
[Photo credit: iStock.com/NatalyaBurova]

Around the world, critical infrastructures increasingly incorporate Internet-of-Things (IoT)
devices and networks. Since, by definition, most IoT devices are connected to national if not
global networks, the explosive growth of IoT systems introduces a vast new set of potential

vulnerabilities and exploitable cyber threat vectors. IoT cyberattack classes range from injecting false
or misleading sensor data and distributed denial-of-service attacks to long-term stealthy advanced
persistent threats (APTs).

This article describes our efforts to provide tools to detect potentially compromised IoT devices based
on behavioral analysis of their local wireless [e.g., Bluetooth, Bluetooth Low Energy (BLE), ZigBee, etc.]
communications. We have integrated these tools into a project called the Wireless IoT Monitoring
System (WIMS). We adopt a classification-based machine learning (ML) approach, whereby device-
based IoT packet exchanges are encoded into a set of images. Our ML models are trained to recognize
well-behaving devices and identify anomalous traffic through these generated images as an indication
of a potentially compromised device or system.

 The Next Wave | Vol. 25 No. 1 | 2024 | 41

AI/ML Anomaly Detection
Analytics for Wireless Internet
of Things Systems
S t e p h a n i e P o l c z y n s k i , S a m u e l F o x , E r i k B r a s i l e , N S A
D r. R o b e r t S i m o n , G e o r g e M a s o n U n i v e r s i t y

42

AI/ML Anomaly Detection Analytics for Wireless Internet of Things Systems

The wireless IoT protocol landscape consists of
dozens of over-the-air protocols based on both
open-source and proprietary standards. While

many types of attacks against older protocols such as
Bluetooth have been identified, attacks against newer
protocols such as long-range wide area network
(LoRaWAN) and narrowband (NB)-IoT are less un-
derstood and the threat space and exploit scenarios
are not as well-defined. To address this discrepancy,
we leverage transfer learning (TL) techniques. Using
TL, we can train an anomaly detection classifier for
a well-known class of attacks, say against Bluetooth,
and reuse that knowledge to shorten the training
time and improve the accuracy of anomaly detection
for a newer protocol, such as LoRaWAN.

We first provide a brief background into the wire-
less IoT threatscape, and then discuss our IoT mon-
itoring system. Next, we describe how we transform
IoT packet captures into picture images representing
encoded time series data from the network traffic
and use ML on those images to identify anomalous
activity. Thereafter, we explain how we use TL to
rapidly train image classifiers on new protocols and
attack classes. Lastly, we provide some experimental
results and offer conclusions.

Threatscape for wireless IoT
There has been limited work on using ML to monitor
wireless IoT traffic and detect suspicious behavior.
Current solutions primarily focus on wired or 802.11
wireless IoT devices and focus on the communication
patterns between an IoT device and the host server.
For example, one might monitor the encrypted web
communications of a smart home hub/gateway from
the router to the manufacturer’s cloud server. These
solutions would examine features like the number
of times the device usually communicates with the
server, average data transmission size, frequency of
communications, etc. However, these solutions are
not examining the local wireless communications
of the IoT devices. IoT end devices often use proto-
cols like Bluetooth, ZigBee, Z-Wave, Thread, NB-IoT,
LoRaWAN, and now 5G to communicate with the
managing device, hub, gateway, or cloud server.

Monitoring traffic over these protocols requires
special equipment that is often designed for use by
radio-frequency (RF) experts and is not tailored for
use by the average network analyst and certainly not
designed to be used for long-term monitoring and de-
tection. Further, IoT devices typically lack traditional

security mechanisms such as firewalls, antivirus
programs, system logs, etc. that can be used to pre-
vent, detect, and analyze potential malicious activity.
Because of this, we sought to develop a wireless IoT
monitoring system that performs anomaly detection
using what is often the only source of information
available from wireless IoT devices—the packets
they transmit to communicate between other IoT end
devices and IoT gateways.

To fully grasp the IoT problem set, it is useful to
understand the scale of the IoT space from the num-
ber of protocols available and in use by technology
developers, to the complex networks spanning multi-
ple protocols. The number of IoT protocols is a rela-
tively difficult number to pin down. A quick Internet
search of “How many IoT protocols are there?” yields
results of anywhere from the top six IoT protocols
to 26 IoT protocols [1]. Most of these articles also
acknowledge that their lists are “extensive—but not
exhaustive.” As wireless technologies improve, new
protocols are constantly being developed to cater
to the specific needs of mobile networks. The Fifth
Generation of Mobile Telephony (5G) standard, for
example, was “functionally frozen in June 2018 and
fully specified by September 2019.” 5G promises
support for a “massive Internet of Things” integrating
“the operational aspects that apply to the wide range
of IoT devices and services anticipated in the 5G
timeframe” [2]. On the other hand, some IoT sensor
devices have been in use for decades and will contin-
ue to be so for many more years, without the oppor-
tunity for updates. Therefore, IoT-enabled devices
often have support for not only new technologies, but
also legacy protocols.

In addition to the number individual protocols
available for use, many modern IoT networks make
use of several IoT protocols to provide better quality
of service (QoS) to their users. Amazon Sidewalk,
for example, uses (at a minimum) BLE [2.4 gigahertz
(GHz) industrial, scientific, and medical (ISM) band]
for short-range communications and LoRa [900
megahertz (MHz) ISM band] for long range [3]. Many
devices support multiple methods of communica-
tion and automatically switch between the protocols
based on any number of metrics determined by the
device manufacturer. Each protocol a device supports
is another communication link and therefore poten-
tial attack vector for malicious actors.

How does an organization protect itself when
incorporating devices with IoT interfaces into its

 The Next Wave | Vol. 25 No. 1 | 2024 | 43

FEATURE

operations? Simply not using devices with IoT capa-
bilities is likely the safest option; however, this option
is growing increasingly difficult and impractical. It is
not uncommon for device manufacturers to include
one or more wireless protocol interfaces. There are
many reasons to do so from a manufacturer’s per-
spective to include, QoS (as discussed previously),
redundant links for firmware updates, mesh network
support, device metrics, information collection, etc.

Wireless IoT monitoring options
Before developing analytics to perform behavioral
analysis of wireless IoT traffic, a process first need-
ed to be developed to collect the traffic from the IoT
devices. There are two primary means of doing this
currently. The first is using commercially available
IoT protocol analyzers/sniffers, which automatically
detect and demodulate supported IoT signals and
output the observed traffic in an easily parseable,
often packetized format for easy analysis of the data.
The second method is using software-defined radios
(SDRs) which provide a generic radio front end that
captures raw samples of the RF spectrum. These de-
vices allow for adjustable tuning and instantaneous
bandwidth to cover nearly any portion of the RF spec-
trum; however, they require specialized expertise to
operate to obtain the IoT data.

IoT protocol analyzers
Commercially available protocol analyzers/packet
sniffers are available to monitor the most common
wireless IoT protocols to include Bluetooth Classic
[basic rate/enhanced data rate (BR/EDR)], BLE, Wi-
Fi, and 802.15.4-based protocols such as Zigbee and
Thread [4, 5, 6]. Many implementations are hard-
ware-based solutions that cater to specific frequency
bands or specific protocols. Higher-end wireless sniff-
ers can often detect packets from several different
protocols, perform simultaneous collection on each
of them, while also providing the raw RF data stream.
Example solutions include the Spanalytics PANalyzer,
the Ellisys Vanguard, and Frontline X500, all of which
target the 2.4 GHz ISM band.

The difficulty of dealing with hardware-based RF
solutions is that in order to adapt to new protocols
or protocols in a different frequency band, additional
hardware or at a minimum new firmware/drivers
must be pushed to all devices. Adding new hardware
introduces many considerations into a system’s

design to include physical footprint, complexity (e.g.,
potentially multiple manufacturers/interfaces), pow-
er consumption, additional cost, maintenance, etc.

These commercial-off-the-shelf (COTS) packet
sniffers are a great option for targeting the most
common protocols being used. With that being said,
because of the vast number of protocols in the IoT
space, quite a few are not supported or require
additional hardware to cover. Each of the manufac-
turers previously listed provide additional hardware
expansions to provide support for additional popular
protocols in the 900 MHz ISM band such as LoRa and
Z-Wave. This however still leaves quite a few proto-
cols unsupported and again raises the issues of add-
ing additional hardware to the system architecture.

Software-defined radios
To attempt to fill in the gaps and solve some of the
hardware scalability issues, software-defined radi-
os (SDRs) provide flexibility and adaptability. SDRs
provide a “generic” radio front end that captures raw
samples of the RF spectrum. These devices allow for
adjustable tuning and instantaneous bandwidth to
cover nearly any portion of the RF spectrum need-
ed. Many provide onboard field-programmable gate
arrays (FPGAs) for use as signal processors and
provide high-speed interfaces such as universal serial
bus (USB), Ethernet, peripheral component intercon-
nect express (PCIe), etc. for offloading to a separate
processor. These separate processors can make use
of modern processor units [central processing units
(CPUs), graphics processing units (GPUs), etc.] to pro-
cess wideband captures of the spectrum in real time.
Because the SDR front end is relatively generic, the
system used to process the RF sample stream can be
upgraded to meet the needs of the signal processing
toolchain. Additionally, the architecture of SDR-based
systems makes processing multiple protocols in par-
allel relatively simple.

Because the radio front-end interface is abstracted
from the processing unit, developing signal packet
sniffers becomes extremely modular and software
based. Signal processing toolchains can be written
in any language supported by the processing unit
which is likely running a modern operating system
and can support almost any compiler. GNU Radio, for
example, is a popular open-source SDR development
framework commonly used by hobbyists and re-
searchers to implement signal processing toolchains.

44

AI/ML Anomaly Detection Analytics for Wireless Internet of Things Systems

GNU Radio is built on C/C++ and Python and great-
ly simplifies the work required to develop an SDR
protocol sniffer implementation. This provides an ad-
ditional benefit due to the availability of open-source
implementations of nearly every IoT protocol. Adding
support for a protocol could be as simple as installing
an open-source GNU Radio module.

To further increase modularity, a management
framework could be used to abstract the front-end
radios from any signal processing units. A manage-
ment framework would control distributed antennas
as well as multiple SDRs monitoring multiple por-
tions of the spectrum in different locations simul-
taneously. This management framework would be
able to control not only the portions of the spectrum
being monitored but also control the protocols being
processed. An SDR solution is a major improvement
over an IoT protocol analyzer since it is extremely
modular and adaptable to the specific requirements
of an organization.

Distributed monitoring architecture
For the initial effort, we utilized commercial IoT pro-
tocol analyzers/sniffers due to their ease of use and
support for the most common wireless IoT protocols
(e.g., Bluetooth, BLE, ZigBee, etc.). However, as we
continue to add support for additional wireless IoT
protocols to the system which do not have commer-
cially available sniffing tools, we are also adding SDR
support to enable the processing of further protocols.

To enable the use of artificial intelligence (AI)/ML
anomaly detection analytics for wireless IoT traffic,

we designed a distributed architecture and the sup-
porting software to monitor the wireless IoT traffic
over an area. The area to be monitored could be a
room, building, campus, etc. if sufficient IoT traffic
sniffers were placed throughout the area to ensure
adequate coverage to collect the wireless IoT traffic.
The sniffers need to be distributed optimally through
the space due to low power and low-transmission
range of most wireless IoT protocols. These distribut-
ed sniffers will send all observed wireless IoT traffic
to a central server for further processing. This system
is called the Wireless IoT Monitoring System (WIMS).

The central WIMS server provides two
primary functions:

1.    Situational awareness into which wireless IoT
protocols and devices are observed in the cover-
age area. This includes a count of how many de-
vices of each protocol were observed over a set
time period, the addresses of the devices, and
the sniffer(s) that detected the device to aid
in geolocation. Additionally, if the end device
uses a resolvable public media access control
(MAC) address—the system will provide as
much identifying information on the device
as possible.

2.    ML-based anomaly detection analytics on the
observed IoT traffic. If a potential anomaly is
flagged, it will be displayed on the alert dash-
board, can be clicked-into for further infor-
mation, and alerts can optionally be forward-
ed to other security tools or to designated
security officials.

FIGURE 1. This Wireless IoT Monitoring System (WIMS) dashboard provides an overview of which IoT protocols and devices were
observed in the coverage area. It also displays alerts for devices with detected anomalous traffic.

 The Next Wave | Vol. 25 No. 1 | 2024 | 45

FEATURE

a. It should be noted that the images produced by WIMS cannot be readily interpreted by human analysts.

Anomaly detection approach
Wireless behavioral monitoring systems such as
WIMS must ingest and process large numbers of IoT
packet data streams. Sophisticated IoT cyberattacks
may only be detectable by understanding the statisti-
cal relationships both within each packet and be-
tween packets in each data stream. Given the sheer
number of packets and complex interrelationships
between packets inside of data streams, current ML
approaches are particularly attractive since they au-
tomatically learn to classify individual datasets into
discrete classes.

IoT data streams are a type of time series informa-
tion. These time series form data types that can be
viewed as one-dimensional or two-dimensional grids.
Convolutional neural networks (CNNs) do extreme-
ly well at classifying grids. For instance, CNNs are
known to excel at image classification, where each
image is processed as a two-dimensional grid of pixel
values. By treating IoT data streams as time series
grids representing packet data, WIMS takes advan-
tage of existing computer vision and image process-
ing ML capabilities.

The fundamental ML approach used is to turn
packet captures from a particular IoT protocol into
a set of images which are then analyzed by a CNN.
WIMS uses a Gramian angular field (GAF), described
below, to convert the time series into a two-dimen-
sional grid which can be treated as an image.a The
advantage of this approach is that it preserves tem-
poral dependencies among packet events, provided
the events are properly encoded. The CNN is trained
to recognize anomalous versus normal traffic in a
process akin to image classification. Once a stable
model is developed, that model is used for TL to a
new protocol.

After suitably accurate results for correct classifi-
cation (i.e., normal versus anomalous) are achieved
with this method, the next goal is to transfer the well-
trained CNN for anomaly detection on other proto-
cols. When building this capability, we first sought to
demonstrate, with nearly 100 percent accuracy, the
ability to detect a Bluetooth response flooding attack
using a CNN image-classification algorithm, and then
use TL to substantially reduce the training time for
anomaly detection of a response to a flooding attack
in an 802.15.4 network such as ZigBee.

As traffic is collected from the IoT traffic sniffers
and forwarded to the central server, the data is stored
in a MySQL database in the form of packet capture
(PCAP) files. The first steps of the ML processing
pipeline are to turn each individual PCAP into an
image which can be processed by a CNN. This pipe-
line is shown below and is explained in detail in the
following section.

FIGURE 2. In this ML processing pipeline, the IoT data is ingested in PCAP form, converted into a time series for each feature, and then
pre-processed prior to being transformed into a Gramian angular field (GAF) picture and inputted into a CNN for anomaly detection.

Image production
The first step in transforming packet captures into
images is to extract time series data from the data-
base from each feature of interest. Example features
of interest are packet interarrival time, packet size,
and protocol message type. Specifically, each value in
the time series comes from one packet. For the data-
base used in the WIMS, this corresponds to one row.
The time series is split into fixed size chunks corre-
sponding to a certain duration of elapsed real time.
The current default is one second. This produces a
subseries for each feature.

When processing data extracted from a database
(e.g., training, validation, testing) or a dictionary
(i.e., real-time prediction), the values of each feature
must be parsed in an appropriate fashion. The parser

46

AI/ML Anomaly Detection Analytics for Wireless Internet of Things Systems

replaces any NULL values from the database with a
chosen pad value for the feature, then converts the
data extracted from the database with values of the
appropriate data type. The rules for pad values are
as follows:

1.    It cannot be a value which could legitimately
arise from a true observation; for example,
don’t pick a positive value for packet length,
for example.

2.    It makes sense in the context of its
respective feature.

3.    It can be represented by the chosen data type
for this feature; for instance, don’t pick a nega-
tive pad value when using an unsigned integer
like np.uint32.

At this point a Gramian angular field is produced
for each subseries. This is done by rescaling all values
to fall within the interval [0,1]. These values are then
put into a polar coordinate system by encoding the
value as the angular cosine and the time stamp as
the radius. A square matrix is then used where each
entry is the trigonometric sum between each pair
of points. This enables the identification of tempo-
ral correlations between different time intervals. A
square Gramian matrix is produced which is then
transformed into an red-green-blue (RGB) image.

FIGURE 3. In building this Gramian angular field (GAF) represen-
tation, the value of each feature in the time series is converted
into a polar coordinate system, and a two-dimensional grid (i.e.,
the image) is produced where each entry is the trigonometric
sum between each pair of points.

A key part of the data processing pipeline is to use
stackable GAF representations, each correspond-
ing to the same time slice for each feature to form a
tensor of arbitrary dimensionality. This allows for an
N-channel image that allows a network traffic repre-
sentation of arbitrary complexity, providing maxi-
mum flexibility for feature selection. This is shown in
the figure 3.

Figure 4 shows an example image, consisting of
16 samples, from a training dataset used to iden-
tify a Bluetooth flooding attack. The image shown
here is for interarrival time. The advantage of this
approach is that we can make full use of existing
ML techniques for image classification for anomaly
detection. We train our CNN to function as a one-class
classifier. It learns to recognize “normal” images that
correspond to non-anomalous traffic and to reject
non-normal images. These rejected images corre-
spond to anomalous traffic.

FIGURE 4. This sample Bluetooth GAF representation contains
16 separate subsequences from a Bluetooth flooding attack. The
initial input was packet interarrival time.

Convolutional neural network and
transfer learning
 The WIMS treats anomaly detection as a binary
classification problem. The approach is to produce

 The Next Wave | Vol. 25 No. 1 | 2024 | 47

FEATURE

images using the technique just described of both
normal behaving traffic and anomalous traffic. The
CNN is then trained to predict whether a newly
presented sample falls in the normal class of images
it has been trained on. All samples not classified as
normal are considered anomalous and can generate
an alert.

The WIMS uses a relatively small CNN. It is shown
in figure 5. It uses two convolutional layers with a
relatively low number of output channels, three fully
connected dense layers with a relatively low number
of parameters, max polling layers, and rectified linear
(ReLU) activation. Taken together there are approxi-
mately six million trainable parameters. Considerable
effort was put into fine tuning the CNN values to
produce highly accurate results.

FIGURE 5. In this WIMS CNN, the CNN uses two convolutional layers with a relatively low number of output channels, three fully con-
nected dense layers with a relatively low number of parameters, max polling layers, and ReLU activation.

Let TP represent the true positive rate, TF rep-
resent the true negative rate, FP represent the false
positive rate, and FN represent the false negative rate.
We evaluated the performance of our approach using
F1 and the Matthews correlation coefficient (MCC)
metrics. An F1 score is the harmonic mean of preci-
sion and recall. The F1 score can be written as

.

For binary classifiers, MCC shows the correlation
between predictions and actual observations. A
value of 1.0 shows perfect prediction, 0 is essentially
random, while -1.0 represents completely incorrect
predictions. The MCC can be calculated directly from
the 2x2 confusion matrix by calculating the following:

.

In our work, once routine F1 and MCC scores of
0.98 or above were obtained, it was possible to start
the process of TL. The goal was to take a CNN trained
for Bluetooth anomaly detection and transfer learned
values to a new CNN, in this case anomaly detection
for an 802.15.4 network.

The primary method used entails “freezing” the
first layers of the pre-trained network and using
these layers as a “feature extractor,” but plugging
in and training entirely new, “unfrozen,” randomly
initialized weight layers to replace the last layers of
the network, which will perform classification based
on those extracted features. This method assumes
that the important features to be extracted from an
input to perform an accurate classification of that
input are the same for both the base and target tasks,
but that the correct classification based on those
extracted features may differ between the base and
target tasks.

We implemented the following eight
different variants:

1.    A special placeholder value that denotes
training from scratch (no TL, random weight
initialization, all layers unfrozen)

2.    Unfreeze only the last fully connected layer
3.    Unfreeze all (3) fully connected layers
4.    Unfreeze the later convolutional layers (the

second one) and all fully connected layers
5.    Unfreeze all (2) layers (convolutional and fully

connected) in the entire network
6.    Scenario 1, but reset the unfrozen layers
7.    Scenario 2, but reset the unfrozen layers
8.    Scenario 3, but reset the unfrozen layers

48

AI/ML Anomaly Detection Analytics for Wireless Internet of Things Systems

The WIMS software includes tunable per-layer
learning rates so that unfrozen layers can learn
at different rates depending upon whether their
weights have been reinitialized prior to TL. For this
application, we want larger learning rates for training
from scratch and smaller learning rates for transfer.
This allows the system to learn quickly from scratch
and fine-tune existing knowledge carefully during
transfer. The system also supports different L2 reg-
ularization penalties used by the adaptive moment
estimation (ADAM) optimizer [7]. ADAM is a compu-
tationally efficient gradient-based optimization algo-
rithm commonly used to fine-tune weights in neural
networks. WIMS also uses different learning rate
scheduling policies based on the layer type—“base”
meaning unfrozen and reset (or learning from scratch
in scenario 1), or “transfer” meaning unfrozen but
not reset.

The system uses k-fold cross validation when
training models to generate checkpoints, and when
testing those models or using them together to vote
and make a collective prediction. The k-fold cross val-
idation randomly splits the training dataset into 10
equally sized subsets. Ten networks are then trained

where each network uses a different 1/10 of the data
for validation and the other 9/10 for training. When
testing and making predictions, the 10 model check-
points work together to vote and determine if a given
sample is anomalous or non-anomalous. They each
get an equal vote, and the average of their confidenc-
es that a given sample is anomalous is used to make
a collective prediction, with a threshold of 0.5 (>0.5
means anomalous, <= 0.5 means non-anomalous).
This was experimentally determined to be critical for
achieving accurate results.

When generating models using TL, several ques-
tions arise when training models to detect a given
anomaly: Which protocol should we start with (i.e.,
train from scratch on)? Which existing checkpoints
should we use to train new models using TL? In
which order should we train on protocols—can we
use a previous protocol’s TL checkpoint as a base for
further TL on a new protocol?

To address these challenges, we developed a tree-
based algorithm for exploring the optimal scenario.
Each tree has a single protocol at its root; we train
from scratch on that protocol. The tree is traverse

FIGURE 6. For these Bluetooth anomaly detection model results, the Braktooth anomaly [8] was used to create a flooding attack on a
Bluetooth speaker. Graphs are depicted for the results of training accuracy, value accuracy, training loss, and value loss.

 The Next Wave | Vol. 25 No. 1 | 2024 | 49

FEATURE

TL from a parent node to generate its child node(s).
All methods of TL are compared, combinations of
frozen, unfrozen, and “reset” layers. At that point, the
algorithm selects the best F1 score to occupy a tree
node going forward before moving to the node’s chil-
dren. Each tree contains all possible TL checkpoints
starting from a base protocol without any cycles—
an ancestor in the tree is never revisited as a child.
Multiple trees can be produced to see which protocol
makes for the best base.

Evaluation
We tested the above classification and prediction al-
gorithms and then used the TL techniques described
above and experimented under a variety of condi-
tions. For the Bluetooth protocol, we used a Bluetooth
speaker and the Braktooth anomaly [8]. This causes
a response-flooding result—the speaker is discon-
nected from Bluetooth and then reboots. The three
features selected for the stackable CNN were packet
interarrival time, packet size, and packet type. The
results are shown in figure 6. After fine tuning train-
ing parameters, we were able to achieve 1.0 accuracy.
The results also show training and testing loss.

We then performed TL to the 802.15.4 protocol.
We ran tests using a wireless personal area network
(WPAN) consisting of an 802.15.4 hub and a ther-
mostat, and we implemented a flooding response.
Using combinations of the eight TL scenarios, we
were interested in the two following figures of merit:
1) can we achieve high levels of accuracy, and 2) can
we reduce the training time?

Figure 7 shows the results for one of these scenari-
os. As can be seen, after only nine training epochs, we
obtained prediction accuracy of 0.97.

FIGURE 7. In our results, TL was used to apply Bluetooth flooding anomaly models to an 802.15.4 protocol. Graphs are depicted for
the results of training accuracy, value accuracy, training loss, and value loss.

By observing training and target loss it is also
possible to observe periods of model instability
during gradient update epochs. To better understand
this issue, we developed and implemented numerical
function fitting software for IoT data for 12 differ-
ent probability distributions, including log-gamma,
parteo, and exponential. They revealed fundamental
structural differences between Bluetooth and WPAN
for the features we selected.

From an algorithmic perspective, the project
achieved its objectives of demonstrating TL for
multiple wireless protocols. Enabling factors that

50

AI/ML Anomaly Detection Analytics for Wireless Internet of Things Systems

contributed to the success of the TL include the
development of stackable GAF image production
techniques, a deeper understanding of how to fine
tune CNN parameters for prediction, the use of the
eight different scenarios for TL, and the tree-based
approach for TL protocol selection. Future work
could explore different types of IoT-based attacks
such as man-in-the-middle and the use of adversar-
ial ML techniques to enhance our understanding of
poorly understood protocols. We also expect that the
probability distribution fitting tool will be extremely
useful in understanding new datasets.

Conclusion
This paper described WIMS, a distributed system
used to monitor deployed IoT networks at the en-
terprise level. It uses COTS IoT protocol analyzers/
sniffers and SDRs to collect wireless network traffic.
On a device-by-device basis, packet captures are
turned into images. A CNN is trained to recognize
normal versus anomalous images. Upon detection of
an anomalous image, alerts are generated.

One of the notable aspects of WIMS is the use of
TL. This approach reduces the time to train a CNN on
new protocols and new attack vectors. Our current
plan is to continue to classify new IoT protocols as
they come online, as well as new types of IoT cy-
ber threats.

References
[1] Link Labs. “The complete list of wireless IoT network
protocols.” 2016 Feb 8. Available at: https://www.link-
labs.com/blog/complete-list-iot-network-protocols.

[2] 3GPP. “5G system overview.” 2022 Aug
8. Available at: https://www.3gpp.org/
technologies/5g-system-overview.

[3] Amazon.com Inc. “What is Amazon Sidewalk.”
Developer Guide: AWS IoT Core. [Accessed online 2023.]
Available at: https://docs.aws.amazon.com/iot/latest/
developerguide/amazon-sidewalk-overview.html.

[4] Spanalytics, LLC. “PANalyzer.” [Accessed online 2023.]
Available at: https://spanalytics.com/product/panalyzr/.

[5] Ellisys. “Ellisys Bluetooth Vanguard advanced all-in-
one Bluetooth analysis system.” [Accessed online 2023.]
Available at: https://www.ellisys.com/products/bv1/.

[6] Teledyne Lecroy. “Frontline X500 wireless procotol
analyzer.” 2023. Available at: https://cdn.teledynelecroy.
com/files/pdf/frontline-x500-datasheet.pdf.

[7] Kingma, Diederik P., and Jimmy Ba. “Adam: A
method for stochastic optimization.” ArXiv preprint;
arXiv:1412.6980 (2014). Available at: https://arxiv.org/
abs/1412.6980.

[8] Garbelini ME, Chattopadhyay S, Bedi V, Sun S,
Kurniawan E. “BRAKTOOTH: Causing Havoc on Bluetooth
Link Manager.” Asset Research Group. Available at:
https://asset-group.github.io/disclosures/braktooth/.

https://www.link-labs.com/blog/complete-list-iot-network-protocols
https://www.link-labs.com/blog/complete-list-iot-network-protocols
https://www.3gpp.org/technologies/5g-system-overview
https://www.3gpp.org/technologies/5g-system-overview
https://docs.aws.amazon.com/iot/latest/developerguide/amazon-sidewalk-overview.html
https://docs.aws.amazon.com/iot/latest/developerguide/amazon-sidewalk-overview.html
https://spanalytics.com/product/panalyzr/
https://www.ellisys.com/products/bv1/
https://cdn.teledynelecroy.com/files/pdf/frontline-x500-datasheet.pdf
https://cdn.teledynelecroy.com/files/pdf/frontline-x500-datasheet.pdf
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://asset-group.github.io/disclosures/braktooth/

		Superintendent of Documents
	2024-04-09T16:52:28-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

