
 The Next Wave | Vol. 25 No. 1 | 2024 | 61

FEATURE

YELLOWTIGER: Exploring the
Future of Binary File Analysis
Vu l n e r a b i l i t y, E x p l o i t a t i o n , a n d M i t i g a t i o n Te a m ,
L a b o r a t o r y f o r Te l e c o m m u n i c a t i o n S c i e n c e s

YELLOWTIGER (YETI) is a tool built to aid in understanding executable files. Focused primarily
on finding useful relationships between binaries, the data that YETI generates has applications
across a variety of domains, such as identifying and understanding the purpose of malicious

files, enhancing vulnerability analysis, and predicting authorship or provenance of the file.

One key area that YETI gives emphasis to is expanding the types of features that can be extracted
from binary files. Strings, sequences of bytes, and fields extracted from the headers present in bi-
nary files are widely used because they are quick to access and easy to compare; YETI adds to these
possibilities by allowing extraction of features that require deeper understanding of the binary, such
as the structure of the code. An understanding of the code can expose the core logic of the binary’s
design and purpose. YETI enables researchers to explore the idea that features derived from a bina-
ry’s code add value when trying to solve problems in this space, which was not easily possible before
it was developed. While the additional processing required to generate these features adds challeng-
es in scalability, results indicate that this approach may both be feasible computationally and add
accuracy and flexibility when building analytics and machine learning models for binary files.

[Photo credit: iStock.com/undefined undefined]

62

YELLOWTIGER: Exploring the Future of Binary File Analysis

How does YETI extract code features?
To gain a deeper understanding of binary files, YETI
has leveraged the open-source reverse-engineering
tool Ghidra (developed and maintained by NSA’s
Computer and Analytic Sciences Research Group).
Ghidra is able to both disassemble and decompile the
machine code of a binary so that the functionality can
be analyzed and understood. In addition, Ghidra also
provides a rich scripting application programming
interface (API) and the ability to run scripts “head-
lessly,” meaning that Ghidra can run a script on a file
or set of files and extract data of interest for later
analysis. By integrating Ghidra, YETI is able to gain
access to a rich array of new features that are now
being explored more deeply.

Some analytics built in YETI are focused on fea-
tures already identified by Ghidra, for example imme-
diate values used in the disassembly, cross-references
of functions, or x86/64 instructions. Other analytics
can use these features as building blocks for more
complex analysis, opening doors to possibilities that
are limited only by the imagination of the researcher
creating them.

Details of YETI’s architecture
YETI is built on top of a variety of technologies. The
user portal for YETI is a web application developed
in Plotly Dash, which is a useful web framework for
researchers because it abstracts many of the design
and interface details, supports the interactive charts
that many of YETI’s analytics leverage, and allows
development in Python. Elasticsearch is used to store
extracted data. Each component of YETI, for example
the Elasticsearch instances, the web application, and
the analytic workers, is run inside a Docker container.
Celery is used for scheduling tasks such as running
an analytic and delivering the resulting data to the
component that consumes it. Kubernetes is used to
orchestrate the various components needed to run
YETI; it provides many benefits such as load distri-
bution, recovery from some kinds of failures, and the
ability to scale up or down resources to complete
analytic tasks.

To enable development of analytics, YETI also has
JupyterLab integrated into its architecture as a first-
class citizen, meaning it can access Elasticsearch to
retrieve and store data, schedule Celery tasks to run
workers and collect data, and other features needed

to prototype and test a new analytic. This allows
researchers to experiment with different possibilities
and build a capability they feel provides value before
they build it into YETI as part of the user interface,
which requires more of a time investment and is
more cumbersome to test. See figure 1 for a simpli-
fied diagram of the YETI architecture.

Challenges of scaling YETI’s analytics
Scalability is still a largely unexplored question in
this space. Tools exist with similar architectures (e.g.,
built on top of Kubernetes, Docker, and Elasticsearch,
doing analysis of binary files) that have reportedly
been successfully scaled to handle millions of files.
YETI tends to focus on analytics that process and an-
alyze disassembly or decompilation in various ways,
which is quite computationally intensive. So far, YETI
has been used on much smaller populations of files
(in the thousands). Similarly, in the machine learning
that YETI applies, there are challenges with applying
the algorithms over the quantities of data generated
by YETI’s analytics. There are a number of strategies
which may help in stretching capabilities further,
such as using free compute cycles to pre-compute
and store results, optimizing data storage formats
for the type of analytic the data is being used for, and
filtering the data into smaller subsets based on some
pre-analysis to reduce the number of files an analytic
is run over.

Use cases for YETI
YETI has been used to develop a wide variety of ana-
lytics to date, ranging from workers that extract fea-
tures of code and produce charts based on them, to
machine learning capabilities that consume features
generated by analytics and attempt to find relation-
ships between files or groups of files. Typically when
a new feature is being explored, the data of interest
is extracted from a set of files and exploratory data
analysis is conducted to determine meaningful pat-
terns and inform decisions on how to display it, or
how to apply machine learning algorithms to it.

In this section, several analytics that have been
explored within YETI are discussed, along with
results. YETI was used to curate the data in these
experiments and to extract features explored in these
analyses. Some of the most promising results from
the work are described below. Better understand-
ing of the value of function prologue data through

 The Next Wave | Vol. 25 No. 1 | 2024 | 63

FEATURE

FIGURE 1. This diagram shows a simplified version of the YETI architecture.

exploration in YETI is an area of active research
within the team.

Function prologues
Binaries contain compiled code, and code tends to
be organized into functions, or pieces of code that
perform specific tasks that can be re-used, or “called,”
as needed. When a program is compiled, the compiler
tends to have certain patterns of assembly instruc-
tions that are used at the beginning and end of each
function; these patterns handle setting up the stack
and registers with the expected data and are general-
ly specific to both the compiler and the architecture
that the program is being compiled for. This makes

them an interesting feature to use in assessing if
two files are similar to one another; similar function
prologues may mean that the code was compiled
with the same compiler and options, and for the same
architecture. To test this theory, several summer
interns working with the YETI team explored using
function prologues to help categorize files using
machine learning.

A Ghidra script was developed to extract the first
few instructions from each function in a binary.
Because the length of a prologue is unpredictable,
part of the analysis involved experimenting with
various lengths and trying to find the ideal sets of
instructions to consider as prologues. The amount of
input was then reduced by looking across functions

64

YELLOWTIGER: Exploring the Future of Binary File Analysis

and files to determine the most common sets of
prologue instructions. For this work, a body of 2,500
binaries produced 1.5 million prologue features;
singular value decomposition was used to reduce this
to 20 features.

Using this data, a random forest model was trained
and used for two-class classification between system
and non-system binary files. It was able to detect 99.6
percent of system files correctly, and 76 percent of
non-system files.

FIGURE 2. This decision tree shows classification decisions for a collection of files.

To better understand the classification process, a
second experiment was performed on the same data
using decision trees instead of a random forest. It
had similar performance, with 99 percent of system
files correctly detected, and 72 percent of non-sys-
tem files. This was done in order to gain insight into
how classification decisions were being made by
the model. Figure 2 shows an example of one of the
visualizations generated.

 The Next Wave | Vol. 25 No. 1 | 2024 | 65

FEATURE

In this decision tree, at each node in the graph, in
cases where there is a mix of system and non-sys-
tem files, the distribution of the data is shown. The
black carrot under the distribution indicates where
the algorithm chose to divide the data. The number
from 0-19 below the distribution is the dimension of
the data that was used to make this determination.
This illustration of the process is useful in gaining
an understanding of how the classification process
progresses.

FIGURE 3. These isolation forest results show the Windows system test set for x86 Windows prologues.

Another separate experiment to help measure the
analytic value of function prologue data was training
and testing an isolation forest, which is an unsuper-
vised learning algorithm that detects anomalies by
isolating outliers in the data. The model was trained
on Windows files, and figure 3 and 4 compare the re-
sults of testing it against additional Windows system
files, and non-system files.

66

YELLOWTIGER: Exploring the Future of Binary File Analysis

To interpret figures 3 and 4, white points are the
training set files; green points are the files detected
as inliers, and red points are files detected as outliers
by the algorithm. Shades of blue indicate the varying
outlier scores assigned, with darker blue being a
higher outlier score.

FIGURE 4. These isolation forest results show x86 non-system test set prologues.

Comparing figures 3 and 4, more non-system
files were detected as outliers (52 percent) versus
Windows system files detected as outliers (5 per-
cent). Because the percent detected as outliers varies
depending on the contamination parameter used

with the model, the point of interest is the difference
between the percentages for each class of files. We
can infer from this large difference that there are
many features of the non-system files that set them
apart from the Windows system files.

As a final note on these results, while it may not
seem substantial to detect only 52 percent of non-sys-
tem files as outliers, consider that information was
lost during principal component analysis (PCA), and
also that this is focused on a single feature; in future
work it would be worthwhile to explore performance

 The Next Wave | Vol. 25 No. 1 | 2024 | 67

FEATURE

with additional features included.

Index of coincidence
The YETI team has been performing exploratory
data analysis by calculating an index of coincidence
(IC) score over the bytes of code in an executable file.
Coincidence counting is a technique which places two
texts side-by-side and counts the number of times
that identical letters appear in the same position in
both texts. This count is taken either as the ratio of
the total, or normalized by dividing by the expected
count for a random source model [1]. The formula
for calculating the IC is shown in equation 1. Because
in code, like in natural language text, we expect
certain values to appear more often than others,
the IC is higher than it would be for random values.
Furthermore, code generated by different compilers
may be able to be characterized by the IC calculation,
which would be useful in measuring how similar two
binaries are to one another.

 (1)

To calculate the IC, we wrote a Ghidra script that
iterated over the functions in a program and per-
formed the calculations over the bytes in the body of
the function. Files that did not contain any functions
were removed from the dataset. Each file had one
non-negative number representing the IC.

In the experiments measuring IC on code and test-
ing it as a feature, we encountered several challenges.
One was the size of the available datasets. To accu-
rately characterize code from different compilers,
we theorize that a much larger quantity of data may
be needed. In some cases, for specific sets of files, it
may be difficult or impossible to find a large enough
quantity of available data.

We also observed that better results were achieved
with IC when instead of calculating over the entire
body of the function, we identified the bytes that
were most meaningful to the purpose or label of the
file and filtered out bytes that were less impactful for
the purpose of the file. We explored several methods
to identify these bytes, including:

	� Trying to remove the prologue and epilogue
bytes from the calculations, and

	� Using entropy and cross-entropy calculations
on different sections of the function to try to

identify changes that might indicate where the
substance of the functions was.

Finally, we found that experiments training models
on IC calculations had poor classification results
when used individually, but when combined with
function prologue data, the IC was consistently within
the top 10 percent of most important features of the
classifiers. This demonstrates that while by itself IC
is not distinguishing, at least for the amount of data
available, at later points of the classification process,
IC may become better able to divide the data into
effective groupings.

Entropy and cross-entropy
In a similar vein to the IC, another analytic we
developed involved calculating entropy over the
distribution of the raw bytes of a file. Entropy calcu-
lations contain information about the distribution
and counts of bytes that make up a file; see equation
2 for the formula used to calculate it in YETI’s exper-
iments. The same strategy used with the IC calcula-
tions proved most effective, namely extracting the
most relevant bytes from the functions, and eliminat-
ing files without functions from the dataset.

 (2)

Entropy has been successfully used in previous re-
search on malware detection, which was one reason
we chose it for further exploration [2, 3].

Cross-entropy is a similar metric that serves to
allow comparison between two probability distri-
butions, with a higher value for the cross-entropy
calculation indicating that the two distributions are
further apart from one another [4]. To explore this
feature, we initially calculated each file’s cross-entro-
py with every other file in the dataset (see equation
3). Using this data, for some categories where files
had sufficiently similar scores, we identified a repre-
sentative file so that cross-entropy calculations did
not have to be stored for every file.

 (3)

Results showed that cross-entropy was able to dif-
ferentiate between system and non-system files with
around 90 percent accuracy in each case.

68

YELLOWTIGER: Exploring the Future of Binary File Analysis

Clustering binaries
YETI has also been used for research into clustering
binary files, building off of existing research on clus-
tering malware [5]. The aim is to see which features
contribute positively to clustering binary data. Once
“good” clusters have been established, the next step is
to look at the distribution of the features based on the
clusters and determine what is considered normal
for that cluster (i.e., that subset of binary files). Many
of the features tested with the clustering algorithms,
such as function cross-reference counts, are extracted
using YETI to run Ghidra scripts on the binaries.

In figure 5, PCA is used to reduce the dimension-
ality of the data. The data includes Windows system
files, and a relatively new dataset curated and provid-
ed by the NSA Research Directorate’s Laboratory for
Physical Sciences called Assemblage; features ex-
tracted from the data and used for clustering include
standardized/one-hot encoded header data, function
cross reference counts, and instruction occurrenc-
es. We then used hierarchical density-based spatial
clustering of applications with noise (HDBSCAN)
to cluster and assign labels to each file (including a
-1 noisy label, which is the purple color in the low-
er image in figure 5) [6]. The top image in figure 5
shows the two-dimensional (2-D) projection of the

FIGURE 5. This attempt at clustering did not succeed at breaking data into desired clusters.

data with the marker color being the known label
(Windows or Assemblage). The bottom image shows
the 2-D projection of the data with the marker color
being the HDBSCAN cluster label. Overall, we can see
that most of the points are labeled light blue, with a
few points labeled green and a few others labeled the
noisy purple.

In figure 6, PCA is again used to reduce the di-
mensionality of the data, but this time instruction
occurrences are excluded as a feature, and HDBSCAN
is used to cluster and assign labels to each file. Once
again, the top image shows the 2-D projection of the
data with the marker color being the known label
(Windows or Assemblage). The bottom shows the
2-D projection of the data with the marker color
being the HDBSCAN cluster label. In this case, there
is better delineation between the two known file
families. Most of the blue points in the top chart are
clustered together in the bottom. Some of the yellow
points are properly clustered together (the top dark-
er pink cluster) while the rest are broken down into
further clusters or marked as noisy.

There are many applications for successful cluster-
ing of binary files. Within YETI, one goal is to be able
to automatically tag files with relevant labels based
on clusters they fall into rather than relying on users

 The Next Wave | Vol. 25 No. 1 | 2024 | 69

FEATURE

FIGURE 6. We achieved this more successful attempt at clustering by removing noisy features.

to correctly tag data upon upload. A more common
use case is of course being able to identify suspicious
files if they categorize into clusters with known mal-
ware, or to gain insights into attribution of a file back
to its author [7].

Conclusion
YETI is a flexible and robust tool for research on scal-
able binary analysis to better understand binary sim-
ilarity and quantify relationships between binaries in
meaningful ways. There is a great deal of ongoing and
planned work exploring the features and analytics
described above, as well as developing new analytics
for use in YETI. YETI houses a growing set of useful

metrics for code similarity within a framework that
allows experimentation and analysis to generate
innovative tools and techniques in this space. By
tapping into the ability to identify and understand
the code within binaries, new doors are opened to
leverage features that convey detailed information
about the purpose and origin of binary files, as well
as their relationships to other binaries. This potential
for deeper understanding may represent the future
of where binary analysis is headed. The YETI team
is excited about both the system engineering chal-
lenges of scaling the analysis, as well as the research
being done in identifying new meaningful features of
binaries and applying them within machine learning
frameworks to solve hard problems.

References
[1] Friedman W. The Index of Coincidence and its
Applications in Cryptography. Department of Ciphers Publ
22. Geneva (IL): Riverbank Laboratories; 1922.

[2] Gilbert D, Mateu C, Planes J, Vicens R. “Classification
of malware by using structural entropy on convolutional
neural networks.” Proceedings of the AAAI Conference on
Artificial Intelligence. 2018;32(1). Available at: https://doi.
org/10.1609/aaai.v32i1.11409.

[3] Lyda R, Hamrock J. “Using entropy analysis to find
encrypted and packed malware.” IEEE Security and Privacy.
2007;5(2):40–45. doi: 10.1109/MSP.2007.48.

[4] Cybenko G, O’Leary DP, Rissanen J, editors. The
Mathematics of Information Coding, Extraction and
Distribution. New York (NY): Springer; 1999. ISBN:
978-0-387-98665-4.

[5] Kim S. “PE header analysis for malware detection.”
(2018). Master’s Projects, 624, San Jose State University.
Available at: https://doi.org/10.31979/etd.q3dd-gp9u and
https://scholarworks.sjsu.edu/etd_projects/624.

[6] McInnes L, Healy J. “Accelerated hierarchical density
based clustering.” In: 2017 IEEE International Conference on
Data Mining Workshops (ICDMW); 2017; IEEE: pp 33–42.
Available at: https://doi.org/10.1109/ICDMW.2017.12.

https://doi.org/10.1609/aaai.v32i1.11409
https://doi.org/10.1609/aaai.v32i1.11409
https://doi.org/10.31979/etd.q3dd-gp9u
https://scholarworks.sjsu.edu/etd_projects/624
https://doi.org/10.1109/ICDMW.2017.12

70

YELLOWTIGER: Exploring the Future of Binary File Analysis

[7] Rosenblum N, Zhu X, Miller BP. (2011). “Who
wrote this code? Identifying the authors of program
binaries.” In: Computer Security-ESORICS 2011: 16th
European Symposium on Research in Computer Security;
2011 Sep 12–14; Leuven, Belgium: pp. 172–189).
Springer Berlin Heidelberg. Available at: https://doi.
org/10.1007/978-3-642-23822-2_10.

https://doi.org/10.1007/978-3-642-23822-2_10
https://doi.org/10.1007/978-3-642-23822-2_10

		Superintendent of Documents
	2024-04-09T16:52:42-0400
	Government Publishing Office, Washington, DC 20401
	Government Publishing Office
	Government Publishing Office attests that this document has not been altered since it was disseminated by Government Publishing Office

