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YELLOWTIGER: Exploring the 
Future of Binary File Analysis
Vu l n e r a b i l i t y,  E x p l o i t a t i o n ,  a n d  M i t i g a t i o n  Te a m , 
L a b o r a t o r y  f o r  Te l e c o m m u n i c a t i o n  S c i e n c e s

YELLOWTIGER (YETI) is a tool built to aid in understanding executable files. Focused primarily 
on finding useful relationships between binaries, the data that YETI generates has applications 
across a variety of domains, such as identifying and understanding the purpose of malicious 

files, enhancing vulnerability analysis, and predicting authorship or provenance of the file.

One key area that YETI gives emphasis to is expanding the types of features that can be extracted 
from binary files. Strings, sequences of bytes, and fields extracted from the headers present in bi-
nary files are widely used because they are quick to access and easy to compare; YETI adds to these 
possibilities by allowing extraction of features that require deeper understanding of the binary, such 
as the structure of the code. An understanding of the code can expose the core logic of the binary’s 
design and purpose. YETI enables researchers to explore the idea that features derived from a bina-
ry’s code add value when trying to solve problems in this space, which was not easily possible before 
it was developed. While the additional processing required to generate these features adds challeng-
es in scalability, results indicate that this approach may both be feasible computationally and add 
accuracy and flexibility when building analytics and machine learning models for binary files.
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How does YETI extract code features?
To gain a deeper understanding of binary files, YETI 
has leveraged the open-source reverse-engineering 
tool Ghidra (developed and maintained by NSA’s 
Computer and Analytic Sciences Research Group). 
Ghidra is able to both disassemble and decompile the 
machine code of a binary so that the functionality can 
be analyzed and understood. In addition, Ghidra also 
provides a rich scripting application programming 
interface (API) and the ability to run scripts “head-
lessly,” meaning that Ghidra can run a script on a file 
or set of files and extract data of interest for later 
analysis. By integrating Ghidra, YETI is able to gain 
access to a rich array of new features that are now 
being explored more deeply. 

Some analytics built in YETI are focused on fea-
tures already identified by Ghidra, for example imme-
diate values used in the disassembly, cross-references 
of functions, or x86/64 instructions. Other analytics 
can use these features as building blocks for more 
complex analysis, opening doors to possibilities that 
are limited only by the imagination of the researcher 
creating them.

Details of YETI’s architecture
YETI is built on top of a variety of technologies. The 
user portal for YETI is a web application developed 
in Plotly Dash, which is a useful web framework for 
researchers because it abstracts many of the design 
and interface details, supports the interactive charts 
that many of YETI’s analytics leverage, and allows 
development in Python. Elasticsearch is used to store 
extracted data. Each component of YETI, for example 
the Elasticsearch instances, the web application, and 
the analytic workers, is run inside a Docker container. 
Celery is used for scheduling tasks such as running 
an analytic and delivering the resulting data to the 
component that consumes it. Kubernetes is used to 
orchestrate the various components needed to run 
YETI; it provides many benefits such as load distri-
bution, recovery from some kinds of failures, and the 
ability to scale up or down resources to complete 
analytic tasks. 

To enable development of analytics, YETI also has 
JupyterLab integrated into its architecture as a first-
class citizen, meaning it can access Elasticsearch to 
retrieve and store data, schedule Celery tasks to run 
workers and collect data, and other features needed 

to prototype and test a new analytic. This allows 
researchers to experiment with different possibilities 
and build a capability they feel provides value before 
they build it into YETI as part of the user interface, 
which requires more of a time investment and is 
more cumbersome to test. See figure 1 for a simpli-
fied diagram of the YETI architecture.

Challenges of scaling YETI’s analytics
Scalability is still a largely unexplored question in 
this space. Tools exist with similar architectures (e.g., 
built on top of Kubernetes, Docker, and Elasticsearch, 
doing analysis of binary files) that have reportedly 
been successfully scaled to handle millions of files. 
YETI tends to focus on analytics that process and an-
alyze disassembly or decompilation in various ways, 
which is quite computationally intensive. So far, YETI 
has been used on much smaller populations of files 
(in the thousands). Similarly, in the machine learning 
that YETI applies, there are challenges with applying 
the algorithms over the quantities of data generated 
by YETI’s analytics. There are a number of strategies 
which may help in stretching capabilities further, 
such as using free compute cycles to pre-compute 
and store results, optimizing data storage formats 
for the type of analytic the data is being used for, and 
filtering the data into smaller subsets based on some 
pre-analysis to reduce the number of files an analytic 
is run over.

Use cases for YETI
YETI has been used to develop a wide variety of ana-
lytics to date, ranging from workers that extract fea-
tures of code and produce charts based on them, to 
machine learning capabilities that consume features 
generated by analytics and attempt to find relation-
ships between files or groups of files. Typically when 
a new feature is being explored, the data of interest 
is extracted from a set of files and exploratory data 
analysis is conducted to determine meaningful pat-
terns and inform decisions on how to display it, or 
how to apply machine learning algorithms to it. 

In this section, several analytics that have been 
explored within YETI are discussed, along with 
results. YETI was used to curate the data in these 
experiments and to extract features explored in these 
analyses. Some of the most promising results from 
the work are described below. Better understand-
ing of the value of function prologue data through 
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FIGURE 1. This diagram shows a simplified version of the YETI architecture.

exploration in YETI is an area of active research 
within the team.

Function prologues
Binaries contain compiled code, and code tends to 
be organized into functions, or pieces of code that 
perform specific tasks that can be re-used, or “called,” 
as needed. When a program is compiled, the compiler 
tends to have certain patterns of assembly instruc-
tions that are used at the beginning and end of each 
function; these patterns handle setting up the stack 
and registers with the expected data and are general-
ly specific to both the compiler and the architecture 
that the program is being compiled for. This makes 

them an interesting feature to use in assessing if 
two files are similar to one another; similar function 
prologues may mean that the code was compiled 
with the same compiler and options, and for the same 
architecture. To test this theory, several summer 
interns working with the YETI team explored using 
function prologues to help categorize files using 
machine learning. 

A Ghidra script was developed to extract the first 
few instructions from each function in a binary. 
Because the length of a prologue is unpredictable, 
part of the analysis involved experimenting with 
various lengths and trying to find the ideal sets of 
instructions to consider as prologues. The amount of 
input was then reduced by looking across functions 
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and files to determine the most common sets of 
prologue instructions. For this work, a body of 2,500 
binaries produced 1.5 million prologue features; 
singular value decomposition was used to reduce this 
to 20 features. 

Using this data, a random forest model was trained 
and used for two-class classification between system 
and non-system binary files. It was able to detect 99.6 
percent of system files correctly, and 76 percent of 
non-system files. 

FIGURE 2. This decision tree shows classification decisions for a collection of files. 

To better understand the classification process, a 
second experiment was performed on the same data 
using decision trees instead of a random forest. It 
had similar performance, with 99 percent of system 
files correctly detected, and 72 percent of non-sys-
tem files. This was done in order to gain insight into 
how classification decisions were being made by 
the model. Figure 2 shows an example of one of the 
visualizations generated.
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In this decision tree, at each node in the graph, in 
cases where there is a mix of system and non-sys-
tem files, the distribution of the data is shown. The 
black carrot under the distribution indicates where 
the algorithm chose to divide the data. The number 
from 0-19 below the distribution is the dimension of 
the data that was used to make this determination. 
This illustration of the process is useful in gaining 
an understanding of how the classification process 
progresses.

FIGURE 3. These isolation forest results show the Windows system test set for x86 Windows prologues.

Another separate experiment to help measure the 
analytic value of function prologue data was training 
and testing an isolation forest, which is an unsuper-
vised learning algorithm that detects anomalies by 
isolating outliers in the data. The model was trained 
on Windows files, and figure 3 and 4 compare the re-
sults of testing it against additional Windows system 
files, and non-system files.
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To interpret figures 3 and 4, white points are the 
training set files; green points are the files detected 
as inliers, and red points are files detected as outliers 
by the algorithm. Shades of blue indicate the varying 
outlier scores assigned, with darker blue being a 
higher outlier score.

FIGURE 4. These isolation forest results show x86 non-system test set prologues. 

Comparing figures 3 and 4, more non-system 
files were detected as outliers (52 percent) versus 
Windows system files detected as outliers (5 per-
cent). Because the percent detected as outliers varies 
depending on the contamination parameter used 

with the model, the point of interest is the difference 
between the percentages for each class of files. We 
can infer from this large difference that there are 
many features of the non-system files that set them 
apart from the Windows system files. 

As a final note on these results, while it may not 
seem substantial to detect only 52 percent of non-sys-
tem files as outliers, consider that information was 
lost during principal component analysis (PCA), and 
also that this is focused on a single feature; in future 
work it would be worthwhile to explore performance 
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with additional features included.

Index of coincidence
The YETI team has  been performing exploratory 
data analysis by calculating an index of coincidence 
(IC) score over the bytes of code in an executable file. 
Coincidence counting is a technique which places two 
texts side-by-side and counts the number of times 
that identical letters appear in the same position in 
both texts. This count is taken either as the ratio of 
the total, or normalized by dividing by the expected 
count for a random source model [1]. The formula 
for calculating the IC is shown in equation 1. Because 
in code, like in natural language text, we expect 
certain values to appear more often than others, 
the IC is higher than it would be for random values. 
Furthermore, code generated by different compilers 
may be able to be characterized by the IC calculation, 
which would be useful in measuring how similar two 
binaries are to one another. 

     (1)

To calculate the IC, we wrote a Ghidra script that 
iterated over the functions in a program and per-
formed the calculations over the bytes in the body of 
the function. Files that did not contain any functions 
were removed from the dataset. Each file had one 
non-negative number representing the IC. 

In the experiments measuring IC on code and test-
ing it as a feature, we encountered several challenges. 
One was the size of the available datasets. To accu-
rately characterize code from different compilers, 
we theorize that a much larger quantity of data may 
be needed. In some cases, for specific sets of files, it 
may be difficult or impossible to find a large enough 
quantity of available data. 

We also observed that better results were achieved 
with IC when instead of calculating over the entire 
body of the function, we identified the bytes that 
were most meaningful to the purpose or label of the 
file and filtered out bytes that were less impactful for 
the purpose of the file. We explored several methods 
to identify these bytes, including: 

	� Trying to remove the prologue and epilogue 
bytes from the calculations, and 

	� Using entropy and cross-entropy calculations 
on different sections of the function to try to 

identify changes that might indicate where the 
substance of the functions was.

Finally, we found that experiments training models 
on IC calculations had poor classification results 
when used individually, but when combined with 
function prologue data, the IC was consistently within 
the top 10 percent of most important features of the 
classifiers. This demonstrates that while by itself IC 
is not distinguishing, at least for the amount of data 
available, at later points of the classification process, 
IC may become better able to divide the data into 
effective groupings.

Entropy and cross-entropy
In a similar vein to the IC, another analytic we 
developed involved calculating entropy over the 
distribution of the raw bytes of a file. Entropy calcu-
lations contain information about the distribution 
and counts of bytes that make up a file; see equation 
2 for the formula used to calculate it in YETI’s exper-
iments. The same strategy used with the IC calcula-
tions proved most effective, namely extracting the 
most relevant bytes from the functions, and eliminat-
ing files without functions from the dataset.

     (2)

Entropy has been successfully used in previous re-
search on malware detection, which was one reason 
we chose it for further exploration [2, 3].

Cross-entropy is a similar metric that serves to 
allow comparison between two probability distri-
butions, with a higher value for the cross-entropy 
calculation indicating that the two distributions are 
further apart from one another [4]. To explore this 
feature, we initially calculated each file’s cross-entro-
py with every other file in the dataset (see equation 
3). Using this data, for some categories where files 
had sufficiently similar scores, we identified a repre-
sentative file so that cross-entropy calculations did 
not have to be stored for every file. 

     (3)

Results showed that cross-entropy was able to dif-
ferentiate between system and non-system files with 
around 90 percent accuracy in each case. 



68

YELLOWTIGER: Exploring the Future of Binary File Analysis

Clustering binaries
YETI has also been used for research into clustering 
binary files, building off of existing research on clus-
tering malware [5]. The aim is to see which features 
contribute positively to clustering binary data. Once 
“good” clusters have been established, the next step is 
to look at the distribution of the features based on the 
clusters and determine what is considered normal 
for that cluster (i.e., that subset of binary files). Many 
of the features tested with the clustering algorithms, 
such as function cross-reference counts, are extracted 
using YETI to run Ghidra scripts on the binaries.

In figure 5, PCA is used to reduce the dimension-
ality of the data. The data includes Windows system 
files, and a relatively new dataset curated and provid-
ed by the NSA Research Directorate’s Laboratory for 
Physical Sciences called Assemblage; features ex-
tracted from the data and used for clustering include 
standardized/one-hot encoded header data, function 
cross reference counts, and instruction occurrenc-
es. We then used hierarchical density-based spatial 
clustering of applications with noise (HDBSCAN)  
to cluster and assign labels to each file (including a 
-1 noisy label, which is the purple color in the low-
er image in figure 5) [6]. The top image in figure 5 
shows the two-dimensional (2-D) projection of the 

FIGURE 5. This attempt at clustering did not succeed at breaking data into desired clusters.

data with the marker color being the known label 
(Windows or Assemblage). The bottom image shows 
the 2-D projection of the data with the marker color 
being the HDBSCAN cluster label. Overall, we can see 
that most of the points are labeled light blue, with a 
few points labeled green and a few others labeled the 
noisy purple.

In figure 6, PCA is again used to reduce the di-
mensionality of the data, but this time instruction 
occurrences are excluded as a feature, and HDBSCAN 
is used to cluster and assign labels to each file. Once 
again, the top image shows the 2-D projection of the 
data with the marker color being the known label 
(Windows or Assemblage). The bottom shows the 
2-D projection of the data with the marker color 
being the HDBSCAN cluster label. In this case, there 
is better delineation between the two known file 
families. Most of the blue points in the top chart are 
clustered together in the bottom. Some of the yellow 
points are properly clustered together (the top dark-
er pink cluster) while the rest are broken down into 
further clusters or marked as noisy.

There are many applications for successful cluster-
ing of binary files. Within YETI, one goal is to be able 
to automatically tag files with relevant labels based 
on clusters they fall into rather than relying on users 
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FIGURE 6. We achieved this more successful attempt at clustering by removing noisy features. 

to correctly tag data upon upload. A more common 
use case is of course being able to identify suspicious 
files if they categorize into clusters with known mal-
ware, or to gain insights into attribution of a file back 
to its author [7].

Conclusion
YETI is a flexible and robust tool for research on scal-
able binary analysis to better understand binary sim-
ilarity and quantify relationships between binaries in 
meaningful ways. There is a great deal of ongoing and 
planned work exploring the features and analytics 
described above, as well as developing new analytics 
for use in YETI. YETI houses a growing set of useful 

metrics for code similarity within a framework that 
allows experimentation and analysis to generate 
innovative tools and techniques in this space. By 
tapping into the ability to identify and understand 
the code within binaries, new doors are opened to 
leverage features that convey detailed information 
about the purpose and origin of binary files, as well 
as their relationships to other binaries. This potential 
for deeper understanding may represent the future 
of where binary analysis is headed. The YETI team 
is excited about both the system engineering chal-
lenges of scaling the analysis, as well as the research 
being done in identifying new meaningful features of 
binaries and applying them within machine learning 
frameworks to solve hard problems.  
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