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Around the world, critical infrastructures increasingly incorporate Internet-of-Things (IoT) 
devices and networks. Since, by definition, most IoT devices are connected to national if not 
global networks, the explosive growth of IoT systems introduces a vast new set of potential 

vulnerabilities and exploitable cyber threat vectors. IoT cyberattack classes range from injecting false 
or misleading sensor data and distributed denial-of-service attacks to long-term stealthy advanced 
persistent threats (APTs). 

This article describes our efforts to provide tools to detect potentially compromised IoT devices based 
on behavioral analysis of their local wireless [e.g., Bluetooth, Bluetooth Low Energy (BLE), ZigBee, etc.] 
communications. We have integrated these tools into a project called the Wireless IoT Monitoring 
System (WIMS). We adopt a classification-based machine learning (ML) approach, whereby device-
based IoT packet exchanges are encoded into a set of images. Our ML models are trained to recognize 
well-behaving devices and identify anomalous traffic through these generated images as an indication 
of a potentially compromised device or system.
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The wireless IoT protocol landscape consists of 
dozens of over-the-air protocols based on both 
open-source and proprietary standards. While 

many types of attacks against older protocols such as 
Bluetooth have been identified, attacks against newer 
protocols such as long-range wide area network 
(LoRaWAN) and narrowband (NB)-IoT are less un-
derstood and the threat space and exploit scenarios 
are not as well-defined. To address this discrepancy, 
we leverage transfer learning (TL) techniques. Using 
TL, we can train an anomaly detection classifier for 
a well-known class of attacks, say against Bluetooth, 
and reuse that knowledge to shorten the training 
time and improve the accuracy of anomaly detection 
for a newer protocol, such as LoRaWAN.

We first provide a brief background into the wire-
less IoT threatscape, and then discuss our IoT mon-
itoring system. Next, we describe how we transform 
IoT packet captures into picture images representing 
encoded time series data from the network traffic 
and use ML on those images to identify anomalous 
activity. Thereafter, we explain how we use TL to 
rapidly train image classifiers on new protocols and 
attack classes. Lastly, we provide some experimental 
results and offer conclusions.

Threatscape for wireless IoT
There has been limited work on using ML to monitor 
wireless IoT traffic and detect suspicious behavior. 
Current solutions primarily focus on wired or 802.11 
wireless IoT devices and focus on the communication 
patterns between an IoT device and the host server. 
For example, one might monitor the encrypted web 
communications of a smart home hub/gateway from 
the router to the manufacturer’s cloud server. These 
solutions would examine features like the number 
of times the device usually communicates with the 
server, average data transmission size, frequency of 
communications, etc. However, these solutions are 
not examining the local wireless communications 
of the IoT devices. IoT end devices often use proto-
cols like Bluetooth, ZigBee, Z-Wave, Thread, NB-IoT, 
LoRaWAN, and now 5G to communicate with the 
managing device, hub, gateway, or cloud server.

Monitoring traffic over these protocols requires 
special equipment that is often designed for use by 
radio-frequency (RF) experts and is not tailored for 
use by the average network analyst and certainly not 
designed to be used for long-term monitoring and de-
tection. Further, IoT devices typically lack traditional 

security mechanisms such as firewalls, antivirus 
programs, system logs, etc. that can be used to pre-
vent, detect, and analyze potential malicious activity. 
Because of this, we sought to develop a wireless IoT 
monitoring system that performs anomaly detection 
using what is often the only source of information 
available from wireless IoT devices—the packets 
they transmit to communicate between other IoT end 
devices and IoT gateways.

To fully grasp the IoT problem set, it is useful to 
understand the scale of the IoT space from the num-
ber of protocols available and in use by technology 
developers, to the complex networks spanning multi-
ple protocols. The number of IoT protocols is a rela-
tively difficult number to pin down. A quick Internet 
search of “How many IoT protocols are there?” yields 
results of anywhere from the top six IoT protocols 
to 26 IoT protocols [1]. Most of these articles also 
acknowledge that their lists are “extensive—but not 
exhaustive.” As wireless technologies improve, new 
protocols are constantly being developed to cater 
to the specific needs of mobile networks. The Fifth 
Generation of Mobile Telephony (5G) standard, for 
example, was “functionally frozen in June 2018 and 
fully specified by September 2019.” 5G promises 
support for a “massive Internet of Things” integrating 
“the operational aspects that apply to the wide range 
of IoT devices and services anticipated in the 5G 
timeframe” [2]. On the other hand, some IoT sensor 
devices have been in use for decades and will contin-
ue to be so for many more years, without the oppor-
tunity for updates. Therefore, IoT-enabled devices 
often have support for not only new technologies, but 
also legacy protocols.

In addition to the number individual protocols 
available for use, many modern IoT networks make 
use of several IoT protocols to provide better quality 
of service (QoS) to their users. Amazon Sidewalk, 
for example, uses (at a minimum) BLE [2.4 gigahertz 
(GHz) industrial, scientific, and medical (ISM) band] 
for short-range communications and LoRa [900 
megahertz (MHz) ISM band] for long range [3]. Many 
devices support multiple methods of communica-
tion and automatically switch between the protocols 
based on any number of metrics determined by the 
device manufacturer. Each protocol a device supports 
is another communication link and therefore poten-
tial attack vector for malicious actors.

How does an organization protect itself when 
incorporating devices with IoT interfaces into its 



 The Next Wave | Vol. 25 No. 1 | 2024 | 43

FEATURE

operations? Simply not using devices with IoT capa-
bilities is likely the safest option; however, this option 
is growing increasingly difficult and impractical. It is 
not uncommon for device manufacturers to include 
one or more wireless protocol interfaces. There are 
many reasons to do so from a manufacturer’s per-
spective to include, QoS (as discussed previously), 
redundant links for firmware updates, mesh network 
support, device metrics, information collection, etc.

Wireless IoT monitoring options
Before developing analytics to perform behavioral 
analysis of wireless IoT traffic, a process first need-
ed to be developed to collect the traffic from the IoT 
devices. There are two primary means of doing this 
currently. The first is using commercially available 
IoT protocol analyzers/sniffers, which automatically 
detect and demodulate supported IoT signals and 
output the observed traffic in an easily parseable, 
often packetized format for easy analysis of the data. 
The second method is using software-defined radios 
(SDRs) which provide a generic radio front end that 
captures raw samples of the RF spectrum. These de-
vices allow for adjustable tuning and instantaneous 
bandwidth to cover nearly any portion of the RF spec-
trum; however, they require specialized expertise to 
operate to obtain the IoT data.

IoT protocol analyzers
Commercially available protocol analyzers/packet 
sniffers are available to monitor the most common 
wireless IoT protocols to include Bluetooth Classic 
[basic rate/enhanced data rate (BR/EDR)], BLE, Wi-
Fi, and 802.15.4-based protocols such as Zigbee and 
Thread [4, 5, 6]. Many implementations are hard-
ware-based solutions that cater to specific frequency 
bands or specific protocols. Higher-end wireless sniff-
ers can often detect packets from several different 
protocols, perform simultaneous collection on each 
of them, while also providing the raw RF data stream. 
Example solutions include the Spanalytics PANalyzer, 
the Ellisys Vanguard, and Frontline X500, all of which 
target the 2.4 GHz ISM band. 

The difficulty of dealing with hardware-based RF 
solutions is that in order to adapt to new protocols 
or protocols in a different frequency band, additional 
hardware or at a minimum new firmware/drivers 
must be pushed to all devices. Adding new hardware 
introduces many considerations into a system’s 

design to include physical footprint, complexity (e.g., 
potentially multiple manufacturers/interfaces), pow-
er consumption, additional cost, maintenance, etc. 

These commercial-off-the-shelf (COTS) packet 
sniffers are a great option for targeting the most 
common protocols being used. With that being said, 
because of the vast number of protocols in the IoT 
space, quite a few are not supported or require 
additional hardware to cover. Each of the manufac-
turers previously listed provide additional hardware 
expansions to provide support for additional popular 
protocols in the 900 MHz ISM band such as LoRa and 
Z-Wave. This however still leaves quite a few proto-
cols unsupported and again raises the issues of add-
ing additional hardware to the system architecture. 

Software-defined radios
To attempt to fill in the gaps and solve some of the 
hardware scalability issues, software-defined radi-
os (SDRs) provide flexibility and adaptability. SDRs 
provide a “generic” radio front end that captures raw 
samples of the RF spectrum. These devices allow for 
adjustable tuning and instantaneous bandwidth to 
cover nearly any portion of the RF spectrum need-
ed. Many provide onboard field-programmable gate 
arrays (FPGAs) for use as signal processors and 
provide high-speed interfaces such as universal serial 
bus (USB), Ethernet, peripheral component intercon-
nect express (PCIe), etc. for offloading to a separate 
processor. These separate processors can make use 
of modern processor units [central processing units 
(CPUs), graphics processing units (GPUs), etc.] to pro-
cess wideband captures of the spectrum in real time. 
Because the SDR front end is relatively generic, the 
system used to process the RF sample stream can be 
upgraded to meet the needs of the signal processing 
toolchain. Additionally, the architecture of SDR-based 
systems makes processing multiple protocols in par-
allel relatively simple. 

Because the radio front-end interface is abstracted 
from the processing unit, developing signal packet 
sniffers becomes extremely modular and software 
based. Signal processing toolchains can be written 
in any language supported by the processing unit 
which is likely running a modern operating system 
and can support almost any compiler. GNU Radio, for 
example, is a popular open-source SDR development 
framework commonly used by hobbyists and re-
searchers to implement signal processing toolchains. 
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GNU Radio is built on C/C++ and Python and great-
ly simplifies the work required to develop an SDR 
protocol sniffer implementation. This provides an ad-
ditional benefit due to the availability of open-source 
implementations of nearly every IoT protocol. Adding 
support for a protocol could be as simple as installing 
an open-source GNU Radio module. 

To further increase modularity, a management 
framework could be used to abstract the front-end 
radios from any signal processing units. A manage-
ment framework would control distributed antennas 
as well as multiple SDRs monitoring multiple por-
tions of the spectrum in different locations simul-
taneously. This management framework would be 
able to control not only the portions of the spectrum 
being monitored but also control the protocols being 
processed. An SDR solution is a major improvement 
over an IoT protocol analyzer since it is extremely 
modular and adaptable to the specific requirements 
of an organization.

Distributed monitoring architecture
For the initial effort, we utilized commercial IoT pro-
tocol analyzers/sniffers due to their ease of use and 
support for the most common wireless IoT protocols 
(e.g., Bluetooth, BLE, ZigBee, etc.). However, as we 
continue to add support for additional wireless IoT 
protocols to the system which do not have commer-
cially available sniffing tools, we are also adding SDR 
support to enable the processing of further protocols.

To enable the use of artificial intelligence (AI)/ML 
anomaly detection analytics for wireless IoT traffic, 

we designed a distributed architecture and the sup-
porting software to monitor the wireless IoT traffic 
over an area. The area to be monitored could be a 
room, building, campus, etc. if sufficient IoT traffic 
sniffers were placed throughout the area to ensure 
adequate coverage to collect the wireless IoT traffic. 
The sniffers need to be distributed optimally through 
the space due to low power and low-transmission 
range of most wireless IoT protocols. These distribut-
ed sniffers will send all observed wireless IoT traffic 
to a central server for further processing. This system 
is called the Wireless IoT Monitoring System (WIMS).

The central WIMS server provides two 
primary functions: 

1.    Situational awareness into which wireless IoT 
protocols and devices are observed in the cover-
age area. This includes a count of how many de-
vices of each protocol were observed over a set 
time period, the addresses of the devices, and 
the sniffer(s) that detected the device to aid 
in geolocation. Additionally, if the end device 
uses a resolvable public media access control 
(MAC) address—the system will provide as 
much identifying information on the device 
as possible.

2.    ML-based anomaly detection analytics on the 
observed IoT traffic. If a potential anomaly is 
flagged, it will be displayed on the alert dash-
board, can be clicked-into for further infor-
mation, and alerts can optionally be forward-
ed to other security tools or to designated 
security officials. 

FIGURE 1. This Wireless IoT Monitoring System (WIMS) dashboard provides an overview of which IoT protocols and devices were 
observed in the coverage area. It also displays alerts for devices with detected anomalous traffic. 
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a. It should be noted that the images produced by WIMS cannot be readily interpreted by human analysts.

Anomaly detection approach
Wireless behavioral monitoring systems such as 
WIMS must ingest and process large numbers of IoT 
packet data streams. Sophisticated IoT cyberattacks 
may only be detectable by understanding the statisti-
cal relationships both within each packet and be-
tween packets in each data stream.  Given the sheer 
number of packets and complex interrelationships 
between packets inside of data streams, current ML 
approaches are particularly attractive since they au-
tomatically learn to classify individual datasets into 
discrete classes.

IoT data streams are a type of time series informa-
tion. These time series form data types that can be 
viewed as one-dimensional or two-dimensional grids.  
Convolutional neural networks (CNNs) do extreme-
ly well at classifying grids. For instance, CNNs are 
known to excel at image classification, where each 
image is processed as a two-dimensional grid of pixel 
values.  By treating IoT data streams as time series 
grids representing packet data, WIMS takes advan-
tage of existing computer vision and image process-
ing ML capabilities.

The fundamental ML approach used is to turn 
packet captures from a particular IoT protocol into 
a set of images which are then analyzed by a CNN. 
WIMS uses a Gramian angular field (GAF), described 
below, to convert the time series into a two-dimen-
sional grid which can be treated as an image.a The 
advantage of this approach is that it preserves tem-
poral dependencies among packet events, provided 
the events are properly encoded. The CNN is trained 
to recognize anomalous versus normal traffic in a 
process akin to image classification. Once a stable 
model is developed, that model is used for TL to a 
new protocol. 

After suitably accurate results for correct classifi-
cation (i.e., normal versus anomalous) are achieved 
with this method, the next goal is to transfer the well-
trained CNN for anomaly detection on other proto-
cols. When building this capability, we first sought to 
demonstrate, with nearly 100 percent accuracy, the 
ability to detect a Bluetooth response flooding attack 
using a CNN image-classification algorithm, and then 
use TL to substantially reduce the training time for 
anomaly detection of a response to a flooding attack 
in an 802.15.4 network such as ZigBee.

As traffic is collected from the IoT traffic sniffers 
and forwarded to the central server, the data is stored 
in a MySQL database in the form of packet capture 
(PCAP) files. The first steps of the ML processing 
pipeline are to turn each individual PCAP into an 
image which can be processed by a CNN. This pipe-
line is shown below and is explained in detail in the 
following section. 

FIGURE 2. In this ML processing pipeline, the IoT data is ingested in PCAP form, converted into a time series for each feature, and then 
pre-processed prior to being transformed into a Gramian angular field (GAF) picture and inputted into a CNN for anomaly detection.

Image production
The first step in transforming packet captures into 
images is to extract time series data from the data-
base from each feature of interest. Example features 
of interest are packet interarrival time, packet size, 
and protocol message type. Specifically, each value in 
the time series comes from one packet. For the data-
base used in the WIMS, this corresponds to one row. 
The time series is split into fixed size chunks corre-
sponding to a certain duration of elapsed real time. 
The current default is one second. This produces a 
subseries for each feature. 

When processing data extracted from a database 
(e.g., training, validation, testing) or a dictionary 
(i.e., real-time prediction), the values of each feature 
must be parsed in an appropriate fashion. The parser 
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replaces any NULL values from the database with a 
chosen pad value for the feature, then converts the 
data extracted from the database with values of the 
appropriate data type. The rules for pad values are 
as follows: 

1.    It cannot be a value which could legitimately 
arise from a true observation; for example, 
don’t pick a positive value for packet length, 
for example. 

2.    It makes sense in the context of its 
respective feature.

3.    It can be represented by the chosen data type 
for this feature; for instance, don’t pick a nega-
tive pad value when using an unsigned integer 
like np.uint32.

At this point a Gramian angular field is produced 
for each subseries. This is done by rescaling all values 
to fall within the interval [0,1]. These values are then 
put into a polar coordinate system by encoding the 
value as the angular cosine and the time stamp as 
the radius. A square matrix is then used where each 
entry is the trigonometric sum between each pair 
of points. This enables the identification of tempo-
ral correlations between different time intervals. A 
square Gramian matrix is produced which is then 
transformed into an red-green-blue (RGB) image. 

FIGURE 3. In building this Gramian angular field (GAF) represen-
tation, the value of each feature in the time series is converted 
into a polar coordinate system, and a two-dimensional grid (i.e., 
the image) is produced where each entry is the trigonometric 
sum between each pair of points.

A key part of the data processing pipeline is to use 
stackable GAF representations, each correspond-
ing to the same time slice for each feature to form a 
tensor of arbitrary dimensionality. This allows for an 
N-channel image that allows a network traffic repre-
sentation of arbitrary complexity, providing maxi-
mum flexibility for feature selection. This is shown in 
the figure 3.

Figure 4 shows an example image, consisting of 
16 samples, from a training dataset used to iden-
tify a Bluetooth flooding attack. The image shown 
here is for interarrival time. The advantage of this 
approach is that we can make full use of existing 
ML techniques for image classification for anomaly 
detection. We train our CNN to function as a one-class 
classifier. It learns to recognize “normal” images that 
correspond to non-anomalous traffic and to reject 
non-normal images. These rejected images corre-
spond to anomalous traffic.

FIGURE 4. This sample Bluetooth GAF representation contains 
16 separate subsequences from a Bluetooth flooding attack. The 
initial input was packet interarrival time. 

Convolutional neural network and 
transfer learning
 The WIMS treats anomaly detection as a binary 
classification problem. The approach is to produce 
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images using the technique just described of both 
normal behaving traffic and anomalous traffic. The 
CNN is then trained to predict whether a newly 
presented sample falls in the normal class of images 
it has been trained on. All samples not classified as 
normal are considered anomalous and can generate 
an alert.

The WIMS uses a relatively small CNN. It is shown 
in figure 5. It uses two convolutional layers with a 
relatively low number of output channels, three fully 
connected dense layers with a relatively low number 
of parameters, max polling layers, and rectified linear 
(ReLU) activation. Taken together there are approxi-
mately six million trainable parameters. Considerable 
effort was put into fine tuning the CNN values to 
produce highly accurate results.

FIGURE 5. In this WIMS CNN, the CNN uses two convolutional layers with a relatively low number of output channels, three fully con-
nected dense layers with a relatively low number of parameters, max polling layers, and ReLU activation.

Let TP represent the true positive rate, TF rep-
resent the true negative rate, FP represent the false 
positive rate, and FN represent the false negative rate. 
We evaluated the performance of our approach using 
F1 and the Matthews correlation coefficient (MCC) 
metrics. An F1 score is the harmonic mean of preci-
sion and recall. The F1 score can be written as 

.

For binary classifiers, MCC shows the correlation 
between predictions and actual observations. A 
value of 1.0 shows perfect prediction, 0 is essentially 
random, while -1.0 represents completely incorrect 
predictions. The MCC can be calculated directly from 
the 2x2 confusion matrix by calculating the following:

.

In our work, once routine F1 and MCC scores of 
0.98 or above were obtained, it was possible to start 
the process of TL. The goal was to take a CNN trained 
for Bluetooth anomaly detection and transfer learned 
values to a new CNN, in this case anomaly detection 
for an 802.15.4 network. 

The primary method used entails “freezing” the 
first layers of the pre-trained network and using 
these layers as a “feature extractor,” but plugging 
in and training entirely new, “unfrozen,” randomly 
initialized weight layers to replace the last layers of 
the network, which will perform classification based 
on those extracted features. This method assumes 
that the important features to be extracted from an 
input to perform an accurate classification of that 
input are the same for both the base and target tasks, 
but that the correct classification based on those 
extracted features may differ between the base and 
target tasks. 

We implemented the following eight 
different variants: 

1.    A special placeholder value that denotes 
training from scratch (no TL, random weight 
initialization, all layers unfrozen) 

2.    Unfreeze only the last fully connected layer 
3.    Unfreeze all (3) fully connected layers 
4.    Unfreeze the later convolutional layers (the 

second one) and all fully connected layers 
5.    Unfreeze all (2) layers (convolutional and fully 

connected) in the entire network 
6.    Scenario 1, but reset the unfrozen layers 
7.    Scenario 2, but reset the unfrozen layers 
8.    Scenario 3, but reset the unfrozen layers 
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The WIMS software includes tunable per-layer 
learning rates so that unfrozen layers can learn 
at different rates depending upon whether their 
weights have been reinitialized prior to TL. For this 
application, we want larger learning rates for training 
from scratch and smaller learning rates for transfer. 
This allows the system to learn quickly from scratch 
and fine-tune existing knowledge carefully during 
transfer. The system also supports different L2 reg-
ularization penalties used by the adaptive moment 
estimation (ADAM) optimizer [7]. ADAM is a compu-
tationally efficient gradient-based optimization algo-
rithm commonly used to fine-tune weights in neural 
networks. WIMS also uses different learning rate 
scheduling policies based on the layer type—“base” 
meaning unfrozen and reset (or learning from scratch 
in scenario 1), or “transfer” meaning unfrozen but 
not reset.

The system uses k-fold cross validation when 
training models to generate checkpoints, and when 
testing those models or using them together to vote 
and make a collective prediction. The k-fold cross val-
idation randomly splits the training dataset into 10 
equally sized subsets. Ten networks are then trained 

where each network uses a different 1/10 of the data 
for validation and the other 9/10 for training. When 
testing and making predictions, the 10 model check-
points work together to vote and determine if a given 
sample is anomalous or non-anomalous. They each 
get an equal vote, and the average of their confidenc-
es that a given sample is anomalous is used to make 
a collective prediction, with a threshold of 0.5 (>0.5 
means anomalous, <= 0.5 means non-anomalous). 
This was experimentally determined to be critical for 
achieving accurate results. 

When generating models using TL, several ques-
tions arise when training models to detect a given 
anomaly: Which protocol should we start with (i.e., 
train from scratch on)? Which existing checkpoints 
should we use to train new models using TL? In 
which order should we train on protocols—can we 
use a previous protocol’s TL checkpoint as a base for 
further TL on a new protocol? 

To address these challenges, we developed a tree-
based algorithm for exploring the optimal scenario. 
Each tree has a single protocol at its root; we train 
from scratch on that protocol. The tree is traverse 

FIGURE 6. For these Bluetooth anomaly detection model results, the Braktooth anomaly [8] was used to create a flooding attack on a 
Bluetooth speaker. Graphs are depicted for the results of training accuracy, value accuracy, training loss, and value loss.
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TL from a parent node to generate its child node(s). 
All methods of TL are compared, combinations of 
frozen, unfrozen, and “reset” layers. At that point, the 
algorithm selects the best F1 score to occupy a tree 
node going forward before moving to the node’s chil-
dren. Each tree contains all possible TL checkpoints 
starting from a base protocol without any cycles—
an ancestor in the tree is never revisited as a child. 
Multiple trees can be produced to see which protocol 
makes for the best base.

Evaluation
We tested the above classification and prediction al-
gorithms and then used the TL techniques described 
above and experimented under a variety of condi-
tions. For the Bluetooth protocol, we used a Bluetooth 
speaker and the Braktooth anomaly [8]. This causes 
a response-flooding result—the speaker is discon-
nected from Bluetooth and then reboots. The three 
features selected for the stackable CNN were packet 
interarrival time, packet size, and packet type. The 
results are shown in figure 6. After fine tuning train-
ing parameters, we were able to achieve 1.0 accuracy. 
The results also show training and testing loss.

We then performed TL to the 802.15.4 protocol. 
We ran tests using a wireless personal area network 
(WPAN) consisting of an 802.15.4 hub and a ther-
mostat, and we implemented a flooding response. 
Using combinations of the eight TL scenarios, we 
were interested in the two following figures of merit: 
1) can we achieve high levels of accuracy, and 2) can 
we reduce the training time? 

Figure 7 shows the results for one of these scenari-
os. As can be seen, after only nine training epochs, we 
obtained prediction accuracy of 0.97.

FIGURE 7. In our results, TL was used to apply Bluetooth flooding anomaly models to an 802.15.4 protocol. Graphs are depicted for 
the results of training accuracy, value accuracy, training loss, and value loss.

By observing training and target loss it is also 
possible to observe periods of model instability 
during gradient update epochs. To better understand 
this issue, we developed and implemented numerical 
function fitting software for IoT data for 12 differ-
ent probability distributions, including log-gamma, 
parteo, and exponential. They revealed fundamental 
structural differences between Bluetooth and WPAN 
for the features we selected.

From an algorithmic perspective, the project 
achieved its objectives of demonstrating TL for 
multiple wireless protocols. Enabling factors that 
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contributed to the success of the TL include the 
development of stackable GAF image production 
techniques, a deeper understanding of how to fine 
tune CNN parameters for prediction, the use of the 
eight different scenarios for TL, and the tree-based 
approach for TL protocol selection. Future work 
could explore different types of IoT-based attacks 
such as man-in-the-middle and the use of adversar-
ial ML techniques to enhance our understanding of 
poorly understood protocols. We also expect that the 
probability distribution fitting tool will be extremely 
useful in understanding new datasets.

Conclusion
This paper described WIMS, a distributed system 
used to monitor deployed IoT networks at the en-
terprise level. It uses COTS IoT protocol analyzers/
sniffers and SDRs to collect wireless network traffic. 
On a device-by-device basis, packet captures are 
turned into images. A CNN is trained to recognize 
normal versus anomalous images. Upon detection of 
an anomalous image, alerts are generated. 

One of the notable aspects of WIMS is the use of 
TL. This approach reduces the time to train a CNN on 
new protocols and new attack vectors. Our current 
plan is to continue to classify new IoT protocols as 
they come online, as well as new types of IoT cy-
ber threats.  
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