
 The Next Wave | Vol. 25 No. 1 | 2024 | 51

Malware Bytes
J a m e s H o l t , E d w a r d R a f f

Over the past decade, the Advanced Computing Systems (ACS) office of the Lab-
oratory for Physical Sciences (LPS) has explored a wide variety of approaches to
analyzing and classifying binary files. One of the most significant findings, and

a consistent theme of our work, is the surprising effectiveness of algorithms that look
directly at the bytes of files. Previously, most approaches to applying machine learning
(ML) to binary files first extracted some set of features, and used these features as input
to an ML model. In contrast, we have built ML models that learn directly from the file
itself, ingesting and learning from the file as a sequence of bytes.

One advantage of this is that it requires no domain-specific or file-type-specific knowl-
edge, so the exact same approach and set of tools can be used on multiple file types.
Because of this, we have been able to use the same tools, with no alteration or custom-
ization, to build classifiers for Windows executables, Linux executables, PDFs, Microsoft
Office files, rich text files (RTFs), and others.

[Photo credit: iStock.com/Quardia]

52

Malware Bytes

Historically, cybersecurity tasks concerning
binary files, such as malware detection, anal-
ysis, triage, reverse engineering, disassembly,

decompilation, etc., have required deep expertise and
a low-level understanding of the structure of files and
function of operating systems. The tools that have
evolved to perform or assist with these tasks also
require deep expertise to create, to use, and to keep
up to date. The complexity of these files and systems,
and therefore the degree of expertise needed to
work with them, continues to grow, and this creates
challenges in training people, in keeping the software
tools current, and in computational cost of running
the tools.

This challenge is not going away. Tools which em-
body deep knowledge and understanding are certain-
ly still necessary. But, we can now complement them
with no-domain-knowledge tools that can be rapidly
adapted to new problems, providing agility, speed,
and scale. In some cases they can reduce the need
for more expensive high-domain-knowledge tools.
Along these lines, ACS has developed a portfolio of
byte-based algorithms, including compression-based
file similarity metrics, a highly efficient n-gram
algorithm, convolutional neural network-based
file classification, n-gram and logistic regres-
sion (LR)-based file classification, and automatic
signature generation.

In this article we will share some highs, lows, and
points of interest from the journey our research
has taken over the last decade, exploring different
forms of ML for file classification, testing existing
ML techniques, innovating new ones, creating new
algorithms that yielded 100-fold performance gains,
curating datasets, and delivering new capabilities.
Along the way, we published many of our advances
in academic papers. Often these were accompanied
by code, allowing others to leverage and benefit from
our new algorithms. As we go through these efforts,
we will highlight the published papers for the reader
who would like to go deeper.

The false negative/false positive trade-off
Antivirus (AV) products have been deployed and
in use for decades. They were originally targeted
at home consumers, which imposed early design
constraints. The AV product needed to run fast
enough to not get in the way (too much). If the AV
slowed the system down so that it was no longer

interactive, making users wait too long to load or use
applications, they would forgo the product entirely.
Essentially, there is a friction ceiling that AVs need to
avoid to keep users happy.

This friction ceiling applies for both speed and
accuracy. Imagine the AV was more likely to predict
a benign file as malicious (i.e., false-positive or FP)
than a malicious file as benign (i.e., false-negative or
FN). This would mean every new benign application
would have a larger chance of causing an alert to the
user. This would result in interruption of their work,
remediation, and whitelisting—that is, friction. Again,
the user would forgo the AV. To prevent this, AVs are
designed around minimizing false positives. These
are reasonable design constraints, motivated by
real-life use, and still relevant today. For this reason,
these ideas and goals are heavily embedded in the
current industry and academic cultures.

Unfortunately, systems designed this way do not
adequately address the breadth of issues we see in
the government. Some missions require that every
file be inspected, analyzed, and a determination of
risk made. In such a case, the FP/FN trade-off is not
relevant, and the coarse “yes/no” returned by many
AVs does not allow us to adjust this trade-off as we
need [1]. Instead, what is desired is a score that can
be used to rank all the files from most-likely mali-
cious to least-likely. You can quantify this using the
area under the curve (AUC), which measures the
quality of a “ranking” of files by maliciousness. In
other cases, like forensic investigations, there is an
informed presumption that malware already exists
and needs to be found. In this case, the motivations
and costs are different. Minimal FN is the goal, so that
if malware is actually on the system, it will be found,
not missed, and evidence gathered. The costs of FPs
are manageable in this instance, so the incentives are
reversed. Our research has explored approaches for
missions with varying FN/FP sensitivities.

Dealing with the fire hose of files
AV software on an individual user’s machine is one
piece of a larger puzzle. Large AV vendors have
millions of installations of their software, all sending
suspicious files back to a central system for analysis.
It may be useful to think of the user’s AV as the front
end, or the collector, and the central system as the
back end. This central system will receive millions of
files daily. From the view of the central system, this

 The Next Wave | Vol. 25 No. 1 | 2024 | 53

FEATURE

fire hose of files must be triaged. Decisions must be
made about whether and how to analyze each file,
which analysis tools will provide the most relevant
information, and how much computing and human
effort to spend on each file. The US government faces
similar issues, as it operates and defends millions
of computers.

This large-scale analysis process can be thought of
as a pipeline, including a variety of feature extraction
and analytic processes which feed into decision-mak-
ing. Often, analytics with increasing cost or levels of
effort are applied to subsets of the files as they prog-
ress through the pipeline. Building capabilities that
enhance both the analysis and decision-making parts
of this pipeline has been a goal of our research.

Figure 1 is a simplified representation of parts
of the file/malware analysis pipeline, showing how
files or other information flows between stages. The
purple text indicates papers we have published that
are applicable to various stages.

Helping our academic and industry partners
understand the government’s perspective on this
pipeline, and analytic needs associated with it, has
also been a goal. We hope an increased understand-
ing of this will motivate and incentivize additional
research, resulting in new and improved capabilities
for all cyber-defenders.

FIGURE 1. A simplified diagram of the kinds of interactions and stages necessary in supporting large scale file analysis. The purple text
highlights selected research results, placed next to the stage it impacts.

Deep file analysis
You’ve discovered some malware, what happens
next? Sometimes you can just delete it, clean the
machine it was on, and be done. Other times you may
want to create a signature to automatically detect it,
if it shows up again. If the malware was found on a
high-value asset, you may want to investigate more
deeply. How did this get onto this machine? What is
the goal of this malware? How does it work? Who
made it? How does the owner of the malware com-
municate with and control it?

The computers of the US government and defense
contractors are targeted every day by actors from
around the world. Some of these actors are highly
motivated and well-resourced to come after our in-
formation. At times they even create custom-crafted
malware that is specific and goal oriented. It is often
critical to understand how we are being attacked, by
whom, and what their motivations are. Better under-
standing of these factors informs our steps to reme-
diate intrusions and prevent future ones through
signatures and security updates.

Performing custom deep analysis on a specific
file is a labor-intensive and primarily human-driv-
en process. This work can take days or weeks for a
single file, consuming analysts’ time and creating a
backlog. This slowness also interferes with a critical
function of the analyst: noticing trends and making

54

Malware Bytes

connections. Is this malware similar to something
we’ve seen before, or related to something we’ve
seen before? That information could help reverse
engineering go faster, avoid redundant work, and
inform threat intelligence [2, 3]. Instead of treating all
individual malware occurrences as isolated, under-
standing recurrence of related malware could help us
identify a prolonged campaign.

Our foray into malware detection
Starting in 2012, the ACS team began looking at
malware detection as a way to apply our ML research
to real-world problems. At the time this seemed
eminently reasonable. After a review of the academic
literature, it seemed many published papers reported
over 99 percent accuracies using byte n-grams. Given
the reported results, it seemed like the easiest way to
get started. Other approaches like dynamic analysis,
disassembly, and similar techniques required exten-
sive infrastructure, making both training and deploy-
ment more challenging. The reported accuracies in
the literature were also not meaningfully different, so
why pay this high price?

Replicating the data collection, algorithm training,
and design processes allowed us to produce initial
results. Significant software engineering work was
done to make the process as fast as possible, re-
writing research-grade Python code into Java gave
us 100-1000 times speedups, and made it easy to
deploy in a variety of mission environments. We had
great initial success in our lab environment, so we
decided it was time for field testing with our mission
partners. As our first trial deployment reached its
conclusion, we got harsh feedback: the system was not
useful, everything was labeled as malware, and they
did not want to continue using the tool.

This is how we first learned of the considerable
gap between academic knowledge on the subject of
malware detection and the practical application of
such knowledge. The crux of the issue was that all
our benign data came from a clean installation of
Microsoft Windows, and our model would learn to
literally look for the bytes of “Copyright Microsoft
Corporation” as its method of determining “mali-
cious” versus “benign.” In reality, we had developed
a “from Microsoft or not” detector. This underscores
the importance of knowing your data, and training
with representative data, as an ML model can only
learn from the data you give it.

It was clear that we needed to get better-quali-
ty benign data for our research efforts. It was also
clear that nontrivial parts of academic literature and
culture around the application of ML for malware
had misunderstandings of what would generalize
to practice, and what tools and volumes of data
were needed.

Byte-based models
Given the cost of feature engineering and domain
knowledge, our team decided to explore just how
far byte-based models could be pushed. This led to
three different families of techniques that we have
advanced over the past decade: 1) byte n-gram-based
models, which have been surprisingly effective for
malware detection; 2) using compression algorithms
(similar to those used in a .zip file) for ML, which
we have found especially useful for information
retrieval situations; and 3) scaling and accelerating
deep-learning techniques to handle malware data.

All three techniques have the broad benefit that
we can apply them to any file format or data type,
provided we are able to obtain sufficiently represen-
tative data (both benign and malicious) for said file
format. This has allowed our small team to adapt
and stay relevant to mission interests despite gaps
in our domain expertise for many platforms that our
mission partners are interested in. Each is also useful
from a deployment and product life cycle perspective:
because we work from raw bytes, there is no parsing
involved. This means we never have parsing errors
in production, a common issue as malware authors
intentionally subvert the fact that the specification
doesn’t always match the actual implementation for
a given file loader. This also avoids highly cumber-
some dependencies. Many projects depend on the
parsing capabilities of LIEF, IDA Pro, Ghidra, or other
software with significant domain-expert knowledge.
While valuable, that also means these tools are con-
stantly evolving as malware actors adapt to detection
approaches. This continuous evolution results in a
significant technical burden of keeping tools current.

Byte n-grams

When we started working on byte n-grams with
higher-quality data, one early win became very
important for people using our algorithms and
code. Deployment was fast. The model size and the
code to run it was only a few megabytes. The model

 The Next Wave | Vol. 25 No. 1 | 2024 | 55

essentially contained a list of byte 6-grams, and
corresponding weights indicating if the byte pattern
was positively/negatively impacting the malware
decision [4]. This was low profile, meaning it could be
deployed on almost any platform. Running the model
could be done using a small buffer, streaming the data
into main memory and checking if bytes occurred,
incrementing/decrementing the cumulative score
accordingly, and then returning the answer. Using
rolling hash functions means you could perform
the initial load of a file into memory or transfer it to
another location and get a benign/malicious predic-
tion essentially “for free” because this code was faster
than the data transfer process.

Our first deployments were in situations where
speed was the critical factor to deployment and
mission success. Anything that took more than 100
milliseconds would be too slow to run on all the
incoming data. Others were mission partners that
needed to go on “fly away” missions, carrying all the
computing they could use with them, and our tool
was fast and easy to add. More deployments came as
some missions used an ensemble of products to make
a prediction, and our byte-based model was unusu-
al compared to the standard AV approaches. This
is valuable, as ensembles improve their predictive
performance when the members of the ensemble are
different (or, uncorrelated in their errors).

These benefits do not come for free though. The
first cost is a decrease in accuracy compared to many
industry products, which was expected. Industry AV
products are built using vast amounts of data, and
many person-years of labor analyzing and signatur-
ing specific malware. AVs, by virtue of their presence
on the host system, also have the ability to observe
more than just the file, including behavioral patterns.
Our byte-based models do not have these advantages,
but they address different strategic needs than AVs.

The real costs come in algorithmic issues. Creating
byte n-grams is expensive. We were using a cluster
of 12 machines over three weeks to perform the
n-gram mining on around 400,000 filesa. Our method
of choice, after considerable testing, was L1 penalized
logistic regression, because it could perform feature
selection as a part of model training (the fewer fea-
tures we have, the smaller the model for deployment,
and the faster it is).

This led to years of research problems to tack-
le. First was discovering why byte n-grams failed

a. This was also after years of extensive performance optimization of our n-gramming software.

to perform as well as we expected, and noting that
the “Copyright Microsoft” problem had gone un-
challenged in academic literature for decades [4].
We learned that byte n-grams are not 99.9 percent
accurate; but surprisingly, they perform better than
disassembly-based n-grams [5] and have more ro-
bustness to alterations than many AV products [6].
This increased our confidence in them. Addressing
the large computing resources required to generate
n-grams for a dataset, we developed new algorithms,
including our KiloGrams algorithm, which reduced
the O(256n) complexity down to just O(n) [7, 8, 9].
This allowed us to explore larger byte n-grams. Our
current constraint to additional scaling is the mem-
ory required to train logistic regression models on
multi-terabyte datasets. We continue research on
how to scale these computations [10, 11].

Compression-based similarities

A second direction we have explored is using com-
pression algorithms to measure the similarity be-
tween arbitrary byte sequences. This is inspired by
Kolmogorov complexity and originally developed as
the normalized compression distance (NCD) [12]. To
understand this, consider the function K(·), which
takes an input x, which has a length of |x|, and returns
the length of the smallest program that can repro-
duce the value of x. So, imagine you have the input
x = aaaaaaaaaaa. Then K(x) would return a program
that loops 11 times, returning the value of “a” each
time. This function is thus the perfect compressor.
The ratio |K(x)|/|x| tells you how compressible a
sequence x is. You can extend this idea by giving
the function inputs, so K(x|y) would be the shortest
program that produces x as output, given y as input.
There is always the option to ignore the input, so we
get K(x|y) ≤ K(x).

Computing a perfect K(x) is impossible, but we
have general-purpose compression algorithms
like zip, bzip, lzma, etc., which approximate K. If
we represent our favorite compression algorithm,
C(x), which computes the size of the string x after
being compressed, we can compute a normalized
compression distance (NCD):

This gives us a way to measure the similarity
between arbitrary byte sequences. This is useful for

FEATURE

56

Malware Bytes

malware because very few ML techniques can scale to
the size of an executable. For example, a 200 mega-
byte (MB) program is not unreasonable, but this is
larger than the entire CIFAR100 dataset. But we can
and do run compression algorithms without issue on
large files, and this trick requires no training data.
It is also useful for forensic applications: it may be
the case that a recovered hard drive has corrupted
data, and so only fragments of the file exist. Was the
drive corrupted because of malware or just hard-
ware failure? If you can match a fragment of a file
to known destructive malware, you can answer the
question. Similarly, an in-progress download may be
cut short by other defenses, but you want to see if the
fragment of the download matches any known data.
Using compression similarity, we can still do these
tasks, even though domain-knowledge-based parsing
becomes impossible.

Unfortunately, NCD does not scale up. You must
run a compression search for every distance compu-
tation you want to perform, which is painfully slow.
However, this inspired us to try to optimize the idea
behind NCD: repurposing compression algorithms
for ML.

This started by noting that Lempel-Ziv-based
compression algorithms, which build compression
dictionaries, tend to work best for malware detec-
tion. We took the compression dictionary created by
the compression process, and treated it as a set of
objects representing the file. Then we used set simi-
larity measures like the Jaccard distance to measure
the distance between two files. This way we could
build the compression dictionary once per file, and
re-use it in distance computations. Combined with
min-hashing to make Jaccard distances faster, and
with provably bounded error, the Lempel-Ziv Jaccard
distance (LZJD) was born [13]. LZJD can compare
any two sequences of bytes (e.g., files) and produce a
similarity score. LZJD led to early success in mission
deployments as it allowed the same kind of function-
ality as hashing digests such as ssdeep and sdhash,
while being many times faster to search and more
accurate [14]. With an eye to scaling up to even larger
datasets, we applied the same trick using the bzip
compression technique. Instead of Lempel-Ziv, bzip
uses the Burrows-Wheeler transform and run-length
encoding, which we connected to being spiritual-
ly similar to a Markov model: you assume that the
current token is sufficient to predict the next token.
This led to the Burrows-Wheeler Markov distance

(BWMD). It functions similarly to LZJD, and we were
able to scale to searching millions of files in seconds
[15]. We also extended LZJD to create feature vectors
usable for ML and added the ability to over-sample
the minority classes to help handle class imbalance
that often occurs in family detection work [16, 17].

Deep learning over long sequences

As mentioned, a 200 MB executable is not un-
usual. But processing that byte-by-byte means a
200,000,000 step long time series classification task.
Most recurrent neural networks and long short-term
memories consider 5,000 steps to be “very long,” and
only recently transformers have attempted to get to
around 32,000 steps—at a nontrivial cost to accuracy.

When we first attempted to tackle this problem
back in 2016, we turned to convolutional networks
as an approach to tackling the scale of a single data
point. Through significant exploration, we found
that the canonical best practices did not work for
malware data. We had to make our model shallower,
with wider convolutions, and eschew normalization
layers to get improved accuracy. Our first result,
MalConv, could process 1,000,000 steps, a signifi-
cant advancement over the previous best possible
number[18]. But that still wasn’t enough. A few
years later, we cracked the 200,000,000 time step
barrier for effectively length-invariant convolutional
neural-network-based training [19].

While there have been barriers to deploying the
MalConv architecture operationally, it has been a
significant advancement that other organizations
have built on. Academically, we have seen uses of
MalConv for authorship identification, tool-chain
identification, and other reverse engineering tasks,
with similar deployments in the national labs.
MalConv has also been one of our most successful
efforts in influencing academia to focus more effort
on problems that will have a real-world impact.
Notably, a significant amount of work in adversarial
attacks and defense possibilities has been developed
using MalConv, providing us with valuable informa-
tion about potential weaknesses, and has allowed us
to develop new non-negative techniques to mitigate
some of these attacks [20]. The research community’s
work exploring adversarial ML attacks on MalConv
has provided insights into vulnerabilities and poten-
tial defenses of a class of ML methods which would
have taken us years to work out on our own. This

 The Next Wave | Vol. 25 No. 1 | 2024 | 57

FEATURE

symbiotic information benefit is one of the major
reasons we push to continue working publicly with
academic partners.

Hybrid full-stack
The “domain-knowledge free” approach our team
started has invigorated significant academic research
that helps us better understand what capabilities and
risks are possible in the near future, while producing
valuable, fast, low technical debt solutions to satisfy
a variety of Agency missions. But this approach is
perhaps most valuable as the first-level analysis/au-
tomated triage. Eventually, more technically sophisti-
cated resources are required. Our goal over the past
few years has been to leverage what we’ve learned
and begin to adapt it toward hybrid solutions, for-
ward integrating it into the set of common tasks that
take up valuable analyst time.

Many of the techniques we have developed have
been deployed in the government directly or via
corporate partners who have leveraged the research.
They address pieces of the big picture in figure
1. Another application of our extremely efficient
n-gramming techniques is AutoYara, a technique
for taking a handful of files known to be related and
automatically producing a Yara signature that can
be run with standard tools. Compared to human
analysts doing this work, we found AutoYara could
produce satisfying signatures for 84 percent of their
work queue. This is especially helpful when human
analysts have items flowing into their work queue
faster than they can work them. Top human analysts
produce better signatures, but AutoYara can be scaled
to handle the volume that humans cannot [21].

Cyber environments vary widely. For ML models
that are used in production, one may need to adapt
the model to the individual environment that they
are operating in—because models trained on a global
population of benign and malicious programs often
don’t quite fit the idiosyncrasies of a specific environ-
ment. We developed a passive aggressive approach
to patching a deployed malware detector to allow it
to be adapted or tuned to a local environment with
limited data [22].

Working with collections of files that may number
in the hundreds of millions creates many storage
and computational challenges. For any single task
that is known a priori, one can extract the necessary
features from each file and then discard the file. But

we don’t always know what information in a file will
be important to future analyses. Therefore, creating
a compact representation of a file, which contains in-
formation that can be used for multiple tasks, such as
malware detection, family classification, and malware
attribute prediction, is desirable. In ML lingo, can we
use metric learning to derive low-dimensional em-
beddings that are useful for downstream tasks? We
explored this direction, learning embeddings using
CAPA [23, 24] and Endgame Malware Benchmark for
Research (EMBER) [25] features, and experimented
with different kinds of loss functions. This direction
has potential, but more work remains to be done
[26]. Similarly, we’ve used ML to predict what CAPA
will find, with the ability to abstain from predictions
when uncertain. This allows us to minimize compute
costs by running expensive analytics only when
necessary and can save multiple compute years of
time if expensive virtual machines are used in the
second phase [27].

Cognitive science-inspired learning
Cognitive science, the general study of how the brain
and human cognition work, played a fundamental
and important role in early artificial intelligence re-
search. Current work in deep learning has its origins
in neural networks inspired by the brain, though it
has diverged much since that original spark. One
of our research directions has been to look at tools
that have found utility in cognitive science and try to
move them back into ML. The hope is that this could
allow us to obtain benefits, while being different from
existing approaches, and enhance the diversity of
our models.

The holographic reduced representation (HRR)
is one particular method our team has extended.
Originally developed in 1995 [28], it found significant
use in cognitive science for its ability to perform sym-
bolic artificial intelligence on a biologically plausible
substrate. If F(·) represents the Fourier transform,
and F−1(·) its inverse, and a, b, x, y are all vectors in a
d-dimensional space, it was shown that you can de-
velop a binding operation a ⊗ b = F−1(F(a) ⊙ F(b)).
This has unique properties where you can distin-
guish between items added and bound together
using an inversion operator †, so a “statement”
S = a ⊗ b + x ⊗ y can be constructed, and you can
approximately determine “what was bound with
x” by computing y ≈ S ⊗ x†. It turns out that this is
sufficient to perform symbolic artificial intelligence,

58

Malware Bytes

but all the operations are being done with real-valued
vectors and in a compressed representation.

The HRR presented a new direction to build more
efficient algorithms with potentially new capabilities.
We decided to explore this direction, and we have
had some success. First was the task of determin-
ing how to modernize HRRs within a differentiable
framework so that we could use modern PyTorch and
JAX libraries [29]. This enabled multiple new direc-
tions. First, we leveraged the symbolic properties of
HRRs to build a neural network that performed most
of its work on a third-party, and slightly untrusted,
computer. This allowed for reducing the amount of
local compute resources while hiding the nature
of the data from the third party via a kind of pseu-
do-encryption. While not as strong as encryption,
these Connectionist Symbolic Pseudo Secrets (CSPS)
were several thousand times faster than the existing
cryptographic options [30]. More recently we used
HRRs to tackle the computational bottleneck of trans-
formers. Our malware data has sequences in excess
of T = 200,000,000 time steps, and normal trans-
formers have O(T2) computational complexity. Using
HRRs, we brought this down to just linear O(T) cost
by inventing the HRRformer, while simultaneously
improving accuracy [31].

In both cases, we were unable to fully solve the
problem of interest, which is often the case in re-
search; however, both cases significantly informed
our computational needs for the future. The CSPS in-
forms the possibility of using the floating point capa-
bilities to perform at least some limited set of obfus-
cation when full cryptography may not be required
or feasible. The HRRformer brought us closer to the
computational throughput needed to tackle our long
sequence malware goals—now we need an additional
two orders of magnitude improvement, where before
we needed seven. Our research thus transformed an
unlikely avenue for computing systems to impact fu-
ture missions into something with realistic potential
in the next few years.

Which ML techniques really work?
When considering future hardware designs, the time
from conception to completion is measured in years.
For this reason, it is critical that we design algorith-
mic primitives we know will be useful several years
into the future, and discover which do not scale to our
desired needs [32]. Working in malware detection

research helps us to ensure that is the case, by nar-
rowing the focus to ML techniques that generalize.

This is an insight we have developed over
time through hard-fought progress. Most ML and
deep-learning research occurs in computer vision,
natural language processing, and speech/signal
processing. In all of these domains, there is a shared
fundamental property: things near each other are re-
lated to each other. This is the prior of spatial locality,
which is a core foundation of convolutions, recurrent
neural networks, and positional embeddings. When
this prior is too strongly violated, many of the “best”
techniques that the community “knows” work begin
to fall apart. In pushing these boundaries, we sepa-
rate what is only conditionally useful from what truly
generalizes to new and different problems.

For example, we recently turned to multiple
instance learning (MIL) as a technique that makes
the ML match how analysts do their job: something
is benign by default, and only becomes malicious
if something malicious is detected. There are no
“positive” features in this regard, or at least, there
shouldn’t be. Yet we found that many current deep
MIL algorithms fail to maintain this invariant and
cause us unexpected and unsatisfying results [33].
Similarly, we must be careful with our data, and so
have spent time studying how to evaluate [34] and
construct [35] new and more informative datasets
so that we, and the community at large, confidently
know what we are measuring.

This process has helped us further refine the kinds
of fundamental deep-learning building blocks that we
care about for designing future hardware. It informed
our big-picture view on what algorithmic issues
we can work around and what are still roadblocks,
compute versus memory trade-offs, and the types of
primitives and operations we find consistently useful
in malware and the broader ML problem spaces.

Conclusion
Our team has made significant advances in scal-
ing, accelerating, and parallelizing ML techniques
which can be applied to malware detection and a
host of other domains and problems. We function as
an interface between academic research, industry,
and government mission users, following the latest
research, influencing the directions of academic
research and commercial investments in research
and development, advancing the state of the art with

 The Next Wave | Vol. 25 No. 1 | 2024 | 59

FEATURE

our own work, and bringing the best of all of these
to bear on critical mission problems. And we look
forward to doing this for years to come.

References
[1] Nguyen AT, Raff E, Nicholas C, Holt J. “Leveraging
uncertainty for improved static malware detection
under extreme false positive constraints.” In: IJCAI-21 1st
International Workshop on Adaptive Cyber Defense; 2021.

[2] Pingle A, Piplai A, Mittal S, Joshi A, Holt J, Zak R. “Relext:
Relation extraction using deep learning approaches
for cybersecurity knowledge graph improvement.”
In: Proceedings of the 2019 IEEE/ACM International
Conference on Advances in Social Networks Analysis and
Mining, New York, NY; 2020: pp. 879–886. Association
for Computing Machinery. Available at: https://doi.
org/10.1145/3341161.3343519.

[3] Piplai A, Mittal S, Joshi A, Finin T, Holt J, Zak R. “Creating
cybersecurity knowledge graphs from malware after
action reports.” IEEE Access. 2020;8:211691–211703. doi:
10.1109/ACCESS.2020.3039234.

[4] Raff E, Zak R, Cox R, Sylvester J, Yacci P, Ward R, Tracy
A, McLean M, Nicholas C. “An investigation of byte N-gram
features for malware classification.” Journal of Computer
Virology and Hacking Techniques. 2018;14:1–20. Available
at: https://doi.org/10.1007/s11416-016-0283-1.

[5] Zak R, Raff E, Nicholas C. “What can N-grams learn
for malware detection?” In: 2017 12th International
Conference on Malicious and Unwanted Software; 2017:
pp. 109–118. Available at: https://doi.org/10.1109/
MALWARE.2017.8323963.

[6] Fleshman W, Raff E, Zak R, McLean M, Nicholas C.
“Static malware detection & subterfuge: Quantifying the
robustness of machine learning and current anti-virus.”
In: 2018 13th International Conference on Malicious
and Unwanted Software; 2018: pp. 1–10. Available
at: https://doi.ieeecomputersociety.org/10.1109/
MALWARE.2018.8659360.

[7] Raff E, Nicholas C. “Hash-grams: Faster N-gram features
for classification and malware detection.” In: Proceedings
of the ACM Symposium on Document Engineering 2018,
New York, NY; 2018. Association for Computing Machinery.
Available at: https://doi.org/10.1145/3209280.3229085.

[8] Raff E, McLean M. “Hash-grams on many-cores and
skewed distributions.” In: 2018 IEEE International
Conference on Big Data; 2018: pp. 158–165. Available at:
https://doi.org/10.1109/BigData.2018.8622043.

[9] Raff E, Fleming W, Zak R, Anderson H, Finlayson B,
Nicholas C, Mclean M. “Kilograms: Very large N-grams
for malware classification.” Learning and Mining for
Cybersecurity; 2019. Available at: https://eda.rg.cispa.io/
events/lemincs19/papers/paper_raff_etal.pdf.

[10] Lu F, Raff E, Holt J. “A coreset learning reality check.” In:
Proceedings of the AAAI Conference on Artificial Intelligence,
37; 2023. doi: 10.1609/aaai.v37i7.26074.

[11] Raff E, Sylvester J. “Linear models with many
cores and CPUs: A stochastic atomic update scheme.”
In: 2018 IEEE International Conference on Big Data;
2018: pp. 65–73. Available at: https://doi.org/10.1109/
BigData.2018.8622172.

[12] Li M, Chen X, Li X, Ma B, Vitanyi PMB. “The similarity
metric.” IEEE Transactions on Information Theory.
2004;50(12):3250–3264. Available at: https://doi.
org/10.1109/TIT.2004.838101.

[13] Raff E, Nicholas C. “An alternative to NCD for large
sequences, Lempel-Ziv Jaccard Distance.” In: Proceedings
of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, New York, NY; 2017:
pp. 1007–1015. Association for Computing Machinery.
Available at: https://doi.org/10.1145/3097983.3098111.

[14] Raff E, Nicholas C. “Lempel-Ziv Jaccard Distance,
an effective alternative to ssdeep and sdhash.” Digital
Investigation. 2018;24:34–49. Available at: https://doi.
org/10.1016/j.diin.2017.12.004.

[15] Raff E, Nicholas C, McLean M. “A new Burrows Wheeler
transform Markov Distance.” In: Proceedings of the AAAI
Conference on Artificial Intelligence 34(04); 2020: pp.
5444–5453. Available at: https://doi.org/10.1609/aaai.
v34i04.5994.

[16] Raff B, Nicholas C. “Malware classification and class
imbalance via stochastic hashed LZJD.” In: Proceedings
of the 10th ACM Workshop on Artificial Intelligence and
Security, New York, NY; 2017: pp. 111–120. Association
for Computing Machinery. Available at: https://doi.
org/10.1145/3128572.3140446.

[17] Raff E, Aurelio J, Nicholas C. “PyLZJD: An easy to
use tool for machine learning.” In: Calloway C, Lippa D,
Niederhut D, Shupe D, editors. Proceedings of the 18th
Python in Science Conference; 2019: pp. 101–106. Available
at: http://dx.doi.org/10.25080/Majora-7ddc1dd1-00e.

https://doi.org/10.1145/3341161.3343519
https://doi.org/10.1145/3341161.3343519
https://doi.org/10.1007/s11416-016-0283-1
https://doi.org/10.1109/MALWARE.2017.8323963
https://doi.org/10.1109/MALWARE.2017.8323963
https://doi.ieeecomputersociety.org/10.1109/MALWARE.2018.8659360
https://doi.ieeecomputersociety.org/10.1109/MALWARE.2018.8659360
https://doi.org/10.1145/3209280.3229085
https://doi.org/10.1109/BigData.2018.8622043
https://eda.rg.cispa.io/events/lemincs19/papers/paper_raff_etal.pdf
https://eda.rg.cispa.io/events/lemincs19/papers/paper_raff_etal.pdf
https://doi.org/10.1109/BigData.2018.8622172
https://doi.org/10.1109/BigData.2018.8622172
https://doi.org/10.1109/TIT.2004.838101
https://doi.org/10.1109/TIT.2004.838101
https://doi.org/10.1145/3097983.3098111
https://doi.org/10.1016/j.diin.2017.12.004
https://doi.org/10.1016/j.diin.2017.12.004
https://doi.org/10.1609/aaai.v34i04.5994
https://doi.org/10.1609/aaai.v34i04.5994
https://doi.org/10.1145/3128572.3140446
https://doi.org/10.1145/3128572.3140446
http://dx.doi.org/10.25080/Majora-7ddc1dd1-00e

60

Malware Bytes

[18] Raff E, Barker J, Sylvester J, Brandon R, Catanzaro B,
Nicholas C. “Malware detection by eating a whole EXE.” AAAI
Workshop on Artificial Intelligence for Cyber Security; 2017.
Available at: https://cdn.aaai.org/ocs/ws/ws0432/16422-
75958-1-PB.pdf.

[19] Raff E, Fleshman W, Zak R, Anderson HS, Filar B,
McLean M. “Classifying sequences of extreme length
with constant memory applied to malware detection.” In:
Proceedings of the AAAI Conference on Artificial Intelligence
35(11); 2021:9386–9394. Available at: https://doi.
org/10.1609/aaai.v35i11.17131.

[20] Fleshman W, Raff E, Sylvester J, Forsyth S, McLean M.
“Non-negative networks against adversarial attacks.” In:
The AAAI-19 Workshop on Artificial Intelligence for Cyber
Security; 2018.

[21] Raff E, Zak R, Munoz GL, Fleming W, Anderson HS, Filar
B, Nicholas C, Holt J. “Automatic Yara rule generation using
biclustering.” In: Proceedings of the 13th ACM Workshop on
Artificial Intelligence and Security, New York, NY; 2020: pp.
71–82. Association for Computing Machinery. Available at:
https://doi.org/10.1145/3411508.3421372.

[22] Raff E, Filar B, Holt J. “Getting passive aggressive
about false positives: Patching deployed malware
detectors.” In: 2020 International Conference on Data
Mining Workshops; 2020: pp. 506–515. doi: 10.1109/
ICDMW51313.2020.00074.

[23] Mandiant. CAPA. Available at: https://github.com/
mandiant/capa/.

[24] Ballenthin W, Raabe M. “capa: Automatically
Identify Malware Capabilities.” 2020. Mandiant. Available
at: https://www.mandiant.com/resources/blog/
capa-automatically-identify-malware-capabilities.

[25] Anderson HS, Roth P. “EMBER: An Open Dataset
for Training Static PE Malware Machine Learning
Models.” 2018; ArXiv. Available at: https://arxiv.org/
abs/1804.04637.

[26] Rudd EM, Krisiloff D, Coull S, Olszewski D, Raff E, Holt
J. “Efficient malware analysis using metric embeddings.”
Digital Threats: Research and Practice. Accepted August
2023. Available at: https://doi.org/10.1145/3615669.

[27] Nguyen AT, Zak R, Richards LE, Fuchs M, Lu F, Brandon
R, Munoz GL, Raff E, Nicholas C, Holt J. “Minimizing compute
costs: When should we run more expensive malware
analysis?” In: Proceedings of the Conference on Applied
Machine Learning in Information Security; 2022. Available
at: https://www.camlis.org/andre-nguyen-2022.

[28] Plate TA. “Holographic reduced representations.” IEEE
Transactions on Neural Networks. 1995;6(3):623–641. doi:
10.1109/72.377968.

[29] Ganesan A, Gao H, Gandhi S, Raff E, Oates T, Holt
J, McLean M. “Learning with holographic reduced
representations.” In: Advances in Neural Information
Processing Systems; 2021. Available at: https://
proceedings.neurips.cc/paper_files/paper/2021/file/
d71dd235287466052f1630f31bde7932-Paper.pdf.

[30] Alam MM, Raff E, Oates T, Holt J. “Deploying
convolutional networks on untrusted platforms using 2D
holographic reduced representations.” In: Chaudhuri K,
Jegelka S, Song L, Szepesvari C, Niu G, Sabato S, editors.
Proceedings of the 39th International Conference on Machine
Learning, vol. 162 of Proceedings of Machine Learning
Research; 2022: pp. 367–393. Available at: https://
proceedings.mlr.press/v162/alam22a.html.

[31] Alam MM, Raff E, Biderman S, Oates T, Holt J. “Recasting
self-attention with holographic reduced representations.”
In: Krause A, Brunskill E, Cho K, Engelhardt B, Sabato S,
Scarlett J, editors. Proceedings of the 40th International
Conference on Machine Learning, vol. 202 of Proceedings of
Machine Learning Research; 2023: pp. 490–507. Available at:
https://dl.acm.org/doi/10.5555/3618408.3618431.

[32] Raff E, McLean M, Holt J. “An easy rejection sampling
baseline via gradient refined proposals.” In: 26th European
Conference on Artificial Intelligence, 2023. Available at:
https://ebooks.iospress.nl/pdf/doi/10.3233/FAIA230483.

[33] Raff E, Holt J. “Reproducibility in Multiple Instance
Learning: A case For algorithmic unit tests.” In: Advances in
Neural Information Processing Systems; 2023. Available at:
https://proceedings.neurips.cc/paper_files/paper/2023/
hash/2bab8865fa4511e445767e3750b2b5ac-Abstract-
Conference.html.

[34] Patel T, Lu F, Raff E, Nicholas C, Matuszek C, Holt J.
“Small effect sizes in malware detection? Make harder train/
test splits!?” In: Proceedings of the Conference on Applied
Machine Learning in Information Security; 2023.

[35] Joyce RJ, Raff E, Nicholas C, Holt J. “MalDICT:
Benchmark datasets on malware behaviors, platforms,
exploitation, and packers.” In: Proceedings of the Conference
on Applied Machine Learning in Information Security; 2023.

https://cdn.aaai.org/ocs/ws/ws0432/16422-75958-1-PB.pdf
https://cdn.aaai.org/ocs/ws/ws0432/16422-75958-1-PB.pdf
https://doi.org/10.1609/aaai.v35i11.17131
https://doi.org/10.1609/aaai.v35i11.17131
https://doi.org/10.1145/3411508.3421372
https://github.com/mandiant/capa/
https://github.com/mandiant/capa/
https://www.mandiant.com/resources/blog/capa-automatically-identify-malware-capabilities
https://www.mandiant.com/resources/blog/capa-automatically-identify-malware-capabilities
https://arxiv.org/abs/1804.04637
https://arxiv.org/abs/1804.04637
https://doi.org/10.1145/3615669
https://www.camlis.org/andre-nguyen-2022
https://proceedings.neurips.cc/paper_files/paper/2021/file/d71dd235287466052f1630f31bde7932-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/d71dd235287466052f1630f31bde7932-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/d71dd235287466052f1630f31bde7932-Paper.pdf
https://proceedings.mlr.press/v162/alam22a.html
https://proceedings.mlr.press/v162/alam22a.html
https://dl.acm.org/doi/10.5555/3618408.3618431
https://ebooks.iospress.nl/pdf/doi/10.3233/FAIA230483
https://proceedings.neurips.cc/paper_files/paper/2023/hash/2bab8865fa4511e445767e3750b2b5ac-Abstract
https://proceedings.neurips.cc/paper_files/paper/2023/hash/2bab8865fa4511e445767e3750b2b5ac-Abstract
https://proceedings.neurips.cc/paper_files/paper/2023/hash/2bab8865fa4511e445767e3750b2b5ac-Abstract

	TNW_25-1_2024_20240402_Web_Part12
	TNW_25-1_2024_20240402_Web_Part13

		Superintendent of Documents
	2024-04-09T16:52:27-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

