
Article title goes here unless article begins on this page. If article begins on this page, override rules and text using Ctrl + Shift.

24

A Federated Machine-Learning
Paradigm for Scalable Cyber
Threat Detection
J o h n A . E m a n u e l l o a n d A n d r e w G o l c z y n s k i

practicalpractical
cybercyber

The ubiquity of cyber threats, coupled with the speed and scale at which they can attack
society’s critical cyber infrastructure has made the protection of these systems a major
technical challenge. While great strides have been made toward some level of automation to

aid network defenders, many of the tools are based on brittle signatures, which fail to detect novel
cyber threats. This combination of circumstances has driven a small-but-growing body of research
and development around the application of artificial intelligence (AI) and machine learning (ML)
tools to the detection of malicious behavior in real time.

There are numerous practical and engineering challenges in fully bringing AI to bear on the cyber
threat hunting problem. At the heart of these challenges is the incompatibility between the need for
a detailed view of network state as captured by sensors, and the bandwidth constraints associated
with moving such massive data volumes to a centralized repository for AI model training. The
federated learning paradigm, wherein models are trained in a distributed fashion without the need
for data aggregation, presents a potential strategy for training ML models for cybersecurity. In this
article, we describe a federated ML paradigm that is consistent with the detection of malicious cyber
activity in near real time, test on a benchmark dataset, and conduct an analysis of the practical
implications for deploying such a model on a real network.

FEATURE
[Photo credit: iStock.com/NicoElNino]

 The Next Wave | Vol. 25 No. 1 | 2024 | 25

practicalpractical
cybercyber

26

A Federated Machine-Learning Paradigm for Scalable Cyber Threat Detection

Background
The difficulty of cybersecurity lies in the asymmetric
advantages the adversary holds. Indeed, defenders
must protect all assets against all their possible vul-
nerabilities; whereas, an attacker need only exploit a
single vulnerability to gain access on a network and
set into motion a multistage cyberattack. Armed with
a seemingly unlimited number of tools, advanced
persistent threats (APTs) are highly sophisticated and
motivated, enabling them to relentlessly target our
most sensitive networks, including those that support
critical infrastructure.

APT-style attacks are rarely composed of a single
action; rather, they typically contain numerous events
which constitute multiple stages of an attack. The
progression of these stages is often modeled by on-
tologies such as Lockheed Martin’s Cyber Kill Chain,
which tracks and organizes detectable behaviors
from individual log events or collections thereof [1,
2]. The subtlety of attacker behaviors, especially from
sophisticated actors, makes detection difficult, with
discovery often only happening after the goals of the
attack have been accomplished.

It is worth mentioning that this is not an abstract
problem. Digital systems underpin nearly all aspects
of modern societies, including economic institutions,
critical infrastructure, and even democracy itself.
From a commercial standpoint, malicious cyber ac-
tors are motivated by economic espionage, especially
the theft of intellectual property, which by some es-
timates can cost a company billions of dollars in rev-
enue losses alone [3]. For democracies, cyberattacks
could disrupt elections and erode public confidence
in democratic institutions. As such, robust measures
to secure cyber systems are critical components of
safeguarding societal stability, economic resilience,
and national security.

Intrusion detection systems
The evidence of attacks on an enterprise network can
be captured by a high number of disparate sensors,
logging network traffic, cloud telemetry, end point
activity, etc. As such, development of automated ap-
proaches to intrusion detection have been an area of
interest at least since the late 1980’s [20]. These in-
trusion detection systems (IDS) have historically re-
lied heavily on signature-based rules, which describe
a known malicious activity that, upon matching an

observed behavior, alert a human defender to inves-
tigate. These rules include byte patterns in network
traffic packets or attribute patterns in host logs [4, 5].

However, as these rules can only describe known
malicious behavior, APTs can easily defeat these sig-
natures. For example, if a signature includes a specific
rule involving a byte pattern in network packets, the
adversary can simply fragment packets or otherwise
change the contents of packets to defeat the rule and
still perpetrate the attack. As such, these signatures
must be constantly updated in an at least partially
manual process that often consumes more time than
the adversary needs to implement a countermeasure.
Further in the adversary’s favor is the wide availabil-
ity of such rules to exploit in order to misdirect de-
fenders or otherwise obfuscate their attacks; indeed,
by overloading defenders with alerts, they can make
it extremely difficult for defenders to decide what to
focus on. All told, these drawbacks are driving a body
of work to apply ML to create more flexible iterations
of IDS.

Given the extremely high degree of variance of
normal user activity, these models must be trained
on data which sufficiently captures the network’s
baseline, and this can only be done when data is
sampled at a high rate across the assortment of sen-
sors. Contrary to centralized ML paradigms, the data
volumes and bandwidth constraints of an enterprise
network prohibit the ingestion of sufficient amounts
of data to a single compute server. These unique
constraints suggest that federated learning may be a
potential paradigm for training autonomous threat
hunting tools. More specifically, such approaches sup-
port the training of ML models on multiple compute
nodes, each with their own training data (potentially
drawn from different distributions) that feed a global
model that can be deployed at the edge for inference.

It should be noted that, given the evolving nature
of cyber threats and the high degree of variance of
normal activities between different networks, the
availability of a labeled dataset would not be condu-
cive to the task at hand. Thus, it is far more effective
to train these ML models in unsupervised fashion, as
anomaly detectors, rather than as explicit malicious
behavior classifiers. Algorithms such as clustering,
isolation forests, and autoencoders are well suited for
anomaly detection and are integrated in widely used
software packages, making them easy for researchers
and cybersecurity analysts to use.

 The Next Wave | Vol. 25 No. 1 | 2024 | 27

Neural network approaches for intrusion
detection
In the approach we outline below, we appeal to an au-
toencoder (AE), which is a neural network that is de-
signed to be an identity function on the input space,
and is composed of two functions: an encoder and a
decoder [6]. More specifically, the training process of
an autoencoder ƒ = g ∘ h results in a nonlinear encod-
er h: ℝn→ℝm and decoder g: ℝm→ℝn functions, where
m ≪ n and the objective function is mean squared
error loss with respect to the standard Euclidean dis-
tance between input and output: ‖x − ƒ (x)‖2. We note
that this choice of relative dimension sizes results in
what is called an “undercomplete autoencoder” and
is, in effect, a nonlinear analogue principal compo-
nent analysis [6]. By construction, (undercomplete)
AEs learn salient information about the training data,
with the compression/reconstruction process failing
on outliers or other data drawn from distributions
vastly different from that of the training set. This
property allows an AE to indicate when a given da-
tum was drawn from a novel distribution, making the
architecture ideal for anomaly detection [7, 8].

The choice of a neural network as a proposed
architecture for detecting malicious cyber activity

FIGURE 1. Federated learning is a machine learning setting where multiple entities (i.e., local servers) collaborate to train a model, un-
der the management of a central parameter server. Each client’s raw data is stored locally and is not exchanged or transferred; instead,
local servers complete some number of training steps on the model, and their feedback is aggregated by the central server that serves
an updated model for either further training by the local servers or deployment.

has been studied in the literature, and shows prom-
ise as a more flexible alternative approach from
traditional signature-based detection schemes [9,
10]. While cyber telemetry logs largely contain
categorical data points, there are techniques such
as log2vec that can transform these logs into nu-
merical data points that are ingestible by neural
network architectures [9, 11, 12].

Our prior work demonstrates that the numer-
ic representations of cyber logs can be learned in
tandem with detection tasks [12]. Here, our NLP-
inspired approach to anomaly detection requires us
to embed our preprocessed records into a semanti-
cally relevant vector space, which is the input to an
AE-based anomaly detector at inference. We tested
this technique on the Operationally Transparent
Cyber (OpTC) dataset created by Defense Advanced
Research Projects Agency (DARPA) [17, 18], which
consists of network and host logging collected from
a network of hundreds of Windows hosts over a one-
week period. The activity represents both normal
(benign) user activity, as well as logging from an
APT-inspired red team attack over the course of three
days, during which numerous machines were under
different phases of a multi-staged attack. Our tech-
nique was able to detect high volumes of anomalous

FEATURE

28

A Federated Machine-Learning Paradigm for Scalable Cyber Threat Detection

activities during the red team attack, and very low
volumes of anomalies when there were no attacks.

A federated-learning paradigm for
intrusion detection
Federated learning (FL) is a relatively new concept
in the field of AI/ML that involves training a model
across multiple devices, which are often called nodes
or learners. Each node trains the model separately
on its own data and shares model information with
a central server [13]. This central server then aggre-
gates the contributions of the participating nodes to
produce a model, which is shared back to the nodes
for further training or inference. There are several
flavors of training archetypes (e.g., synchronous and
asynchronous) and aggregation techniques which
are covered in the literature. For our purposes, we
assume that the model in question is some kind of
neural network and that a single training step of the
model is as follows:

1.    The central server transmits the most current
model to each of the local servers.

2.    Each local server feeds a portion of its local
data through the model and computes the gra-
dients of the mutually agreed upon objective
function and transmits these gradients back to
the central server.

3.    The central server aggregates the gradi-
ents from the local servers and performs a
model update.

Federated ML presents a viable solution by dis-
tributing the learning process to the network’s edge,
where the data is generated. This paradigm balances
the need for models to be trained on realistic, live
data with the practical constraints presented in
cybersecurity [13, 14]. Rather than transmitting raw
data to a centralized server, federated learners utilize
local computation and collaboration among net-
worked devices to train AI models. This decentralized
approach significantly reduces the need for trans-
ferring large amounts of data across the network,
alleviating bandwidth constraints and minimizing
latency issues.

Another consideration is the false positive prob-
lem. Indeed, if AI/ML is to be a force multiplier in
cybersecurity, any solution must be careful not to
produce more false positives than a human analyst
can adjudicate. In fact, a major problem with current

systems is that the number of alerts defenders must
sift through are unmanageable. If AI/ML solutions
are to attain wide adoption, they must add analytic
value rather than generate unhelpful alerts. In a FL
paradigm, training on a wider variety of data facili-
tates better approximation of the true distribution of
the “data in the wild.” However, in a FL paradigm, the
nonuniform occurrence of certain data points across
the unified training set allows federated models to
still learn salient information about these points, and
to pass those insights on to a deployed model.

To see the importance of such a consideration in
cybersecurity, note that normal activities vary widely
across users; for example, certain users have a higher
propensity to run programs like Microsoft Excel than
others. This means that, for an ML model trained on
host-based logs, if a user who rarely launches Excel
simply does so, the model would mark the behav-
ior as anomalous. However, simply launching Excel
is hardly indicative of a cyberattack. Hence, in a FL
paradigm, it is possible to aggregate the vast num-
ber of normal activities within a model, in a manner
that is reminiscent of balancing the “bias-variance
trade-off” [15].

Given these strengths, we propose that an FL
paradigm could be employed in protection of an
enterprise computer network to discover potential-
ly malicious activity in a way that is both robust to
evolving cyber threats and capable of alleviating alert
fatigue that exists due to current rules-based IDS.

Early after its inception, a key selling point for
federated models was their purported ability to keep
local data private [13, 14]. As cyber systems often
contain sensitive information such as personally
identifiable information (PII), proprietary informa-
tion/intellectual property, or any information that
could cause harm if released in the public domain,
one could imagine that FL techniques could be
employed across organizations to produce commu-
nity-driven AI/ML models for cybersecurity, without
risking the disclosure of the sensitive information
associated with those systems.

However, as noted in the literature, such priva-
cy claims have been grossly overblown [15, 16].
Indeed, ML model updates can leak several varieties
of information to even casually motivated attackers.
More specifically, attackers can infer properties of the
training data or even reconstruct specific training ex-
amples. While the amount of work required to extract

 The Next Wave | Vol. 25 No. 1 | 2024 | 29

FEATURE

this sort of information from ML models can be quite
expensive, the economics of cybersecurity make it
so that the information to be extracted is worth the
resources. Absent advances in techniques such as ho-
momorphic encryption, we believe that the technolo-
gy is not sufficiently able to mitigate the risks associ-
ated with cross-organizational federated learners.

Our approach
We implement a FL paradigm across five different
servers, each of which stand in for a single host on
an enterprise network. Each server contains data
from exactly one host in our dataset, and no data is
shared across servers. Using Tensorflow’s distrib-
uted MultiWorkerMirrored strategy, we instantiate
a common model across five g4dn.8xlarge AWS EC2
instances, with one of the workers also playing the
role of the global server for aggregating gradients and
serving model updates.

The precise model architecture is an implementa-
tion that is similar to that of our previous work [12].
The input is a log record corresponding to single net-
work or host activity on a computer (e.g., opening a
network flow, editing a registry key, etc). Each record
consists of 27 fields (e.g., user name, IP address, path,
registry key, etc.), each of which can take on any of a
variety of values, which we shall call “words.” Each
of the 27 words yi of the record is fed into an embed-
ding layer to obtain a vector representation of each in
ℝ8. The 27 eight-dimensional word embeddings are
then concatenated into a 216-dimensional vector V,
which corresponds to the embedding of the record.
The record embedding is fed into an AE with a single
hidden layer mapping the record into ℝ8 and back to
ℝ216. This reconstruction of the record embedding,
V̂ is the first output of the model. We then break V ̂
back into its 27 component vectors, each of which is
fed into a common dense layer to effectively compute
word-by-word probability distributions across the
entire vocabulary space (ŷi). The objective for the
neural network is a two-term loss function, which
balances the ability of the network to reconstruct
the record embeddings with its ability to predict the
component words that constructed the record from
the reconstructed embedding. More succinctly, the

record-level loss is Loss = CEL(ŷi ,yi) + α‖V−V ̂ ‖,
where CEL is Tensorflow’s sparse categorical cross
entropy loss from logits and α is a regularization term
to keep the reconstruction loss of the internal AE

roughly on par with the CEL term. We experimented
with different values and settled on α = 100 for this
task, which puts the two loss terms on roughly equal
magnitude. Note that this is different from our previ-
ous work, where we used α = 5 for data drawn from
single hosts.

Results from our previous work demonstrate that
the model is both effective at learning semantically
relevant representations for the words in the records
as well as providing a useful anomaly detection
scheme on cybersecurity logs. Our goal here is to
demonstrate how such a model could be employed
in federated fashion to learn on an even larger scale
than previously demonstrated, and to demonstrate
that such models remain effective at the downstream
task of detecting malicious cyber activity in the
OpTC dataset.

OpTC dataset
As in our previous work, we appeal to the OpTC
dataset. As mentioned above, these data consist of
network and host logging collected from a network of
hundreds of Windows hosts over a one-week period,
representing normal (i.e., benign) user activity [17,
18]. Over a three-day period within this week, a set
of red team actors also worked to perform various
penetration tests against the network, seeking to
infiltrate the network, ensure persistence, and carry
out increasingly complex attacks over time. As the
data contains logs from hosts that were and were not
attacked by the red team, and each host that was at-
tacked was only attacked during a proper subperiod
of the three-day attack, this data constitutes a strong
benchmark for intrusion detection techniques.

Specifically, we used the ECAR collection (so
named as its format is an extension of the Mitre
Cyber Analytics Repository, or CAR, data format),
which consisted of combined network and host
metadata logging drawn from Sysmon, Procmon, and
other sensors [19]. While each record contained only
a handful of fields, 58 unique fields were present
across the entirety of the raw data, including the net-
work five tuple (source and destination IPs/ports and
protocol), image and module paths, and usernames.
To prepare the data for use in our experiments, we
applied a very-light handed preprocessing approach
to the logs from five hosts, namely sysclient 0201-
0205 to create a vocabulary consisting of terms that
were tokenized. We chose to follow the exact same
preprocessing pipeline, except where noted below.

30

A Federated Machine-Learning Paradigm for Scalable Cyber Threat Detection

These steps resulted in a vocabulary size of 10,667
words across the training and test corpora:

1.    Dropping unnecessary features: Of the 58 keys
in the ECAR file, only 27 were kept for process-
ing. The remaining fields were determined to
be insufficiently relevant to our chosen task/
approach and were dropped.

2.    Feature prefixing: Some terms may have specific
meanings depending on which feature they are
associated with. For example, the number 443
has a specific meaning in the “dest port” field,
but that meaning would not be preserved in
other fields. To ensure that these meanings are
respected, values of select features were pre-
fixed with their feature name (e.g., “443” would
be mapped to the term ”PORT_443” when it is
found in the “dest port” field).

3.    Connection time bucketing: Network activity
records contain start and end times for the con-
nection; to discretize these values, connection
durations were calculated and bucketed into
SMALL, MEDIUM, and LARGE buckets based
on manual inspection of the distribution of
connection durations.

4.    Path/file name extraction: File paths and reg-
istry keys can contain machine-specific sets of
directories, even when considering a common
item (e.g., “xyz.dll” might be found in different
directory locations on separate machines, even
though the underlying file is the same). To
correct for this, such paths are reduced to only
the file name. Similarly, when parsing com-
mand line input, only the name of the executed
program is maintained (i.e., the full path and
any arguments are dropped).

5.    /24 CIDR subnet extraction: IPv4 addresses
were, in many cases, too sparse across the
dataset to be well-represented, so we opted to
remove the last octet from each address and
only use the /24 subnet. While this did reduce
the resolution of the representation of our
addresses, we gained additional robustness by
aggregating rare terms into a smaller number
of representations.

6.    Ephemeral port aggregation: Ports used for
outgoing network traffic are typically arbi-
trarily chosen from the high end (i.e., great-
er than 49151) of the range of valid ports.
These choices carry no real meaning, and
needlessly expand the vocabulary space, and

so such ports were replaced with a generic
”EPHEMERAL_PORT” token.

7.    Removal of rare terms: After performing the
above tokenization, terms that appeared fewer
than 10 times (determined by examination of
the distribution of term frequencies) over our
training corpus were discarded and replaced
with a generic ”OBSCURE_TERM” token.

8.    Conversion to vocabulary indices: All remain-
ing vocabulary tokens were indexed, and each
token was replaced with its index. Empty
fields (e.g., file path fields are empty for net-
work traffic events) were replaced with a
”NULL_TERM” token.

With the vocabulary determined, we needed
to select a training corpus for the neural network
model described above. Our goals were primarily to
measure the efficacy of the model in detecting red
team activity, and to assess the model’s ability to
generalize to normal activities rarely-or-never seen
by the model. To accomplish this, we chose to train
on sysclient 0203, sysclient 0204, and sysclient 0205.
The choice of these three hosts is primarily motivated
by the fact they had the largest volumes across the
five hosts, at roughly 24 million records each (the
other two hosts had roughly 10 million fewer records
available). Given the data volumes, we restricted
the training set to only include the three-day period
preceding the red team events. Test data constituted
the three-day period corresponding to the red team
exercise, during which sysclient 0201, sysclient 0203,
and sysclient 0205 were attacked. Sysclient 0202 and
sysclient 0204 contain no red team activity, and we
include model inference results from these hosts for
comparison. In sum, our test set included roughly 45
million records across the five hosts.

We also note that, due to restrictions in
Tensorflow’s MultiWorkerMirrored distributed
learning strategy, we had to ensure that every node
had precisely the same batch size and same number
of batches. We chose to limit the number of records
from each node in the training set to be precisely 24
million records.

Neural network training paradigm
We do wish to note one key difference in the train-
ing paradigm between this and our previous works.
Previously, we constructed a custom Tensorflow
training loop within Python, wherein we selected

 The Next Wave | Vol. 25 No. 1 | 2024 | 31

FEATURE

batches based on the inverse weight of the occur-
rence of terms appearing in the corpus. The intention
behind that choice was to ensure that the embed-
dings of rarely occurring terms were given sufficient
opportunity to converge, while not overfitting the
overall model to frequently occurring terms. This
custom training loop did come at the expense of
speed; however, when we attempted to implement
the same approach using Tensorflow’s distributed
MultiWorkerMirrored strategy, the latency associated

with model update sharing made the federated train-
ing process prohibitively slow. To circumvent this
issue, we reworked the training process, and trained
the FL models with model.fit() using batch sizes of
512 across each of the compute nodes. While we did
notice a significant slowdown in training time (as
compared training with model.fit() on a single work-
er), the overall speed was still reasonable.

On a related noted, our selection of EC2 hardware
was the result of some early experiments, wherein

FIGURE 2. Each compute node conducts a training step on a replica of this model, which is described in the text. The total number of
trainable parameters is 185,189, of which 85,416 are for vocabulary embeddings. The remaining 100,000 parameters are spread across
the encoder, decoder, and word extractor layers, the last of which constituted 96,093. Thus, the model puts a strong emphasis on
producing effective vocabulary that are informed by the semantic relationships within the data.

32

A Federated Machine-Learning Paradigm for Scalable Cyber Threat Detection

we tested this methodology on two g3.xlarge servers
and found the training process to be too slow. We
expect that this was due to the rather low network
performance of these instances (i.e., up to 10 gigabits
per second) and opted instead for the g4dn.8xlarge,
which provided a guaranteed 50 gigabits per sec-
ond. The training process here appeared to be much
faster, but was still slower than that observed in the
nondistributed case.

Results
Our testing methodology reflects our previous work,
so that the FL model may be compared to the indi-
vidual models trained on each of the hosts we ex-
amined. This methodology is consistent with using
these types of utilities to alert administrators at times
when network and host logs are exhibiting anom-
alous behavior, and to provide prioritized lists of
anomalies for investigation/action in an operational

FIGURE 3. These word embed-
dings show tight clusters around
many different types of file types
that appear commonly across the
dataset (e.g., Microsoft Office
files in blue). Note these are a
t-distributed stochastic neighbor
embedding (TSNE) of the original
eight-dimensional vectors down
to two dimensions.

environment. In cybersecurity use cases, overall
accuracy is not a useful measure for our performance,
as we have a large class imbalance (i.e., less than one
percent of our test data is labeled as anomalous). Our
goal is not necessarily to correctly classify all of our
malicious traffic as anomalous, as some of that traffic
may be only incidentally labeled as malicious due to
its association with a red team process. Instead, we
choose to provide two main results that address the
above use cases: a qualitative view of changes in the
network’s cross-entropy loss over time, and measure-
ments of precision using various error levels as clas-
sification thresholds. We feel that these results best
promote our goal of allowing administrative users to
know when an attack is taking place, while also pro-
viding a manageable number of true positives, with a
high degree of certainty (i.e., high precision).

In terms of assessing the detection efficacy of
the model, we compute an anomaly score s for
each record, which as in our previous work is

 The Next Wave | Vol. 25 No. 1 | 2024 | 33

FEATURE

s = CEL(ŷi, yi) , as a measure of how well the model
reconstructs the input data. In the ideal, the model
should be able to reconstruct benign data with higher
fidelity than data associated to red team events.

Overall, the results of these measures indicate
that the model is capable of distinguishing benign
activities from red team events. Additionally, figure
3 shows the learned embeddings for the vocabulary
do result in semantically consistent embeddings.
That is, key categories of vocabulary words (e.g.,
registry keys/values, mum/cat files) and Microsoft
office files constitute rough clusters in the embed-
ding space. The specific categories we selected were
either constituting a particular file type from the “file
path” field (e.g., “.pyc” files or “.dll” files), or types of
vocabulary words from different fields that almost
always appear together (e.g., registry keys and reg-
istry values). While this is merely a heuristic, we can
clearly see that along these categories, clusters do
emerge among like points. For example, registry keys
and values are generally embedded near other reg-
istry keys, and values and are generally further away
from embeddings of words in other categories. While
not perfect, the training paradigm clearly generates
meaningful embeddings based on the contexts in
which they appear, similar to the nonfederated model
featured in our previous work [12].

Results for sysclient 0203-0205
While the model was trained on data from these
hosts, the model had no access to the red team activ-
ities performed on sysclient 0203 and sysclient 0205
during training. Since 0204 is an unattacked host
with its data in the training corpus, we consider this
to be our “control” host. Overall, the federated model
is able to distinguish between benign activities from
red team activities on 0203 and 0205 and generalizes
well to the test set on 0204.

As seen in figure 4 (page 34), the anomaly score
distributions for benign and red team activities on
both attacked hosts are such that there is a clear
separation between a large portion of the malicious
activity, and the majority of the remaining activity.
The scores for sysclient 0204 are similar to the be-
nign scores of the other two hosts.

based anomaly detection system. To that end, we
gather our test data into 60-minute buckets, calcu-
late the percentage of records in each bucket over
the 99.9th percentile of a random sample of benign
data from the given host during the training period
and display the resulting time series in figure 6 (page
36). Generally speaking, anomaly scores are within
the expected levels outside the attacks on sysclient
0203 and sysclient 0205 and remain at consistently
elevated levels during the times each were attacked.
There were some exceptions, however. The spikes
in our metrics at t=1500 and t=2880 are correlated
with large spikes in the volume of WMI (Windows
Management Instrumentation) activity on each host.
These spikes are consistent with our previous work
and we, also as before, have elected to treat these
spikes as nonmalicious anomalies. There are some
red team events that appear at t=1000, which did not
appear in our previous work. This is most likely due
to an update in the labeling procedure we employed.
That the anomaly scores do not spike around this
time is not surprising given the fact that there are
only around 100 red team events in total.

For sysclient 0204, anomaly scores appear to be
within expectations and in this SOC scenario, no
alerts would be generated. Again, this is exactly what
one would want to happen, since the red team did not
attack this host.

Results for sysclient 0201 and 0202
This is a challenging scenario for the model. Recall
that the training data for the model included no
records from sysclient 0201 nor sysclient 0202, and
were chosen because 0201 contained activities from
the red team constituting multiple stages of an attack
and 0202 did not.

As we see in figure 7 (page 37), the results for
sysclient 0201 are decent, especially given that the
training of the FL model had not seen data from this
host during training. Here the separation between
the anomaly score distributions by class are not as
clear, indicating that either there were high volumes
of benign activities which were different enough from
the training data that they were difficult to recon-
struct, or high volumes of the red team activities
were too similar to training data. This also means
that precision and recall for a naive classifier using
the anomaly score as a threshold had significantly
degraded performance. However, using the scores

Emulating deployment of this model in a Security
Operations Center (SOC), we opted for a temporally

34

A Federated Machine-Learning Paradigm for Scalable Cyber Threat Detection

FIGURE 4. These histo-
grams of anomaly score
by class (benign and
red team) on sysclient
0203 (top) sysclient
0204 (middle) and
sysclient 0205 (bottom)
show a clear separation
between a large portion
of the malicious activity,
and the majority of the
remaining activity. The
scores for sysclient 0204
are similar to the benign
scores of the other
two hosts.

 The Next Wave | Vol. 25 No. 1 | 2024 | 35

FEATURE

FIGURE 5. For
these precision and
recall curves for
sysclient 0203 (top)
and sysclient 0205
(bottom), we used a
threshold to create a
naïve classifier on the
test data. For each
quantile, q, between
the 95th and 100th
percentile of our test
loss distribution, we
classify every record
with a loss above q as
being anomalous.

as a temporal anomaly detection scheme, we see
that the model does generalize somewhat. Anomaly
score spikes early on match the high volumes of red
team activities. Spikes around t= 1500 and t= 2880
are consistent with sysclients 0203-0205, and lend
further credence to the notion that these are benign,
but anomalous events.

The results for sysclient 0202 are strong. The
anomaly score distribution is very similar to the
benign activities of the other hosts. Additionally,
these scores remain within expectations in the
temporal-based anomaly detection scenario. All told,
this very clearly demonstrates that the FL model
generalizes well.

Discussion
While we do not perfectly mirror our results from
the previous work on sysclient 0201-0204, we do
demonstrate that such a FL paradigm has the poten-
tial to aid in real-time cyber threat hunting. The re-
sults for sysclient 0201 do highlight the need for the
training data FL model to be sufficiently close to data
in the wild. The degradation in performance as com-
pared to our previous work is most likely due to the
model having not seen enough data that is similar to
the data that characterizes normal activities on 0201.

Another key component of transitioning such a
technique to practice is determining the appropriate

36

A Federated Machine-Learning Paradigm for Scalable Cyber Threat Detection

FIGURE 6. In this comparison of the
amount of red team activity in a given
60-minute bucket, and the amount of
activity over the 99.5th percentile of
the error distribution for the training
data on the associated host,the dashed
line is set at the average expected level
of the graph, 0.5 percent. This figure
includes two attacked hosts, sysclient
0203 (top) and sysclient 0205 (bottom),
as well as the unattacked host, sysclient
0204 (middle).

 The Next Wave | Vol. 25 No. 1 | 2024 | 37

FEATURE

FIGURE 7. In these results
for sysclient 0201, the sepa-
ration between the anomaly
score distributions by class
are not as clear; however, us-
ing the scores as a temporal
anomaly detection scheme,
we see that the model
does generalize somewhat.
Anomaly score spikes early
on match the high volumes
of red team activities.

38

A Federated Machine-Learning Paradigm for Scalable Cyber Threat Detection

FIGURE 8. Results for syscli-
ent 0202 shows the anomaly
score distribution is very
similar to the benign activities
of the other hosts.

hyper parameters. In our experiments, we set many
of the hyperparameters to be consistent with our
previous work. We do so in order to enable an ap-
ples-to-apples comparison of our works. In practice,
one should expect the depth of the network, the size
of the code layer, and even the dimensions of the
vocabulary embeddings to scale with the complexity
of the underlying data. In the case of training an FL
model on orders of magnitude more hosts than ours,
we advise to perform an ablation study.

Future work
The clearest future work would be to attempt to scale
this FL paradigm to even more hosts on OpTC. Such
an endeavor would be extremely informative for
those wishing to employ scalable AI/ML-enhanced
cybersecurity analytics in an SOC. Future work also
includes a deeper exploration finding suitable hard-
ware and software that can bring the speed of train-
ing a FL model on par with a non-FL one (especially

 The Next Wave | Vol. 25 No. 1 | 2024 | 39

FEATURE

for the scalability concerns). The tensorflow distrib-
uted learning module includes support for a strategy
that is optimized for tensor processing units (TPUs).
Testing out this concept on such architecture would
be an interesting endeavor.

As we have alluded, privacy-preserving method-
ologies, if perfected, could enable cross-organiza-
tional model training and collaboration for enhanced

References
[1] Hutchins E, Cloppert M, Amin R. “Intelligence-driven
computer network defense informed by analysis of
adversary campaigns and intrusion kill chains.” Leading
Issues in Information Warfare & Security Research 1. 2011.
Available at: https://www.lockheedmartin.com/content/
dam/lockheed-martin/rms/documents/cyber/LM-White-
Paper-Intel-Driven-Defense.pdf.

[2] Strom BE, Applebaum A, Miller DP, Nickels KC,
Pennington AG, Thomas CB. “Mitre att&ck: Design and
philosophy.” 2018 July, revised 2020 March. MITRE
Corporation technical report MP180360R1.

[3] Mossburg E, Fancher JD, Gelinne J. “The hidden costs
of an IP breach, cyber theft and the loss of intellectual
property.” Deloitte Review 19. 2016: 106–121.

[4] Snort webpage. Available at: https://www.snort.org/.

[5] Sigma GitHub webpage. Available at: https://github.
com/SigmaHQ/sigma.

[6] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT
Press; 2016. ISBN: 9780262035613.

[7] Sakurada M, Yairi Y. “Anomaly detection using
autoencoders with nonlinear dimensionality reduction.”
In: Proceedings of the MLSDA 2014 2nd Workshop on
Machine Learning for Sensory Data Analysis (MLSDA’14);
2014; Association for Computing Machinery,
New York, NY: pp. 4–11. Available at: https://doi.
org/10.1145/2689746.2689747.

[8] Hawkins S, He H, Williams G, Baxter R. “Outlier detection
using replicator neural networks.” In: Kambayashi Y,
Winiwarter W, Arikawa M, editors. Data Warehousing
and Knowledge Discovery DaWaK; 2002. Lecture Notes in
Computer Science, vol 2454. Springer, Berlin, Heidelberg.
Available at: https://doi.org/10.1007/3-540-46145-0_17.

[9] Wong V, Emanuello J. “Robustness of ML-enhanced
IDS to stealthy adversaries.” In: AI/ML for Cybersecurity:
Challenges, Solutions, and Novel Ideas at SIAM Data
Mining; 2021. Available at: https://doi.org/10.48550/
arXiv.2104.10742.

[10] Ramström K. “Botnet detection on flow data using
the reconstruction error from Autoencoders trained on
Word2Vec network embeddings.” PhD thesis. Uppsala
Universitet, 2019.

[11] Liu F, Wen Y, Zhang D, Jiang X, Xing X, Meng D. 2019.
“Log2vec: A heterogeneous graph embedding based
approach for detecting cyber threats within enterprise.” In:
Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security (CCS ‘19); 2019; Association
for Computing Machinery, New York, NY: pp. 1777–1794.
Available at: https://doi.org/10.1145/3319535.3363224.

[12] Golczynski A, Emanuello JA. “End-To-end anomaly
detection for identifying malicious cyber behavior through
NLP-based log embeddings.” In: Proceedings of the First
International Workshop on Adaptive Cyber Defense; 2021.
ArXiv: abs/2108.12276.

[13] Kairouz P, McMahan HB, Avent B, Bellet A, Bennis M,
Bhagoji AN, Bonawitz K, et al. “Advances and open problems
in federated learning.” Foundations and Trends in Machine
Learning. 2021;14(1–2):1–210.

[14] Ghimire B, Rawat DB. “Recent advances on federated
learning for cybersecurity and cybersecurity for
federated learning for Internet of Things.” IEEE Internet
of Things Journal. 2022;9(11):8229–8249. doi: 10.1109/
JIOT.2022.3150363.

[15] Zhou Y, Wu J, Wang H, He J. “Adversarial robustness
through bias variance decomposition: A new perspective
for federated learning. In: Proceedings of the 31st ACM
International Conference on Information & Knowledge
Management (CIKM ‘22); 2022; Association for Computing
Machinery, New York, NY: pp. 2753–2762. Available at:
https://doi.org/10.1145/3511808.3557232.

[16] Boenisch F, Dziedzic A, Schuster R, Shamsabadi AS,
Shumailov I, Papernot N. “When the curious abandon
honesty: Federated learning is not private.” In: 2023
IEEE Eigth European Symposium on Security and Privacy
(EuroS&P); 2023; Delft, Netherlands: pp. 175–199. doi:
10.1109/EuroSP57164.2023.00020.

cybersecurity capabilities without being prohibitively
risky. Recent literature does demonstrate that differ-
ential privacy can be employed in deep learning mod-
els, but is very difficult. Research endeavors in this
space are needed, in order to ensure that attackers
cannot continue to take advantage of the lack of col-
laboration among defenders across organizations.

https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/LM-White-Paper-Intel-
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/LM-White-Paper-Intel-
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/LM-White-Paper-Intel-
https://www.snort.org/
https://github.com/SigmaHQ/sigma
https://github.com/SigmaHQ/sigma
https://doi.org/10.1145/2689746.2689747
https://doi.org/10.1145/2689746.2689747
https://doi.org/10.1007/3-540-46145-0_17
https://doi.org/10.48550/arXiv.2104.10742
https://doi.org/10.48550/arXiv.2104.10742
https://doi.org/10.1145/3319535.3363224
https://doi.org/10.1145/3511808.3557232

40

A Federated Machine-Learning Paradigm for Scalable Cyber Threat Detection

[17] DARPA. Operationally Transparent Cyber (OpTC)
Data Release, 2019. Available at: https://github.com/
FiveDirections/OpTC-data.

[18] Anjum MM, Iqbal S, Hamelin B. 2021. “Analyzing the
usefulness of the DARPA OpTC dataset in cyber threat
detection research.” In: Proceedings of the 26th ACM
Symposium on Access Control Models and Technologies
(SACMAT ‘21); 2021; Association for Computing Machinery,
New York, NY: pp. 27–32. Available at: https://doi.
org/10.1145/3450569.3463573.

[19] The MITRE Corporation. “Data Model.” MITRE Cyber
Analytics Repository. Available at: https://car.mitre.org/
data_model/.

[20] Denning DE. “An intrusion-detection model.” IEEE
Transactions on Software Engineering. 1987;13(2):222–232.
doi: 10.1109/TSE.1987.232894.

https://github.com/FiveDirections/OpTC-data
https://github.com/FiveDirections/OpTC-data
https://doi.org/10.1145/3450569.3463573
https://doi.org/10.1145/3450569.3463573
https://car.mitre.org/data_model/
https://car.mitre.org/data_model/

	TNW_25-1_2024_20240402_Web_Part7
	TNW_25-1_2024_20240402_Web_Part8
	TNW_25-1_2024_20240402_Web_Part9
	TNW_25-1_2024_20240402_Web_Part10

		Superintendent of Documents
	2024-04-09T16:52:32-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

