 hardware 
was the result of some early experiments, wherein 

FIGURE 2. Each compute node conducts a training step on a replica of this model, which is described in the text. The total number of 
trainable parameters is 185,189, of which 85,416 are for vocabulary embeddings. The remaining 100,000 parameters are spread across 
the encoder, decoder, and word extractor layers, the last of which constituted 96,093. Thus, the model puts a strong emphasis on 
producing effective vocabulary that are informed by the semantic relationships within the data.
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we tested this methodology on two g3.xlarge servers 
and found the training process to be too slow. We 
expect that this was due to the rather low network 
performance of these instances (i.e., up to 10 gigabits 
per second) and opted instead for the g4dn.8xlarge, 
which provided a guaranteed 50 gigabits per sec-
ond. The training process here appeared to be much 
faster, but was still slower than that observed in the 
nondistributed case.

Results
Our testing methodology reflects our previous work, 
so that the FL model may be compared to the indi-
vidual models trained on each of the hosts we ex-
amined. This methodology is consistent with using 
these types of utilities to alert administrators at times 
when network and host logs are exhibiting anom-
alous behavior, and to provide prioritized lists of 
anomalies for investigation/action in an operational 

FIGURE 3. These word embed-
dings show tight clusters around 
many different types of file types 
that appear commonly across the 
dataset (e.g., Microsoft Office 
files in blue). Note these are a 
t-distributed stochastic neighbor 
embedding (TSNE) of the original 
eight-dimensional vectors down 
to two dimensions. 

environment. In cybersecurity use cases, overall 
accuracy is not a useful measure for our performance, 
as we have a large class imbalance (i.e., less than one 
percent of our test data is labeled as anomalous). Our 
goal is not necessarily to correctly classify all of our 
malicious traffic as anomalous, as some of that traffic 
may be only incidentally labeled as malicious due to 
its association with a red team process. Instead, we 
choose to provide two main results that address the 
above use cases: a qualitative view of changes in the 
network’s cross-entropy loss over time, and measure-
ments of precision using various error levels as clas-
sification thresholds. We feel that these results best 
promote our goal of allowing administrative users to 
know when an attack is taking place, while also pro-
viding a manageable number of true positives, with a 
high degree of certainty (i.e., high precision).

In terms of assessing the detection efficacy of 
the model, we compute an anomaly score s for 
each record, which as in our previous work is 
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s =   CEL(ŷi, yi) , as a measure of how well the model 
reconstructs the input data. In the ideal, the model 
should be able to reconstruct benign data with higher 
fidelity than data associated to red team events. 

Overall, the results of these measures indicate 
that the model is capable of distinguishing benign 
activities from red team events. Additionally, figure 
3 shows the learned embeddings for the vocabulary 
do result in semantically consistent embeddings. 
That is, key categories of vocabulary words (e.g., 
registry keys/values, mum/cat files) and Microsoft 
office files constitute rough clusters in the embed-
ding space. The specific categories we selected were 
either constituting a particular file type from the “file 
path” field (e.g., “.pyc” files or “.dll” files), or types of 
vocabulary words from different fields that almost 
always appear together (e.g., registry keys and reg-
istry values). While this is merely a heuristic, we can 
clearly see that along these categories, clusters do 
emerge among like points. For example, registry keys 
and values are generally embedded near other reg-
istry keys, and values and are generally further away 
from embeddings of words in other categories. While 
not perfect, the training paradigm clearly generates 
meaningful embeddings based on the contexts in 
which they appear, similar to the nonfederated model 
featured in our previous work [12].

Results for sysclient 0203-0205
While the model was trained on data from these 
hosts, the model had no access to the red team activ-
ities performed on sysclient 0203 and sysclient 0205 
during training. Since 0204 is an unattacked host 
with its data in the training corpus, we consider this 
to be our “control” host. Overall, the federated model 
is able to distinguish between benign activities from 
red team activities on 0203 and 0205 and generalizes 
well to the test set on 0204. 

As seen in figure 4 (page 34), the anomaly score 
distributions for benign and red team activities on 
both attacked hosts are such that there is a clear 
separation between a large portion of the malicious 
activity, and the majority of the remaining activity. 
The scores for sysclient 0204 are similar to the be-
nign scores of the other two hosts.

based anomaly detection system. To that end, we 
gather our test data into 60-minute buckets, calcu-
late the percentage of records in each bucket over 
the 99.9th percentile of a random sample of benign 
data from the given host during the training period 
and display the resulting time series in figure 6 (page 
36). Generally speaking, anomaly scores are within 
the expected levels outside the attacks on sysclient 
0203 and sysclient 0205 and remain at consistently 
elevated levels during the times each were attacked. 
There were some exceptions, however. The spikes 
in our metrics at t=1500 and t=2880 are correlated 
with large spikes in the volume of WMI (Windows 
Management Instrumentation) activity on each host. 
These spikes are consistent with our previous work 
and we, also as before, have elected to treat these 
spikes as nonmalicious anomalies. There are some 
red team events that appear at t=1000, which did not 
appear in our previous work. This is most likely due 
to an update in the labeling procedure we employed. 
That the anomaly scores do not spike around this 
time is not surprising given the fact that there are 
only around 100 red team events in total.

For sysclient 0204, anomaly scores appear to be 
within expectations and in this SOC scenario, no 
alerts would be generated. Again, this is exactly what 
one would want to happen, since the red team did not 
attack this host.

Results for sysclient 0201 and 0202
This is a challenging scenario for the model. Recall 
that the training data for the model included no 
records from sysclient 0201 nor sysclient 0202, and 
were chosen because 0201 contained activities from 
the red team constituting multiple stages of an attack 
and 0202 did not.

As we see in figure 7 (page 37), the results for 
sysclient 0201 are decent, especially given that the 
training of the FL model had not seen data from this 
host during training. Here the separation between 
the anomaly score distributions by class are not as 
clear, indicating that either there were high volumes 
of benign activities which were different enough from 
the training data that they were difficult to recon-
struct, or high volumes of the red team activities 
were too similar to training data. This also means 
that precision and recall for a naive classifier using 
the anomaly score as a threshold had significantly 
degraded performance. However, using the scores 

Emulating deployment of this model in a Security 
Operations Center (SOC), we opted for a temporally 
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FIGURE 4. These histo-
grams of anomaly score 
by class (benign and 
red team) on sysclient 
0203 (top) sysclient 
0204 (middle) and 
sysclient 0205 (bottom) 
show a clear separation 
between a large portion 
of the malicious activity, 
and the majority of the 
remaining activity. The 
scores for sysclient 0204 
are similar to the benign 
scores of the other 
two hosts.
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FIGURE 5. For 
these precision and 
recall curves for 
sysclient 0203 (top) 
and sysclient 0205 
(bottom), we used a 
threshold to create a 
naïve classifier on the 
test data. For each 
quantile, q, between 
the 95th and 100th 
percentile of our test 
loss distribution, we 
classify every record 
with a loss above q as 
being anomalous.

as a temporal anomaly detection scheme, we see 
that the model does generalize somewhat. Anomaly 
score spikes early on match the high volumes of red 
team activities. Spikes around t= 1500 and t= 2880 
are consistent with sysclients 0203-0205, and lend 
further credence to the notion that these are benign, 
but anomalous events.

The results for sysclient 0202 are strong. The 
anomaly score distribution is very similar to the 
benign activities of the other hosts. Additionally, 
these scores remain within expectations in the 
temporal-based anomaly detection scenario. All told, 
this very clearly demonstrates that the FL model 
generalizes well.

Discussion
While we do not perfectly mirror our results from 
the previous work on sysclient 0201-0204, we do 
demonstrate that such a FL paradigm has the poten-
tial to aid in real-time cyber threat hunting. The re-
sults for sysclient 0201 do highlight the need for the 
training data FL model to be sufficiently close to data 
in the wild. The degradation in performance as com-
pared to our previous work is most likely due to the 
model having not seen enough data that is similar to 
the data that characterizes normal activities on 0201. 

Another key component of transitioning such a 
technique to practice is determining the appropriate 
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FIGURE 6. In this comparison of the 
amount of red team activity in a given 
60-minute bucket, and the amount of 
activity over the 99.5th percentile of 
the error distribution for the training 
data on the associated host,the dashed 
line is set at the average expected level 
of the graph, 0.5 percent. This figure 
includes two attacked hosts, sysclient 
0203 (top) and sysclient 0205 (bottom), 
as well as the unattacked host, sysclient 
0204 (middle).
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FIGURE 7. In these results 
for sysclient 0201, the sepa-
ration between the anomaly 
score distributions by class 
are not as clear; however, us-
ing the scores as a temporal 
anomaly detection scheme, 
we see that the model 
does generalize somewhat. 
Anomaly score spikes early 
on match the high volumes 
of red team activities.
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FIGURE 8. Results for syscli-
ent 0202 shows the anomaly 
score distribution is very 
similar to the benign activities 
of the other hosts.

hyper parameters. In our experiments, we set many 
of the hyperparameters to be consistent with our 
previous work. We do so in order to enable an ap-
ples-to-apples comparison of our works. In practice, 
one should expect the depth of the network, the size 
of the code layer, and even the dimensions of the 
vocabulary embeddings to scale with the complexity 
of the underlying data. In the case of training an FL 
model on orders of magnitude more hosts than ours, 
we advise to perform an ablation study.

Future work
The clearest future work would be to attempt to scale 
this FL paradigm to even more hosts on OpTC. Such 
an endeavor would be extremely informative for 
those wishing to employ scalable AI/ML-enhanced 
cybersecurity analytics in an SOC. Future work also 
includes a deeper exploration finding suitable hard-
ware and software that can bring the speed of train-
ing a FL model on par with a non-FL one (especially 
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for the scalability concerns). The tensorflow distrib-
uted learning module includes support for a strategy 
that is optimized for tensor processing units (TPUs). 
Testing out this concept on such architecture would 
be an interesting endeavor. 

As we have alluded, privacy-preserving method-
ologies, if perfected, could enable cross-organiza-
tional model training and collaboration for enhanced 
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