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Malware Bytes
J a m e s  H o l t ,  E d w a r d  R a f f

Over the past decade, the Advanced Computing Systems (ACS) office of the Lab-
oratory for Physical Sciences (LPS) has explored a wide variety of approaches to 
analyzing and classifying binary files. One of the most significant findings, and 

a consistent theme of our work, is the surprising effectiveness of algorithms that look 
directly at the bytes of files. Previously, most approaches to applying machine learning 
(ML) to binary files first extracted some set of features, and used these features as input 
to an ML model. In contrast, we have built ML models that learn directly from the file 
itself, ingesting and learning from the file as a sequence of bytes.

One advantage of this is that it requires no domain-specific or file-type-specific knowl-
edge, so the exact same approach and set of tools can be used on multiple file types. 
Because of this, we have been able to use the same tools, with no alteration or custom-
ization, to build classifiers for Windows executables, Linux executables, PDFs, Microsoft 
Office files, rich text files (RTFs), and others.

[Photo credit: iStock.com/Quardia]
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Historically, cybersecurity tasks concerning 
binary files, such as malware detection, anal-
ysis, triage, reverse engineering, disassembly, 

decompilation, etc., have required deep expertise and 
a low-level understanding of the structure of files and 
function of operating systems. The tools that have 
evolved to perform or assist with these tasks also 
require deep expertise to create, to use, and to keep 
up to date. The complexity of these files and systems, 
and therefore the degree of expertise needed to 
work with them, continues to grow, and this creates 
challenges in training people, in keeping the software 
tools current, and in computational cost of running 
the tools.

This challenge is not going away. Tools which em-
body deep knowledge and understanding are certain-
ly still necessary. But, we can now complement them 
with no-domain-knowledge tools that can be rapidly 
adapted to new problems, providing agility, speed, 
and scale. In some cases they can reduce the need 
for more expensive high-domain-knowledge tools. 
Along these lines, ACS has developed a portfolio of 
byte-based algorithms, including compression-based 
file similarity metrics, a highly efficient n-gram 
algorithm, convolutional neural network-based 
file classification, n-gram and logistic regres-
sion (LR)-based file classification, and automatic 
signature generation.

In this article we will share some highs, lows, and 
points of interest from the journey our research 
has taken over the last decade, exploring different 
forms of ML for file classification, testing existing 
ML techniques, innovating new ones, creating new 
algorithms that yielded 100-fold performance gains, 
curating datasets, and delivering new capabilities. 
Along the way, we published many of our advances 
in academic papers. Often these were accompanied 
by code, allowing others to leverage and benefit from 
our new algorithms. As we go through these efforts, 
we will highlight the published papers for the reader 
who would like to go deeper.

The false negative/false positive trade-off
Antivirus (AV) products have been deployed and 
in use for decades. They were originally targeted 
at home consumers, which imposed early design 
constraints. The AV product needed to run fast 
enough to not get in the way (too much). If the AV 
slowed the system down so that it was no longer 

interactive, making users wait too long to load or use 
applications, they would forgo the product entirely. 
Essentially, there is a friction ceiling that AVs need to 
avoid to keep users happy.

This friction ceiling applies for both speed and 
accuracy. Imagine the AV was more likely to predict 
a benign file as malicious (i.e., false-positive or FP) 
than a malicious file as benign (i.e., false-negative or 
FN). This would mean every new benign application 
would have a larger chance of causing an alert to the 
user. This would result in interruption of their work, 
remediation, and whitelisting—that is, friction. Again, 
the user would forgo the AV. To prevent this, AVs are 
designed around minimizing false positives. These 
are reasonable design constraints, motivated by 
real-life use, and still relevant today. For this reason, 
these ideas and goals are heavily embedded in the 
current industry and academic cultures.

Unfortunately, systems designed this way do not 
adequately address the breadth of issues we see in 
the government. Some missions require that every 
file be inspected, analyzed, and a determination of 
risk made. In such a case, the FP/FN trade-off is not 
relevant, and the coarse “yes/no” returned by many 
AVs does not allow us to adjust this trade-off as we 
need [1]. Instead, what is desired is a score that can 
be used to rank all the files from most-likely mali-
cious to least-likely. You can quantify this using the 
area under the curve (AUC), which measures the 
quality of a “ranking” of files by maliciousness. In 
other cases, like forensic investigations, there is an 
informed presumption that malware already exists 
and needs to be found. In this case, the motivations 
and costs are different. Minimal FN is the goal, so that 
if malware is actually on the system, it will be found, 
not missed, and evidence gathered. The costs of FPs 
are manageable in this instance, so the incentives are 
reversed. Our research has explored approaches for 
missions with varying FN/FP sensitivities.

Dealing with the fire hose of files
AV software on an individual user’s machine is one 
piece of a larger puzzle. Large AV vendors have 
millions of installations of their software, all sending 
suspicious files back to a central system for analysis. 
It may be useful to think of the user’s AV as the front 
end, or the collector, and the central system as the 
back end. This central system will receive millions of 
files daily. From the view of the central system, this 
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fire hose of files must be triaged. Decisions must be 
made about whether and how to analyze each file, 
which analysis tools will provide the most relevant 
information, and how much computing and human 
effort to spend on each file. The US government faces 
similar issues, as it operates and defends millions 
of computers.

This large-scale analysis process can be thought of 
as a pipeline, including a variety of feature extraction 
and analytic processes which feed into decision-mak-
ing. Often, analytics with increasing cost or levels of 
effort are applied to subsets of the files as they prog-
ress through the pipeline. Building capabilities that 
enhance both the analysis and decision-making parts 
of this pipeline has been a goal of our research.

Figure 1 is a simplified representation of parts 
of the file/malware analysis pipeline, showing how 
files or other information flows between stages. The 
purple text indicates papers we have published that 
are applicable to various stages.

Helping our academic and industry partners 
understand the government’s perspective on this 
pipeline, and analytic needs associated with it, has 
also been a goal. We hope an increased understand-
ing of this will motivate and incentivize additional 
research, resulting in new and improved capabilities 
for all cyber-defenders.

FIGURE 1. A simplified diagram of the kinds of interactions and stages necessary in supporting large scale file analysis. The purple text 
highlights selected research results, placed next to the stage it impacts.

Deep file analysis
You’ve discovered some malware, what happens 
next? Sometimes you can just delete it, clean the 
machine it was on, and be done. Other times you may 
want to create a signature to automatically detect it, 
if it shows up again. If the malware was found on a 
high-value asset, you may want to investigate more 
deeply. How did this get onto this machine? What is 
the goal of this malware? How does it work? Who 
made it? How does the owner of the malware com-
municate with and control it?

The computers of the US government and defense 
contractors are targeted every day by actors from 
around the world. Some of these actors are highly 
motivated and well-resourced to come after our in-
formation. At times they even create custom-crafted 
malware that is specific and goal oriented. It is often 
critical to understand how we are being attacked, by 
whom, and what their motivations are. Better under-
standing of these factors informs our steps to reme-
diate intrusions and prevent future ones through 
signatures and security updates.

Performing custom deep analysis on a specific 
file is a labor-intensive and primarily human-driv-
en process. This work can take days or weeks for a 
single file, consuming analysts’ time and creating a 
backlog. This slowness also interferes with a critical 
function of the analyst: noticing trends and making 
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connections. Is this malware similar to something 
we’ve seen before, or related to something we’ve 
seen before? That information could help reverse 
engineering go faster, avoid redundant work, and 
inform threat intelligence [2, 3]. Instead of treating all 
individual malware occurrences as isolated, under-
standing recurrence of related malware could help us 
identify a prolonged campaign.

Our foray into malware detection
Starting in 2012, the ACS team began looking at 
malware detection as a way to apply our ML research 
to real-world problems. At the time this seemed 
eminently reasonable. After a review of the academic 
literature, it seemed many published papers reported 
over 99 percent accuracies using byte n-grams. Given 
the reported results, it seemed like the easiest way to 
get started. Other approaches like dynamic analysis, 
disassembly, and similar techniques required exten-
sive infrastructure, making both training and deploy-
ment more challenging. The reported accuracies in 
the literature were also not meaningfully different, so 
why pay this high price?

Replicating the data collection, algorithm training, 
and design processes allowed us to produce initial 
results. Significant software engineering work was 
done to make the process as fast as possible, re-
writing research-grade Python code into Java gave 
us 100-1000 times speedups, and made it easy to 
deploy in a variety of mission environments. We had 
great initial success in our lab environment, so we 
decided it was time for field testing with our mission 
partners. As our first trial deployment reached its 
conclusion, we got harsh feedback: the system was not 
useful, everything was labeled as malware, and they 
did not want to continue using the tool.

This is how we first learned of the considerable 
gap between academic knowledge on the subject of 
malware detection and the practical application of 
such knowledge. The crux of the issue was that all 
our benign data came from a clean installation of 
Microsoft Windows, and our model would learn to 
literally look for the bytes of “Copyright Microsoft 
Corporation” as its method of determining “mali-
cious” versus “benign.” In reality, we had developed 
a “from Microsoft or not” detector. This underscores 
the importance of knowing your data, and training 
with representative data, as an ML model can only 
learn from the data you give it.

It was clear that we needed to get better-quali-
ty benign data for our research efforts. It was also 
clear that nontrivial parts of academic literature and 
culture around the application of ML for malware 
had misunderstandings of what would generalize 
to practice, and what tools and volumes of data 
were needed.

Byte-based models
Given the cost of feature engineering and domain 
knowledge, our team decided to explore just how 
far byte-based models could be pushed. This led to 
three different families of techniques that we have 
advanced over the past decade: 1) byte n-gram-based 
models, which have been surprisingly effective for 
malware detection; 2) using compression algorithms 
(similar to those used in a .zip file) for ML, which 
we have found especially useful for information 
retrieval situations; and 3) scaling and accelerating 
deep-learning techniques to handle malware data.

All three techniques have the broad benefit that 
we can apply them to any file format or data type, 
provided we are able to obtain sufficiently represen-
tative data (both benign and malicious) for said file 
format. This has allowed our small team to adapt 
and stay relevant to mission interests despite gaps 
in our domain expertise for many platforms that our 
mission partners are interested in. Each is also useful 
from a deployment and product life cycle perspective: 
because we work from raw bytes, there is no parsing 
involved. This means we never have parsing errors 
in production, a common issue as malware authors 
intentionally subvert the fact that the specification 
doesn’t always match the actual implementation for 
a given file loader. This also avoids highly cumber-
some dependencies. Many projects depend on the 
parsing capabilities of LIEF, IDA Pro, Ghidra, or other 
software with significant domain-expert knowledge. 
While valuable, that also means these tools are con-
stantly evolving as malware actors adapt to detection 
approaches. This continuous evolution results in a 
significant technical burden of keeping tools current.

Byte n-grams

When we started working on byte n-grams with 
higher-quality data, one early win became very 
important for people using our algorithms and 
code. Deployment was fast. The model size and the 
code to run it was only a few megabytes. The model 
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essentially contained a list of byte 6-grams, and 
corresponding weights indicating if the byte pattern 
was positively/negatively impacting the malware 
decision [4]. This was low profile, meaning it could be 
deployed on almost any platform. Running the model 
could be done using a small buffer, streaming the data 
into main memory and checking if bytes occurred, 
incrementing/decrementing the cumulative score 
accordingly, and then returning the answer. Using 
rolling hash functions means you could perform 
the initial load of a file into memory or transfer it to 
another location and get a benign/malicious predic-
tion essentially “for free” because this code was faster 
than the data transfer process.

Our first deployments were in situations where 
speed was the critical factor to deployment and 
mission success. Anything that took more than 100 
milliseconds would be too slow to run on all the 
incoming data. Others were mission partners that 
needed to go on “fly away” missions, carrying all the 
computing they could use with them, and our tool 
was fast and easy to add. More deployments came as 
some missions used an ensemble of products to make 
a prediction, and our byte-based model was unusu-
al compared to the standard AV approaches. This 
is valuable, as ensembles improve their predictive 
performance when the members of the ensemble are 
different (or, uncorrelated in their errors).

These benefits do not come for free though. The 
first cost is a decrease in accuracy compared to many 
industry products, which was expected. Industry AV 
products are built using vast amounts of data, and 
many person-years of labor analyzing and signatur-
ing specific malware. AVs, by virtue of their presence 
on the host system, also have the ability to observe 
more than just the file, including behavioral patterns. 
Our byte-based models do not have these advantages, 
but they address different strategic needs than AVs.

The real costs come in algorithmic issues. Creating 
byte n-grams is expensive. We were using a cluster 
of 12 machines over three weeks to perform the 
n-gram mining on around 400,000 filesa. Our method 
of choice, after considerable testing, was L1 penalized 
logistic regression, because it could perform feature 
selection as a part of model training (the fewer fea-
tures we have, the smaller the model for deployment, 
and the faster it is).

This led to years of research problems to tack-
le. First was discovering why byte n-grams failed 

a. This was also after years of extensive performance optimization of our n-gramming software.

to perform as well as we expected, and noting that 
the “Copyright Microsoft” problem had gone un-
challenged in academic literature for decades [4]. 
We learned that byte n-grams are not 99.9 percent 
accurate; but surprisingly, they perform better than 
disassembly-based n-grams [5] and have more ro-
bustness to alterations than many AV products [6]. 
This increased our confidence in them. Addressing 
the large computing resources required to generate 
n-grams for a dataset, we developed new algorithms, 
including our KiloGrams algorithm, which reduced 
the O(256n) complexity down to just O(n) [7, 8, 9]. 
This allowed us to explore larger byte n-grams. Our 
current constraint to additional scaling is the mem-
ory required to train logistic regression models on 
multi-terabyte datasets. We continue research on 
how to scale these computations [10, 11].

Compression-based similarities

A second direction we have explored is using com-
pression algorithms to measure the similarity be-
tween arbitrary byte sequences. This is inspired by 
Kolmogorov complexity and originally developed as 
the normalized compression distance (NCD) [12]. To 
understand this, consider the function K(·), which 
takes an input x, which has a length of |x|, and returns 
the length of the smallest program that can repro-
duce the value of x. So, imagine you have the input 
x = aaaaaaaaaaa. Then K(x) would return a program 
that loops 11 times, returning the value of “a” each 
time. This function is thus the perfect compressor. 
The ratio |K(x)|/|x| tells you how compressible a 
sequence x is. You can extend this idea by giving 
the function inputs, so K(x|y) would be the shortest 
program that produces x as output, given y as input. 
There is always the option to ignore the input, so we 
get K(x|y) ≤ K(x).

Computing a perfect K(x) is impossible, but we 
have general-purpose compression algorithms 
like zip, bzip, lzma, etc., which approximate K. If 
we represent our favorite compression algorithm, 
C(x), which computes the size of the string x after 
being compressed, we can compute a normalized 
compression distance (NCD):

This gives us a way to measure the similarity 
between arbitrary byte sequences. This is useful for 

FEATURE



56

Malware Bytes

malware because very few ML techniques can scale to 
the size of an executable. For example, a 200 mega-
byte (MB) program is not unreasonable, but this is 
larger than the entire CIFAR100 dataset. But we can 
and do run compression algorithms without issue on 
large files, and this trick requires no training data. 
It is also useful for forensic applications: it may be 
the case that a recovered hard drive has corrupted 
data, and so only fragments of the file exist. Was the 
drive corrupted because of malware or just hard-
ware failure? If you can match a fragment of a file 
to known destructive malware, you can answer the 
question. Similarly, an in-progress download may be 
cut short by other defenses, but you want to see if the 
fragment of the download matches any known data. 
Using compression similarity, we can still do these 
tasks, even though domain-knowledge-based parsing 
becomes impossible.

Unfortunately, NCD does not scale up. You must 
run a compression search for every distance compu-
tation you want to perform, which is painfully slow. 
However, this inspired us to try to optimize the idea 
behind NCD: repurposing compression algorithms 
for ML.

This started by noting that Lempel-Ziv-based 
compression algorithms, which build compression 
dictionaries, tend to work best for malware detec-
tion. We took the compression dictionary created by 
the compression process, and treated it as a set of 
objects representing the file. Then we used set simi-
larity measures like the Jaccard distance to measure 
the distance between two files. This way we could 
build the compression dictionary once per file, and 
re-use it in distance computations. Combined with 
min-hashing to make Jaccard distances faster, and 
with provably bounded error, the Lempel-Ziv Jaccard 
distance (LZJD) was born [13]. LZJD can compare 
any two sequences of bytes (e.g., files) and produce a 
similarity score. LZJD led to early success in mission 
deployments as it allowed the same kind of function-
ality as hashing digests such as ssdeep and sdhash, 
while being many times faster to search and more 
accurate [14]. With an eye to scaling up to even larger 
datasets, we applied the same trick using the bzip 
compression technique. Instead of Lempel-Ziv, bzip 
uses the Burrows-Wheeler transform and run-length 
encoding, which we connected to being spiritual-
ly similar to a Markov model: you assume that the 
current token is sufficient to predict the next token. 
This led to the Burrows-Wheeler Markov distance 

(BWMD). It functions similarly to LZJD, and we were 
able to scale to searching millions of files in seconds 
[15]. We also extended LZJD to create feature vectors 
usable for ML and added the ability to over-sample 
the minority classes to help handle class imbalance 
that often occurs in family detection work [16, 17].

Deep learning over long sequences

As mentioned, a 200 MB executable is not un-
usual. But processing that byte-by-byte means a 
200,000,000 step long time series classification task. 
Most recurrent neural networks  and long short-term 
memories consider 5,000 steps to be “very long,” and 
only recently transformers have attempted to get to 
around 32,000 steps—at a nontrivial cost to accuracy.

When we first attempted to tackle this problem 
back in 2016, we turned to convolutional networks 
as an approach to tackling the scale of a single data 
point. Through significant exploration, we found 
that the canonical best practices did not work for 
malware data. We had to make our model shallower, 
with wider convolutions, and eschew normalization 
layers to get improved accuracy. Our first result, 
MalConv, could process 1,000,000 steps, a signifi-
cant advancement over the previous best possible 
number[18]. But that still wasn’t enough. A few 
years later, we cracked the 200,000,000 time step 
barrier for effectively length-invariant convolutional 
neural-network-based training [19].

While there have been barriers to deploying the 
MalConv architecture operationally, it has been a 
significant advancement that other organizations 
have built on. Academically, we have seen uses of 
MalConv for authorship identification, tool-chain 
identification, and other reverse engineering tasks, 
with similar deployments in the national labs. 
MalConv has also been one of our most successful 
efforts in influencing academia to focus more effort 
on problems that will have a real-world impact. 
Notably, a significant amount of work in adversarial 
attacks and defense possibilities has been developed 
using MalConv, providing us with valuable informa-
tion about potential weaknesses, and has allowed us 
to develop new non-negative techniques to mitigate 
some of these attacks [20]. The research community’s 
work exploring adversarial ML attacks on MalConv 
has provided insights into vulnerabilities and poten-
tial defenses of a class of ML methods which would 
have taken us years to work out on our own. This 
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symbiotic information benefit is one of the major 
reasons we push to continue working publicly with 
academic partners. 

Hybrid full-stack
The “domain-knowledge free” approach our team 
started has invigorated significant academic research 
that helps us better understand what capabilities and 
risks are possible in the near future, while producing 
valuable, fast, low technical debt solutions to satisfy 
a variety of Agency missions. But this approach is 
perhaps most valuable as the first-level analysis/au-
tomated triage. Eventually, more technically sophisti-
cated resources are required. Our goal over the past 
few years has been to leverage what we’ve learned 
and begin to adapt it toward hybrid solutions, for-
ward integrating it into the set of common tasks that 
take up valuable analyst time.

Many of the techniques we have developed have 
been deployed in the government directly or via 
corporate partners who have leveraged the research. 
They address pieces of the big picture in figure 
1. Another application of our extremely efficient 
n-gramming techniques is AutoYara, a technique 
for taking a handful of files known to be related and 
automatically producing a Yara signature that can 
be run with standard tools. Compared to human 
analysts doing this work, we found AutoYara could 
produce satisfying signatures for 84 percent of their 
work queue. This is especially helpful when human 
analysts have items flowing into their work queue 
faster than they can work them. Top human analysts 
produce better signatures, but AutoYara can be scaled 
to handle the volume that humans cannot [21].

Cyber environments vary widely. For ML models 
that are used in production, one may need to adapt 
the model to the individual environment that they 
are operating in—because models trained on a global 
population of benign and malicious programs often 
don’t quite fit the idiosyncrasies of a specific environ-
ment. We developed a passive aggressive approach 
to patching a deployed malware detector to allow it 
to be adapted or tuned to a local environment with 
limited data [22].

Working with collections of files that may number 
in the hundreds of millions creates many storage 
and computational challenges. For any single task 
that is known a priori, one can extract the necessary 
features from each file and then discard the file. But 

we don’t always know what information in a file will 
be important to future analyses. Therefore, creating 
a compact representation of a file, which contains in-
formation that can be used for multiple tasks, such as 
malware detection, family classification, and malware 
attribute prediction, is desirable. In ML lingo, can we 
use metric learning to derive low-dimensional em-
beddings that are useful for downstream tasks? We 
explored this direction, learning embeddings using 
CAPA [23, 24] and Endgame Malware Benchmark for 
Research (EMBER) [25] features, and experimented 
with different kinds of loss functions. This direction 
has potential, but more work remains to be done 
[26]. Similarly, we’ve used ML to predict what CAPA 
will find, with the ability to abstain from predictions 
when uncertain. This allows us to minimize compute 
costs by running expensive analytics only when 
necessary and can save multiple compute years of 
time if expensive virtual machines are used in the 
second phase [27].

Cognitive science-inspired learning
Cognitive science, the general study of how the brain 
and human cognition work, played a fundamental 
and important role in early artificial intelligence re-
search. Current work in deep learning has its origins 
in neural networks inspired by the brain, though it 
has diverged much since that original spark. One 
of our research directions has been to look at tools 
that have found utility in cognitive science and try to 
move them back into ML. The hope is that this could 
allow us to obtain benefits, while being different from 
existing approaches, and enhance the diversity of 
our models.

The holographic reduced representation (HRR) 
is one particular method our team has extended.  
Originally developed in 1995 [28], it found significant 
use in cognitive science for its ability to perform sym-
bolic artificial intelligence on a biologically plausible 
substrate. If F(·) represents the Fourier transform, 
and F−1(·) its inverse, and a, b, x, y are all vectors in a 
d-dimensional space, it was shown that you can de-
velop a binding operation a ⊗ b =  F−1(F(a) ⊙ F(b)). 
This has unique properties where you can distin-
guish between items added and bound together 
using an inversion operator †, so a “statement” 
S =  a ⊗ b + x ⊗ y can be constructed, and you can 
approximately determine “what was bound with 
x” by computing y ≈ S ⊗ x†. It turns out that this is 
sufficient to perform symbolic artificial intelligence, 
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but all the operations are being done with real-valued 
vectors and in a compressed representation.

The HRR presented a new direction to build more 
efficient algorithms with potentially new capabilities. 
We decided to explore this direction, and we have 
had some success. First was the task of determin-
ing how to modernize HRRs within a differentiable 
framework so that we could use modern PyTorch and 
JAX libraries [29]. This enabled multiple new direc-
tions. First, we leveraged the symbolic properties of 
HRRs to build a neural network that performed most 
of its work on a third-party, and slightly untrusted, 
computer. This allowed for reducing the amount of 
local compute resources while hiding the nature 
of the data from the third party via a kind of pseu-
do-encryption. While not as strong as encryption, 
these Connectionist Symbolic Pseudo Secrets (CSPS) 
were several thousand times faster than the existing 
cryptographic options [30]. More recently we used 
HRRs to tackle the computational bottleneck of trans-
formers. Our malware data has sequences in excess 
of T =  200,000,000 time steps, and normal trans-
formers have O(T2) computational complexity. Using 
HRRs, we brought this down to just linear O(T) cost 
by inventing the HRRformer, while simultaneously 
improving accuracy [31].

In both cases, we were unable to fully solve the 
problem of interest, which is often the case in re-
search; however, both cases significantly informed 
our computational needs for the future. The CSPS in-
forms the possibility of using the floating point capa-
bilities to perform at least some limited set of obfus-
cation when full cryptography may not be required 
or feasible. The HRRformer brought us closer to the 
computational throughput needed to tackle our long 
sequence malware goals—now we need an additional 
two orders of magnitude improvement, where before 
we needed seven. Our research thus transformed an 
unlikely avenue for computing systems to impact fu-
ture missions into something with realistic potential 
in the next few years.

Which ML techniques really work?
When considering future hardware designs, the time 
from conception to completion is measured in years. 
For this reason, it is critical that we design algorith-
mic primitives we know will be useful several years 
into the future, and discover which do not scale to our 
desired needs [32]. Working in malware detection 

research helps us to ensure that is the case, by nar-
rowing the focus to ML techniques that generalize.

This is an insight we have developed over 
time through hard-fought progress. Most ML and 
deep-learning research occurs in computer vision, 
natural language processing, and speech/signal 
processing. In all of these domains, there is a shared 
fundamental property: things near each other are re-
lated to each other. This is the prior of spatial locality, 
which is a core foundation of convolutions, recurrent 
neural networks, and positional embeddings. When 
this prior is too strongly violated, many of the “best” 
techniques that the community “knows” work begin 
to fall apart. In pushing these boundaries, we sepa-
rate what is only conditionally useful from what truly 
generalizes to new and different problems. 

For example, we recently turned to multiple 
instance learning (MIL) as a technique that makes 
the ML match how analysts do their job: something 
is benign by default, and only becomes malicious 
if something malicious is detected. There are no 
“positive” features in this regard, or at least, there 
shouldn’t be. Yet we found that many current deep 
MIL algorithms fail to maintain this invariant and 
cause us unexpected and unsatisfying results [33]. 
Similarly, we must be careful with our data, and so 
have spent time studying how to evaluate [34] and 
construct [35] new and more informative datasets 
so that we, and the community at large, confidently 
know what we are measuring. 

This process has helped us further refine the kinds 
of fundamental deep-learning building blocks that we 
care about for designing future hardware. It informed 
our big-picture view on what algorithmic issues 
we can work around and what are still roadblocks, 
compute versus memory trade-offs, and the types of 
primitives and operations we find consistently useful 
in malware and the broader ML problem spaces.

Conclusion
Our team has made significant advances in scal-
ing, accelerating, and parallelizing ML techniques 
which can be applied to malware detection and a 
host of other domains and problems. We function as 
an interface between academic research, industry, 
and government mission users, following the latest 
research, influencing the directions of academic 
research and commercial investments in research 
and development, advancing the state of the art with 
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our own work, and bringing the best of all of these 
to bear on critical mission problems. And we look 
forward to doing this for years to come.  
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